Phased Array System Toolbox ${ }^{\text {Tn }}$

User's Guide
®

MATLAB $^{\circ} \&$ SIMULINK $^{\circ}$

How to Contact MathWorks

Latest news:
Sales and services:
User community:
Technical support:
Phone:

The MathWorks, Inc. 1 Apple Hill Drive Natick, MA 01760-2098

Phased Array System Toolbox ${ }^{\text {TM }}$ User's Guide
© COPYRIGHT 2011-2020 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014 Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for more information.

Revision History

April 2011
September 2011
March 2012
September 2012
March 2013
September 2013
March 2014
October 2014
March 2015
September 2015
March 2016
September 2016
March 2017
September 2017
March 2018
September 2018
March 2019
September 2019
March 2020
September 2020

Online only

Revised for Version 1.0 (R2011a)
Revised for Version 1.1 (R2011b)
Revised for Version 1.2 (R2012a)
Revised for Version 1.3 (R2012b)
Revised for Version 2.0 (R2013a)
Revised for Version 2.1 (R2013b)
Revised for Version 2.2 (R2014a)
Revised for Version 2.3 (R2014b)
Revised for Version 3.0 (R2015a)
Revised for Version 3.1 (R2015b)
Revised for Version 3.2 (R2016a)
Revised for Version 3.3 (R2016b)
Revised for Version 3.4 (R2017a)
Revised for Version 3.5 (R2017b)
Revised for Version 3.6 (R2018a)
Revised for Version 4.0 (R2018b)
Revised for Version 4.1 (R2019a)
Revised for Version 4.2 (R2019b)
Revised for Version 4.3 (R2020a)
Revised for Version 4.4 (R2020b)

Phased Arrays

Antenna and Microphone Elements

1

Isotropic Antenna Element 1-2
Support for Isotropic Antenna Elements 1-2
Backbaffled Isotropic Antenna 1-2
Response of Backbaffled Isotropic Antenna Element 1-5
Cosine Antenna Element 1-7
Support for Cosine Antenna Elements 1-7
Concentrating Cosine Antenna Response 1-7
Plot 3-D Response of Cosine Antenna Element 1-8
Custom Antenna Element 1-10
Support for Custom Antenna Elements 1-10
Antenna with Custom Radiation Pattern 1-10
Omnidirectional Microphone 1-12
Support for Omnidirectional Microphones 1-12
Backbaffled Omnidirectional Microphone 1-12
Custom Microphone Element 1-16
Support for Custom Microphone Elements 1-16
Custom Cardioid Microphone Pattern 1-16
Short-dipole Antenna Element 1-18
Short-Dipole Polarization Components 1-19
Crossed-dipole Antenna Element 1-21
LHCP and RHCP Polarization Components 1-22
Using Antenna Toolbox with Phased Array Systems 1-24
Array Geometries and Analysis
2
Uniform Linear Array 2-2
Support for Uniform Linear Arrays 2-2
Positions of ULA Array Elements 2-2
ULA Array Elements 2-3
Array Element Responses 2-3
Signal Delay Between Array Elements 2-4
Steering Vector 2-5
Array Response 2-6
Reception of Plane Wave Across Array 2-8
Microphone ULA Array 2-10
Uniform Rectangular Array 2-12
Support for Uniform Rectangular Arrays $2-12$
Uniform Rectangular Array of Isotropic Antenna Elements 2-12
Conformal Array $2-15$
Support for Arrays with Custom Geometry 2-15
Create Default Conformal Array 2-15
Uniform Circular Array Created from Conformal Array 2-15
Custom Antenna Array 2-18
Subarrays Within Arrays 2-22
Definition of Subarrays 2-22
Benefits of Using Subarrays 2-22
Support for Subarrays Within Arrays 2-22
Rectangular Array Partitioned into Linear Subarrays 2-23
Linear Subarray Replicated to Form Rectangular Array 2-26
Linear Subarray Replicated in a Custom Grid 2-27
Plot Array Directivity Using Sensor Array Analyzer App 2-29
Signal Radiation and Collection
3
Signal Radiation 3-2
Support for Modeling Signal Radiation 3-2
Radiate Signal with Uniform Linear Array 3-2
Signal Collection 3-4
Support for Modeling Signal Collection 3-4
Narrowband Collector for Uniform Linear Array 3-5
Narrowband Collector for a Single Antenna Element 3-6
Wideband Signal Collection 3-7
Waveforms, Transmitter, and Receiver
Rectangular Pulse Waveforms 4-2
Definition of Rectangular Pulse Waveform 4-2
How to Create Rectangular Pulse Waveforms 4-2
Rectangular Waveform Plot 4-2
Pulses of Rectangular Waveform 4-3
Linear Frequency Modulated Pulse Waveforms 4-6
Benefits of Using Linear FM Pulse Waveform 4-6
Definition of Linear FM Pulse Waveform 4-6
How to Create Linear FM Pulse Waveforms 4-6
Create Linear FM Pulse Waveform 4-7
Linear FM Pulse Waveform Plot 4-7
Ambiguity Function of Linear FM Waveform 4-9
Compare Autocorrelation for Rectangular and Linear FM Waveforms 4-10
Stepped FM Pulse Waveforms 4-13
Create and Plot Stepped FM Pulse Waveform 4-13
FMCW Waveforms 4-16
Benefits of Using FMCW Waveform 4-16
How to Create FMCW Waveforms 4-16
Double Triangular Sweep 4-16
Phase-Coded Waveforms 4-18
When to Use Phase-Coded Waveforms 4-18
How to Create Phase-Coded Waveforms 4-18
Basic Radar Using Phase-Coded Waveform 4-19
Waveforms with Staggered PRFs 4-21
When to Use Staggered PRFs 4-21
Linear FM Waveform with Staggered PRF 4-21
Plot Spectrogram Using Radar Waveform Analyzer App 4-23
Transmitter 4-25
Transmitter Object 4-25
Phase Noise 4-27
Receiver Preamp 4-30
Operation of Receiver Preamp 4-30
Configuring Receiver Preamp 4-30
Model Receiver Effects on Sinusoidal Input 4-31
Model Coherent-on-Receive Behavior 4-33
Coherent-on-Receive for Rectangular Pulse 4-33
Radar Equation 4-35
Radar Equation Theory 4-35
Link Budget Calculation Using the Radar Equation 4-36
Maximum Detectable Range for a Monostatic Radar 4-36
Output SNR at Receiver in Bistatic Radar 4-37
Display Vertical Coverage Diagram 4-38
Compute Peak Power Using Radar Equation Calculator App 4-39
Beamforming Overview 5-2
Conventional Beamforming 5-2
Optimal and Adaptive Beamforming 5-3
Conventional Beamforming 5-6
Uses for Beamformers 5-6
Support for Conventional Beamforming 5-6
Narrowband Phase Shift Beamformer For a ULA 5-6
Adaptive Beamforming 5-11
Benefits of Adaptive Beamforming 5-11
Support for Adaptive Beamforming 5-11
Nulling with LCMV Beamformer 5-11
Wideband Beamforming 5-15
Support for Wideband Beamforming 5-15
Time-Delay Beamforming of Microphone ULA Array 5-15
Visualization of Wideband Beamformer Performance 5-16
Time-Delay Beamforming of Microphone ULA Array 5-21
Visualization of Wideband Beamformer Performance 5-23
Fixed-Point HDL-Optimized Minimum-Variance Distortionless-Response (MVDR) Beamformer 5-28
Direction-of-Arrival Estimation
6
Beamscan Direction-of-Arrival Estimation 6-2
Super-Resolution DOA Estimation 6-4
MUSIC Super-Resolution DOA Estimation 6-7
Signal Model 6-7
Signal and Noise Subspaces 6-8
Root-MUSIC 6-9
Spatial Smoothing of Correlated Sources 6-9
Target Tracking Using Sum-Difference Monopulse Radar 6-12
Angle-Doppler Response 7-2
Benefits of Visualizing Angle-Doppler Response 7-2
Angle-Doppler Response of Stationary Array to Stationary Target 7-2
Angle-Doppler Response to Stationary Target at Moving Array 7-4
Displaced Phase Center Antenna Pulse Canceller 7-7
When to Use the DPCA Pulse Canceller 7-7
DPCA Pulse Canceller to Reject Clutter 7-7
Adaptive Displaced Phase Center Antenna Pulse Canceller 7-12
When to Use the Adaptive DPCA Pulse Canceller 7-12
Adaptive DPCA Pulse Canceller To Reject Clutter and Interference 7-12
Sample Matrix Inversion Beamformer 7-18
When to Use the SMI Beamformer 7-18
Sample Matrix Inversion Beamformer 7-18
Detection
8
Neyman-Pearson Hypothesis Testing 8-2
Purpose of Hypothesis Testing 8-2
Support for Neyman-Pearson Hypothesis Testing 8-2
Threshold for Real-Valued Signal in White Gaussian Noise 8-2
Threshold for Two Pulses of Real-Valued Signal in White Gaussian Noise 8-4
Threshold for Complex-Valued Signals in Complex White Gaussian Noise 8-4
Receiver Operating Characteristics 8-6
Monte-Carlo ROC Simulation 8-11
Matched Filtering 8-19
Reasons for Using Matched Filtering 8-19
Support for Matched Filtering 8-19
Matched Filtering of Linear FM Waveform 8-19
Matched Filtering to Improve SNR for Target Detection 8-21
Stretch Processing 8-25
Reasons for Using Stretch Processing 8-25
Support for Stretch Processing 8-25
Stretch Processing Procedure 8-25
FMCW Range Estimation 8-27
Range-Doppler Response 8-29
Benefits of Producing Range-Doppler Response 8-29
Support for Range-Doppler Processing 8-29
Range-Speed Response Pattern of Target 8-30
Constant False-Alarm Rate (CFAR) Detectors 8-34
False Alarm Rate For CFAR Detectors 8-34
Cell-Averaging CFAR Detector 8-36
CFAR Detector Adaptation to Noisy Input Data 8-37
Extensions of Cell-Averaging CFAR Detector 8-38
Detection Probability for CFAR Detector 8-38
Measure Intensity Levels Using the Intensity Scope 8-41
RTI and DTI Displays in Full Radar Simulation 8-42
Environment and Target Models
9
Free Space Path Loss 9-2
Support for Modeling Propagation in Free Space 9-2
Free Space Path Loss in dB 9-2
Propagate Linear FM Pulse Waveform to Target and Back 9-3
One-Way and Two-Way Propagation 9-4
Propagate Signal from Stationary Radar to Moving Target 9-5
Two-Ray Multipath Propagation 9-10
Free-Space Propagation of Wideband Signals 9-12
Radar Target 9-14
Radar Target Properties 9-14
Gain for Nonfluctuating RCS Target 9-14
Fluctuating RCS Targets 9-15
Model Pulse Reflection From Nonfluctuating Target 9-16
Swerling 1 Target Models 9-17
Swerling Target Models 9-21
Swerling 3 Target Models 9-26
Swerling 4 Target Models 9-30
Clutter Modeling 9-35
Surface Clutter Overview 9-35
Approaches for Clutter Simulation or Analysis 9-35
Considerations for Setting Up a Constant Gamma Clutter Simulation 9-35
Related Examples 9-37
Barrage Jammer 9-38
Support for Modeling Barrage Jammer 9-38
Model Barrage Jammer Output 9-38
Model Effect of Barrage Jammer on Target Echo 9-40
Rectangular Coordinates 10-2
Definitions of Coordinates 10-2
Notation for Vectors and Points 10-3
Orthogonal Basis and Euclidean Norm 10-3
Orientation of Coordinate Axes 10-3
Rotations and Rotation Matrices 10-4
Spherical Coordinates 10-10
Support for Spherical Coordinates 10-10
Azimuth and Elevation Angles 10-10
Phi and Theta Angles 10-11
U and V Coordinates 10-12
Conversion between Rectangular and Spherical Coordinates 10-13
Broadside Angles 10-14
Convert Between Broadside Angles and Azimuth and Elevation 10-16
Global and Local Coordinate Systems 10-17
Global Coordinate System 10-17
Local Coordinate Systems 10-17
Converting Between Global and Local Coordinate Systems 10-29
Convert Local Spherical Coordinates to Global Rectangular Coordinates 10-29
Convert Global Rectangular Coordinates to Local Spherical Coordinates10-30
Global and Local Coordinate Systems Radar Example 10-31
Motion Modeling in Phased Array Systems 10-39
Support for Motion Modeling 10-39
Platform Motion with Constant Velocity 10-40
Platform Motion with Changing Velocity 10-40
Track Range and Angle Changes Between Platforms 10-41
Model Motion of Circling Airplane 10-43
Visualize Multiplatform Scenario 10-45
Doppler Shift and Pulse-Doppler Processing 10-48
Support for Pulse-Doppler Processing 10-48
Convert Speed to Doppler Shift 10-48
Convert Doppler Shift to Speed 10-48
Pulse-Doppler Processing of Slow-Time Data 10-49
Range and Speed using Pulse-Doppler Processing 10-49
Polarized Fields 11-2
Introduction to Polarization 11-2
Linear and Circular Polarization 11-3
Elliptic Polarization 11-6
Linear and Circular Polarization Bases 11-9
Sources of Polarized Fields 11-12
Scattering Cross-Section Matrix 11-18
Polarization Loss Due to Field and Receiver Mismatch 11-22
Model Radar Transmitting Polarized Radiation 11-24
Antenna and Array Definitions
12
Element and Array Radiation and Response Patterns 12-2
Element Response and Radiation Patterns 12-2
Array Response and Radiation Patterns 12-5
Grating Lobe Diagram for Microphone URA 12-8
Sonar System Models
13
Sonar Equation 13-2
Passive Sonar Equation 13-2
Active Sonar Equation 13-4
Doppler Effect for Sound 13-6
Code Generation
14
Code Generation 14-2
Code Generation Use and Benefits 14-2
Limitations Specific to Phased Array System Toolbox 14-3
General Limitations 14-5
Limitations for System Objects that Require Dynamic Memory Allocation14-9
Generate MEX Function to Estimate Directions of Arrival 14-10
Generate MEX Function Containing Persistent System Objects 14-12

Simulink Examples

Access TIREM Software 16-2
Featured Examples
17
Antenna Array Analysis with Custom Radiation Pattern 17-2
Array Pattern Synthesis 17-11
Modeling and Analyzing Polarization 17-25
Modeling Mutual Coupling in Large Arrays Using Embedded Element Pattern 17-38
Modeling Mutual Coupling in Large Arrays Using Infinite Array Analysis17-49
Modeling Perturbations and Element Failures in a Sensor Array 17-60
Patch Antenna Array for FMCW Radar 17-68
Phased Array Gallery 17-79
Using Pilot Calibration to Compensate For Array Uncertainties 17-99
Using Self Calibration to Accommodate Array Uncertainties 17-105
Subarrays in Phased Array Antennas 17-110
Tapering, Thinning and Arrays with Different Sensor Patterns 17-119
Frequency Agility in Radar, Communications, and EW Systems 17-135
Simultaneous Range and Speed Estimation Using MFSK Waveform 17-143
Waveform Analysis Using the Ambiguity Function 17-149
Waveform Design to Improve Performance of an Existing Radar System 17-165
Acoustic Beamforming Using a Microphone Array 17-172
Beamforming for MIMO-OFDM Systems 17-181
Conventional and Adaptive Beamformers 17-188
Direction of Arrival Estimation with Beamscan, MVDR, and MUSIC 17-203
High Resolution Direction of Arrival Estimation 17-214
Increasing Angular Resolution with MIMO Radars 17-222
Introduction to Space-Time Adaptive Processing $17-231$
Source Localization Using Generalized Cross Correlation 17-247
Acoustic Beamforming Using Microphone Arrays 17-252
Conventional and Adaptive Beamformers 17-256
Direction of Arrival with Beamscan and MVDR 17-265
Clutter and Jammer Mitigation with STAP 17-274
Constant False Alarm Rate (CFAR) Detection 17-279
Detector Performance Analysis Using ROC Curves 17-288
Doppler Estimation 17-295
Range Estimation Using Stretch Processing 17-301
Signal Detection in White Gaussian Noise 17-307
Signal Detection Using Multiple Samples 17-314
Modeling the Propagation of RF Signals 17-320
Modeling Target Radar Cross Section 17-332
Antenna Array Beam Scanning Visualization on a Map 17-345
SINR Map for a 5G Urban Macro-Cell Test Environment 17-355
Automotive Adaptive Cruise Control Using FMCW Technology 17-367
Automotive Adaptive Cruise Control Using FMCW and MFSK Technology 17-379
Radar Signal Simulation and Processing for Automated Driving 17-395
Improve SNR and Capacity of Wireless Communication Using Antenna Arrays 17-406
Introduction to Hybrid Beamforming 17-423
MIMO-OFDM Precoding with Phased Arrays 17-430
Acceleration of Clutter Simulation Using GPU and Code Generation 17-445
Designing a Basic Monostatic Pulse Radar 17-449
Ground Clutter Mitigation with Moving Target Indication (MTI) Radar 17-461
Scan Radar Using a Uniform Rectangular Array 17-468
Simulating a Bistatic Polarimetric Radar 17-476
Stream and Accelerate Simulation of Radar System 17-482
Visualizing Radar and Target Trajectories in System Simulation 17-488
End-to-End Monostatic Radar 17-497
Modeling a Wideband Monostatic Radar in a Multipath Environment 17-503
Modeling RF Front End in Radar System Simulation 17-509
Simulating a Bistatic Radar with Two Targets 17-513
Waveform Scheduling Based on Target Detection 17-517
Underwater Target Detection with an Active Sonar System 17-522
Locating an Acoustic Beacon with a Passive Sonar System 17-533
Interference Mitigation Using Frequency Agility Techniques 17-538
Signal Parameter Estimation in a Radar Warning Receiver 17-546
Massive MIMO Hybrid Beamforming 17-559
PRF Agility Based on Target Detection 17-571
Multicore Simulation of Monostatic Radar System 17-574
Multicore Simulation of Audio Beamforming System 17-579
Simulating a Polarimetric Radar Return for Weather Observation 17-583
Introduction to Micro-Doppler Effects 17-601
Search and Track Scheduling for Multifunction Phased Array Radar 17-616
Stripmap Synthetic Aperture Radar (SAR) Image Formation 17-635
Planning Radar Network Coverage over Terrain 17-646
802.11ad Single Carrier Link with RF Beamforming in Simulink 17-658
802.11ad Waveform Generation with Beamforming 17-668
Radar Target Classification Using Machine Learning and Deep Learning 17-673
Processing Radar Reflections Acquired with the Demorad Radar Sensor Platform 17-687
Radar Waveform Classification Using Deep Learning 17-694
Hybrid MIMO Beamforming with QSHB and HBPS Algorithms 17-706
Display Micro-Doppler Shift of Moving Bicyclist 17-713
Array Synthesis for Lidar Systems 17-715
Pedestrian and Bicyclist Classification Using Deep Learning 17-724
FPGA Based Beamforming in Simulink: Part 2 - Code Generation 17-740
FPGA Based Beamforming in Simulink: Part 1 - Algorithm Design 17-747
Squinted Spotlight Synthetic Aperture Radar (SAR) Image Formation 17-755
FPGA Based Monopulse Technique Workflow: Design and Code Generation 17-764

Phased Arrays

Antenna and Microphone Elements

- "Isotropic Antenna Element" on page 1-2
- "Cosine Antenna Element" on page 1-7
- "Custom Antenna Element" on page 1-10
- "Omnidirectional Microphone" on page 1-12
- "Custom Microphone Element" on page 1-16
- "Short-dipole Antenna Element" on page 1-18
- "Crossed-dipole Antenna Element" on page 1-21
- "Using Antenna Toolbox with Phased Array Systems" on page 1-24

Isotropic Antenna Element

In this section...

"Support for Isotropic Antenna Elements" on page 1-2
"Backbaffled Isotropic Antenna" on page 1-2
"Response of Backbaffled Isotropic Antenna Element" on page 1-5

Support for Isotropic Antenna Elements

An isotropic antenna element radiates equal power in all directions. If the antenna element is backbaffled, the antenna radiates equal power in all directions for which the azimuth angle satisfies $90 \leq \varphi \leq 90$ and zero power in all other directions. To construct an isotropic antenna, use the phased. IsotropicAntennaElement System object ${ }^{\mathrm{TM}}$. When you use this object, you must specify these antenna properties:

- The operating frequency range of the antenna using the FrequencyRange property.
- Whether or not the response of the antenna is backbaffled at azimuth angles outside the interval [-90,90] using the BackBaffled property.

You can determine the voltage response of the isotropic antenna element at specified frequencies and angles by executing the System object.

Backbaffled Isotropic Antenna

This example shows how to construct a backbaffled isotropic antenna element with a uniform frequency response over a range of azimuth angles from [-180,180] degrees and elevation angles from [-90,90] degrees. The antenna operates between 300 MHz and 1 GHz . Show the antenna pattern at 1 GHz .

```
fc = 1e9;
antenna = phased.IsotropicAntennaElement(...
    'FrequencyRange',[300e6 1e9],'BackBaffled',false);
pattern(antenna,fc,[-180:180],[-90:90],'CoordinateSystem','polar',...
    'Type','power')
```


Using the antenna pattern method, plot the antenna response at zero degrees elevation for all azimuth angles at 1 GHz .
pattern(antenna,1e9,[-180:180],0,'CoordinateSystem', 'rectangular',...
'Type', 'powerdb')

Setting the BackBaffled property to true restricts the antenna response to azimuth angles in the interval $[-90,90]$ degrees. In this case, plot the antenna response in three dimensions.
antenna.BackBaffled = true;
pattern(antenna,fc,[-180:180],[-90:90],'CoordinateSystem','polar',...
'Type', 'power')

Response of Backbaffled Isotropic Antenna Element

This example shows how to design a backbaffled isotropic antenna element and obtain its response. First, construct an X-band isotropic antenna element that operates from 8 to 12 GHz setting the Backbaffle property to true. Obtain the antenna element response at 4,10 , and 14 GHz at azimuth angles between -100 and 100 degrees in 50 degree increments. All elevation angles are by default equal to zero.

```
antenna = phased.IsotropicAntennaElement(...
    'FrequencyRange',[8e9 12e9],'BackBaffled',true);
respfreqs = [6:4:14]*1e9;
respazangles = -100:50:100;
anresp = antenna(respfreqs,respazangles)
anresp = 5×3
\begin{tabular}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{tabular}
```

The antenna response in anresp is a matrix having row dimension equal to the number of azimuth angles in respazangles and column dimension equal to the number of frequencies in respfreqs.

The response voltage in the first and last columns of anresp are zero because those columns contain the antenna response at 6 and 14 GHz , respectively. These frequencies lie outside the antenna operating frequency range. Similarly, the first and last rows of anresp contain all zeros because BackBaffled property is set to true. The first and last row contain the antenna response at azimuth angles outside of $[-90,90]$.

To obtain the antenna response at nonzero elevation angles, input the angles to the object as a 2-byM matrix where each column is an angle in the form [azimuth;elevation].

```
release(antenna)
respelangles = -90:45:90;
respangles = [respazangles; respelangles];
anresp = antenna(respfreqs,respangles)
anresp = 5×3
\begin{tabular}{lll}
0 & 1 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0
\end{tabular}
```

Notice that anresp $(1,2)$ and anresp $(5,2)$ represent the antenna voltage response at the azimuthelevation angle pairs $(-100,-90)$ and $(100,90)$ degrees. Although the azimuth angles lie in the baffled region, because the elevation angles are equal to $+/-90$ degrees, the responses are unity. In this case, the resulting elevation cut degenerates to a point.

Cosine Antenna Element

In this section...

"Support for Cosine Antenna Elements" on page 1-7
"Concentrating Cosine Antenna Response" on page 1-7
"Plot 3-D Response of Cosine Antenna Element" on page 1-8

Support for Cosine Antenna Elements

The phased.CosineAntennaElement object models an antenna element whose response follows a cosine function raised to a specified power in both the azimuth and elevation directions.

The object returns the field response (also called field pattern)

$$
f(a z, e l)=\cos ^{m}(a z) \cos ^{n}(e l)
$$

of the cosine antenna element.
In this expression

- $a z$ is the azimuth angle.
- el is the elevation angle.
- The exponents m and n are real numbers greater than or equal to zero.

The response is defined for azimuth and elevation angles between -90° and 90°, inclusive, and is always positive. There is no response at the backside of a cosine antenna. The cosine response pattern achieves a maximum value of 1 at 0° azimuth and 0° elevation. Larger exponent values narrow the response pattern of the element and increase the directivity.

The power response (or power pattern) is the squared value of the field response.

$$
P(a z, e l)=\cos ^{2 m}(a z) \cos ^{2 n}(e l)
$$

When you use the cosine antenna element, you specify the exponents of the cosine pattern using the CosinePower property and the operating frequency range of the antenna using the FrequencyRange property.

Concentrating Cosine Antenna Response

This example shows the effect of concentrating the cosine antenna response by increasing the exponent of the cosine factor. The example computes and plots the cosine response for exponents equal to 1 and 2 for a single angle between -90 and 90 degrees. The angle can represent azimuth or elevation.

```
theta = -90:.01:90;
costh1 = cosd(theta);
costh2 = costh1.^2;
plot(theta,costh1)
hold on
plot(theta,costh2,'r')
hold off
```

```
legend('Exponent = 1','Exponent = 2','location','northeast');
xlabel('Angle (degrees')
ylabel('Response')
```


Plot 3-D Response of Cosine Antenna Element

This example shows how to construct an antenna with a cosine-squared response in both azimuth and elevation. The operating frequency range of the antenna is 1 to 10 GHz . Plot the 3-D antenna response at 5 GHz .

```
sCos = phased.CosineAntennaElement(..
    'FrequencyRange',[1 10]*1e9,'CosinePower',[2 2]);
pattern(sCos,5e9,[-180:180],[-90:90],'CoordinateSystem',...
    'Polar','Type','powerdb')
```


Custom Antenna Element

In this section...

"Support for Custom Antenna Elements" on page 1-10
"Antenna with Custom Radiation Pattern" on page 1-10

Support for Custom Antenna Elements

The phased. CustomAntennaElement object enables you to model a custom antenna element. When you use phased. CustomAntennaElement, you must specify these aspects of the antenna:

- Operating frequency vector for the antenna element
- Frequency response of the element at the frequencies in the operating frequency vector
- Azimuth angles and elevation angles where the custom response is evaluated
- Magnitude radiation pattern. This pattern shows the spatial response of the antenna at the azimuth and elevation angles you specify.

Tip You can import a radiation pattern that uses u / v coordinates or φ / θ angles, instead of azimuth/ elevation angles. To use such a pattern with phased.CustomAntennaElement, first convert your pattern to azimuth/elevation form. Use uv2azelpat or phitheta2azelpat to do the conversion. For an example, see Antenna Array Analysis with Custom Radiation Pattern.

For your custom antenna element, the antenna response depends on the frequency response and radiation pattern. Specifically, the frequency and spatial responses are interpolated separately using nearest-neighbor interpolation and then multiplied together to produce the total response. To avoid interpolation errors, the range of azimuth angles should include $+/-180$ degrees and the range of elevation angles should include +/- 90 degrees.

Antenna with Custom Radiation Pattern

Create a custom antenna element object. The radiation pattern has a cosine dependence on elevation angle but is independent of azimuth angle.

```
az = -180:90:180;
el = -90:45:90;
elresp = cosd(el);
magpattern = mag2db(repmat(elresp',1,numel(az)));
phasepattern = zeros(size(magpattern));
antenna = phased.CustomAntennaElement('AzimuthAngles',az,...
    'ElevationAngles',el,'MagnitudePattern',magpattern, ...
    'PhasePattern',phasepattern);
```

Display the radiation pattern.

```
disp(antenna.MagnitudePattern)
\begin{tabular}{rrrrr}
- Inf & - Inf & - Inf & \(-\operatorname{Inf}\) & - Inf \\
-3.0103 & -3.0103 & -3.0103 & -3.0103 & -3.0103 \\
0 & 0 & 0 & 0 & 0 \\
-3.0103 & -3.0103 & -3.0103 & -3.0103 & -3.0103 \\
- Inf & - Inf & - Inf & - Inf & - Inf
\end{tabular}
```

Calculate the antenna response at the azimuth-elevation pairs $(-30,0)$ and $(-45,0)$ at 500 MHz .

```
ang = [-30 0; -45 0];
resp = antenna(500.0e6,ang);
disp(resp)
    0.7071
    1.0000
```

The following code illustrates how nearest-neighbor interpolation is used to find the antenna voltage response in the two directions. The total response is the product of the angular response and the frequency response.

```
g = interp2(deg2rad(antenna.AzimuthAngles),...
    deg2rad(antenna.ElevationAngles),...
    db2mag(antenna.MagnitudePattern),...
    deg2rad(ang(1,:))', deg2rad(ang(2,:))','nearest',0);
h = interp1(antenna.FrequencyVector,...
    db2mag(antenna.FrequencyResponse),500e6,'nearest',0);
antresp = h.*g;
```

Compare the value of antresp to the response of the antenna.

```
disp(mag2db(antresp))
```

 \(-3.0103\)
 0

Omnidirectional Microphone

```
In this section...
"Support for Omnidirectional Microphones" on page 1-12
"Backbaffled Omnidirectional Microphone" on page 1-12
```


Support for Omnidirectional Microphones

An omnidirectional microphone has a response which is equal to one in all nonbaffled directions. The phased.OmnidirectionalMicrophoneElement object enables you to model an omnidirectional microphone. When you use this object, you must specify these aspects of the microphone:

- The operating frequency range of the microphone using the FrequencyRange property.
- Whether the response of the microphone is baffled at azimuth angles outside the interval [-90,90] degrees using the BackBaffled property.

Backbaffled Omnidirectional Microphone

Construct an omnidirectional microphone element having a response within the human audible frequency range of 20 to $20,000 \mathrm{~Hz}$. Baffle the microphone response for azimuth angles outside of $+/-$ 90 degrees. Plot in polar form the microphone power response at 1 kHz .

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call to the function with the equivalent step syntax. For example, replace myObject(x) with step (my0bject,x).

```
freq = 1e3;
```

microphone $=$ phased.OmnidirectionalMicrophoneElement(...
'BackBaffled',true,'FrequencyRange',[20 20e3]);
pattern(microphone,freq,[-180:180],[-90:90],'CoordinateSystem','polar','Type','power');

In many applications, you sometimes need to examine the microphone directionality, or polar pattern. To obtain an azimuth cut, set the elevation argument of the pattern method to a single angle such as zero.
pattern(microphone,freq,[-180:180],0,'CoordinateSystem','polar','Type','power');

Normalized Power, Broadside at 0.00°
To obtain an elevation cut, set the azimuth argument of the pattern method to a single angle such as zero.
pattern(microphone,freq,0,[-90:90],'CoordinateSystem','polar','Type','power');

Normalized Power, Broadside at 0.00°

Obtain the microphone magnitude response at the specified azimuth angles and frequencies. By default, when the ang argument is a single row, the elevation angles are 0 degrees. Note the response is unity at all azimuth angles and frequencies, as expected.

```
freqs = [100:250:1e3];
ang = [-90:30:90];
response = microphone(freqs,ang)
response = 7\times4
```

1	1	1	1
1	1	1	1
1	1	1	1
1	1	1	1
1	1	1	1
1	1	1	1
1	1	1	1

Custom Microphone Element

In this section...

"Support for Custom Microphone Elements" on page 1-16
"Custom Cardioid Microphone Pattern" on page 1-16

Support for Custom Microphone Elements

You can model a microphone with a custom response pattern using phased.CustomMicrophoneElement System object. The total response of a custom microphone element is a combination of its frequency response and spatial response.
phased. CustomMicrophoneElement calculates both responses using nearest neighbor interpolation and then multiplies them to form the total response. When the PolarPatternFrequencies property value is nonscalar, the object specifies multiple polar patterns. In this case, the interpolation uses the polar pattern that is measured closest to the specified frequency. When you use phased. CustomMicrophoneElement, you must specify these microphone attributes.:

- Frequencies where you specify your response using the FrequencyVector property.
- Response corresponding to the specified frequencies using the FrequencyResponse property.
- Frequencies and angles at which the microphone's polar pattern is measured.
- Magnitude response of the microphone.

Custom Cardioid Microphone Pattern

Create a custom cardioid microphone, and plot the power response pattern at 500 and 800 Hz .

```
sCustMic = phased.CustomMicrophoneElement;
sCustMic.PolarPatternFrequencies = [500 1000];
sCustMic.PolarPattern = mag2db([...
    0.5+0.5*cosd(sCustMic.PolarPatternAngles); ...
    0.6+0.4*cosd(sCustMic.PolarPatternAngles)]);
pattern(sCustMic,[500,800],[-180:180],0,'Type','powerdb')
```


Normalized Power (dB), Broadside at 0.00°

See Also

Related Examples

- "Microphone ULA Array" on page 2-10

Short-dipole Antenna Element

When you want to explicitly study the effects of polarization in a radar or communication system, you need to specify an antenna that can generate polarized radiation. One such antenna is the shortdipole antenna, created by using the phased. ShortDipoleAntennaElement.

The simplest polarized antenna is the dipole antenna which consist of a split length of wire coupled at the middle to a coaxial cable. The simplest dipole, from a mathematical perspective, is the Hertzian dipole, in which the length of wire is much shorter than a wavelength. A diagram of the short dipole antenna of length L appears in the next figure. This antenna is fed by a coaxial feed which splits into two equal length wires of length $L / 2$. The current, I, moves along the z-axis and is assumed to be the same at all points in the wire.

The electric field in the far field has the form

$$
\begin{aligned}
& E_{r}=0 \\
& E_{H}=0 \\
& E_{V}=-\frac{i Z_{0} I L}{2 \lambda} \operatorname{cosel} \frac{e^{-i k r}}{r}
\end{aligned}
$$

The next example computes the vertical and horizontal polarization components of the field. The vertical component is a function of elevation angle and is axially symmetric. The horizontal component vanishes everywhere.

Short-Dipole Polarization Components

Compute the vertical and horizontal polarization components of the field created by a short-dipole antenna pointed along the z-direction. Plot the components as a function of elevation angle from 0° to 360°.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call to the function with the equivalent step syntax. For example, replace my 0 bject (x) with step (my0bject,x).

Create the phased. ShortDipoleAntennaElement System object ${ }^{\mathrm{TM}}$.

```
antenna = phased.ShortDipoleAntennaElement(...
    'FrequencyRange',[1,2]*le9,'AxisDirection','Z');
```

Compute the antenna response. Because the elevation angle argument to antenna is restricted to $\pm 90^{\circ}$, compute the responses for 0° azimuth and then for 180° azimuth. Combine the two responses in the plot. The operating frequency of the antenna is 1.5 GHz .

```
el = [-90:90];
az = zeros(size(el));
fc = 1.5e9;
resp = antenna(fc,[az;el]);
az = 180.0*ones(size(el));
resp1 = antenna(fc,[az;el]);
```

Overlay the responses in the same figure.

```
figure(1)
subplot(121)
polar(el*pi/180.0,abs(resp.V.'),'b')
hold on
polar((el+180)*pi/180.0,abs(resp1.V.'),'b')
str = sprintf('%s\n%s','Vertical Polarization','vs Elevation Angle');
title(str)
hold off
subplot(122)
polar(el*pi/180.0,abs(resp.H.'),'b')
hold on
polar((el+180)*pi/180.0,abs(resp1.H.'),'b')
str = sprintf('%s\n%s','Horizontal Polarization','vs Elevation Angle');
title(str)
hold off
```


The plot shows that the horizontal component vanishes, as expected.

Crossed-dipole Antenna Element

Another antenna that produces polarized radiation is the crossed-dipole antenna, created by using the phased. CrossedDipoleAntennaElement System object.

You can use a cross-dipole antenna to generate circularly-polarized radiation. The crossed-dipole antenna consists of two identical but orthogonal short-dipole antennas that are phased 90° apart. A diagram of the crossed dipole antenna appears in the following figure. The electric field created by a crossed-dipole antenna constructed from a y-directed short dipole and a z-directed short dipole has the form

$$
\begin{aligned}
& E_{r}=0 \\
& E_{H}=-\frac{i Z_{0} I L}{2 \lambda} \cos a z \frac{e^{-i k r}}{r} \\
& E_{V}=\frac{i Z_{0} I L}{2 \lambda}(\text { sinelsinaz }+i \operatorname{cosel}) \frac{e^{-i k r}}{r}
\end{aligned}
$$

The polarization ratio E_{V} / E_{H}, when evaluated along the x-axis, is just $-i$ which means that the polarization is exactly RHCP along the x-axis. It is predominantly RHCP when the observation point is close to the x-axis. Moving away from the x-axis, the field becomes a mixture of LHCP and RHCP polarizations. Along the $-x$-axis, the field is LHCP polarized. The figure illustrates, for a point near the x, that the field is primarily RHCP.

LHCP and RHCP Polarization Components

This example plots the right-hand and left-hand circular polarization components of fields generated by a crossed-dipole antenna at 1.5 GHz . You can see how the circular polarization changes from pure RHCP at 0 degrees azimuth angle to pure LHCP at 180 degrees azimuth angle, both at 0 degrees elevation angle.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call to the function with the equivalent step syntax. For example, replace my0bject(x) with step (my0bject,x).

Create the phased.CrossedDipoleAntennaElement object.
fc = 1.5e9;
antenna = phased.CrossedDipoleAntennaElement('FrequencyRange',[1,2]*1e9);
Compute the left-handed and right-handed circular polarization components from the antenna response.

```
az = [-180:180];
el = zeros(size(az));
resp = antenna(fc,[az;el]);
cfv = pol2circpol([resp.H.';resp.V.']);
clhp = cfv(1,:);
crhp = cfv(2,:);
```

Plot both circular polarization components at 0 degrees elevation.

```
polar(az*pi/180.0,abs(clhp))
hold on
polar(az*pi/180.0,abs(crhp))
title('LHCP and RHCP vs Azithmuth Angle')
legend('LHCP','RHCP')
hold off
```


LHCP and RHCP vs Azithmuth Angle

Using Antenna Toolbox with Phased Array Systems

When you create antenna arrays such as a uniform linear array (ULA), you can use antennas that are built into Phased Array System Toolbox ${ }^{\mathrm{TM}}$. Alternatively, you can use Antenna Toolbox ${ }^{\mathrm{TM}}$ antennas. Antenna Toolbox antennas provide realistic models of physical antennas. They are designed using method of moments. Phased array antennas represent more idealized antennas that are useful for radar performance analysis and higher level modelling. Some phased array antennas cannot be physically realized, such as the isotropic antenna but are still conceptually useful. You can build and analyze systems using both types of antennas in an identical manner. This example shows how to construct a phased array with either Phased Array System Toolbox or Antenna Toolbox ${ }^{\mathrm{TM}}$ antennas.

When you use an Antenna Toolbox ${ }^{\mathrm{TM}}$ antenna in a Phased Array System Toolbox ${ }^{\mathrm{TM}}$ System Object $^{\mathrm{TM}}$, the antenna response will be normalized by the maximum value of the antenna output over all directions. The maximum value is obtained by finding the maximum of the antenna pattern sampled every five degrees in azimuth and elevation.

Construct ULA of Crossed-Dipole Antennas from Phased Array System Toolbox

Start by creating a uniform linear array (ULA) of crossed-dipole antennas from Phased Array System Toolbox. Crossed-dipole antennas are used to produce circularly-polarized signals. In this case, set the operating frequency to 2 GHZ and draw the power pattern. Use the pattern method of the phased.CrossedDipoleAntennaElement System object ${ }^{\text {TM }}$.

```
fc = 2.0e9;
crosseddipoleantenna = phased.CrossedDipoleAntennaElement('FrequencyRange',[500,2500]*1e6);
pattern(crosseddipoleantenna,fc,[-180:180],0,...
    'Type','powerdb')
```


Normalized Power (dB), Broadside at 0.00°
The main axis of this antenna points along the x-axis.
Then, create an 11 -element ULA array of crossed-dipole antennas. Specify the element spacing to be 0.4 wavelengths. Taper the array using a Taylor window. Then, draw the array pattern as a function of azimuth at 0 degrees elevation. Use the pattern method of the phased.ULA System object.

```
c = physconst('LightSpeed');
elemspacing = 0.4*c/fc;
nElements = 11;
array1 = phased.ULA('Element',crosseddipoleantenna,'NumElements',nElements,...
    'ElementSpacing',elemspacing,'Taper',taylorwin(nElements)');
pattern(array1,fc,[-180:180],0,'PropagationSpeed',c,...
    'Type','powerdb')
```


Normalized Power (dB), Broadside at 0.00°

Construct ULA of Helix Antennas from Antenna Toolbox

Next, create a uniform linear array (ULA) using the helix antenna from Antenna Toolbox. Helix antennas also produce circularly polarized radiation. Helix antennas are created using the helix function.

First, specify a 4-turn helix antenna having a 28.0 mm radius and 1.2 mm width. The TiltAxis and Tilt properties let you orient the antenna with respect to the local coordinate system. In this example, orient the main response axis (MRA) along the x-axis to coincide with the MRA of the crossdipole main axis. By default, the MRA of the antenna points in the z-direction. Rotate the MRA around the y-axis by 90 degrees.

```
radius = 0.028;
width = 1.2e-3;
nturns = 4;
helixantenna = helix('Radius',radius,'Width',width,'Turns',nturns,...
    'TiltAxis',[0,1,0],'Tilt',90);
```

You can view the shape of the helix antenna use the show function from Antenna Toolbox.

```
show(helixantenna)
```


Then, draw the azimuth antenna pattern at 0 degrees elevation at the operating frequency of 2 GHz . Use the pattern function from Antenna Toolbox.

```
pattern(helixantenna,fc,[-180:180],0,...
```

'Type', 'powerdb')

Next, construct an 11-element tapered uniform linear array of helix antennas with elements spaced at 0.4 wavelengths. Taper the array with a Taylor window. You can use the same phased. ULA System object from Phased Array System Toolbox to create this array.

```
array2 = phased.ULA('Element',helixantenna,'NumElements',nElements,...
    'ElementSpacing',elemspacing,'Taper',taylorwin(nElements)');
```

Plot the array pattern as a function of azimuth using the ULA pattern method which has the same syntax as the Antenna Toolbox pattern function.

```
pattern(array2,fc,[-180:180],0,'PropagationSpeed',c,...
    'Type','powerdb')
```


Normalized Power (dB), Broadside at 0.00°

Compare Patterns

Comparing the two array patterns shows that they are similar along the mainlobe. The backlobe of the helix antenna array pattern is almost 15 dB smaller than that of the crossed-dipole array. This is due to the presence of the ground plane of the helix antenna which reduces backlobe transmission.

Array Geometries and Analysis

- "Uniform Linear Array" on page 2-2
- "Microphone ULA Array" on page 2-10
- "Uniform Rectangular Array" on page 2-12
- "Conformal Array" on page 2-15
- "Subarrays Within Arrays" on page 2-22
- "Plot Array Directivity Using Sensor Array Analyzer App" on page 2-29

Uniform Linear Array

In this section...

"Support for Uniform Linear Arrays" on page 2-2
"Positions of ULA Array Elements" on page 2-2
"ULA Array Elements" on page 2-3
"Array Element Responses" on page 2-3
"Signal Delay Between Array Elements" on page 2-4
"Steering Vector" on page 2-5
"Array Response" on page 2-6
"Reception of Plane Wave Across Array" on page 2-8

Support for Uniform Linear Arrays

The uniform linear array (ULA) arranges identical sensor elements along a line in space with uniform spacing. You can design a ULA with phased. ULA. When you use this object, you must specify these aspects of the array:

- Sensor elements of the array
- Spacing between array elements
- Number of elements in the array

Positions of ULA Array Elements

Create and view a ULA having four isotropic antenna elements separated by 0.5 meters
array $=$ phased.ULA('NumElements',4,'ElementSpacing',0.5); viewArray(array);

Array Geometry

You can return the coordinates of the array sensor elements in the form $[x ; y ; z]$ by using the getElementPosition method. See "Rectangular Coordinates" on page 10-2 for toolbox conventions.

```
sensorpos = getElementPosition(array);
```

sensorpos is a 3-by-4 matrix with each column representing the position of a sensor element. Note that the y-axis is the array axis. The positive x-axis is the array look direction (0 degrees broadside). The elements are symmetric with the respect to the phase center of the array.

ULA Array Elements

The default element for a ULA is the phased. IsotropicAntennaElement object. You can specify a different element using the Element property.

Array Element Responses

Obtain the responses of the elements of a 4 -element ULA array at 1 GHz .
Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call to the function with the equivalent step syntax. For example, replace myObject (x) with step(my0bject,x).

Specify isotopic antennas for the array elements. Then, specify a 4 -element ULA. Obtain the response by executing the System object ${ }^{\text {TM }}$.

```
antenna = phased.IsotropicAntennaElement(...
    'FrequencyRange',[3e8 1e9]);
array = phased.ULA('NumElements',4,'ElementSpacing',0.5,...
    'Element',antenna);
freq = le9;
azangles = -180:180;
response = array(freq,azangles);
```

response is a 4-by-361 matrix where each column contains the responses at each azimuth angle. Matrix rows correspond to the four elements. Because the elements of the ULA are isotropic antennas, response is a matrix of ones.

Signal Delay Between Array Elements

This example computes the delay between elements of a 4 -element ULA using the phased.ElementDelay System object ${ }^{\mathrm{TM}}$. Assume that the incident waveform satisfies the far-field condition. The delays are computed with respect to the phase center of the array. By default, phased.ElementDelay assumes that the incident waveform is an electromagnetic wave propagating at the speed of light.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call to the function with the equivalent step syntax. For example, replace my0bject (x) with step(my0bject,x).

Construct 4-element ULA using value-only syntax and compute the delay for a signal incident on the array from -90° azimuth and 0° elevation. Delay units are in seconds.

```
array = phased.ULA(4);
delay = phased.ElementDelay('SensorArray',array);
tau = delay([-90;0])
tau = 4×1
10-8}
    -0.2502
    -0.0834
        0.0834
        0.2502
```

tau is a 4 -by- 1 vector of delays with respect to the phase center of the array, which is the origin of the local coordinate system ($0 ; 0 ; 0$). See "Global and Local Coordinate Systems" on page 10-17 for a description of global and local coordinate systems. Negative delays indicate that the signal arrives at an element before reaching the phase center of the array. Because the waveform arrives from an azimuth angle of -90°, the signal arrives at the first and second elements of the ULA before it reaches the phase center resulting in negative delays for these elements.

If the signal is incident on the array at 0° broadside from a far-field source, the signal illuminates all elements of the array simultaneously resulting in zero delay.
tau $=\operatorname{delay}([0 ; 0])$

```
tau = 4×1
```

 0
 0
 0
 0
 If the incident signal is an acoustic pressure waveform propagating at the speed of sound, you can calculate the element delays by setting the PropagationSpeed property to $340 \mathrm{~m} / \mathrm{s}$. This value is a typical speed of sound at sea level.

```
delay = phased.ElementDelay('SensorArray',array,...
    'PropagationSpeed',340);
tau = delay([90;0])
tau = 4×1
    0.0022
    0.0007
    -0.0007
    -0.0022
```


Steering Vector

The steering vector represents the relative phase shifts for the incident far-field waveform across the array elements. You can determine these phase shifts with the phased. SteeringVector object.

For a single carrier frequency, the steering vector for a ULA consisting of N elements is:

$$
\left(\begin{array}{c}
e^{-j 2 \pi f \tau_{1}} \\
e^{-j 2 \pi f \tau_{2}} \\
e^{-j 2 \pi f \tau_{3}} \\
\cdot \\
\cdot \\
\cdot \\
e^{-j 2 \pi f \tau_{N}}
\end{array}\right)
$$

where τ_{n} denotes the time delay relative to the array phase center at the n-th array element.

Compute ULA Steering Vector

Compute the steering vector for a 4 -element ULA at an operating frequency of 1 GHz . Assume that the waveform is incident on the array from 45° azimuth and 10° elevation.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call to the function with the equivalent step syntax. For example, replace my0bject (x) with step (my0bject,x).
fc = 1e9;
array $=$ phased.ULA(4);

```
steervec = phased.SteeringVector('SensorArray',array);
sv = steervec(fc,[45;10])
sv = 4×1 complex
    -0.0495 + 0.9988i
    -0.8742 + 0.4856i
    -0.8742 - 0.4856i
    -0.0495 - 0.9988i
```

You can also compute the steering vector with the following equivalent code.

```
delay = phased.ElementDelay('SensorArray',array);
tau = delay([45;10]);
exp(-1i*2*pi*fc*tau)
ans = 4\times1 complex
    -0.0495 + 0.9988i
    -0.8742 + 0.4856i
    -0.8742 - 0.4856i
    -0.0495 - 0.9988i
```


Array Response

To obtain the array response, which is a weighted-combination of the steering vector elements for each incident angle, use the phased. ArrayResponse System object.

ULA Array Response

Construct a four-element ULA with elements spaced at 0.25 m . Obtain the array magnitude response (absolute value of the complex-valued array response) for azimuth angles ($-180: 180$) at 1 GHz . Then, plot the normalized magnitude response in dB .

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call to the function with the equivalent step syntax. For example, replace my0bject (x) with step(myObject,x).

```
fc = 1e9;
array = phased.ULA('NumElements',4,'ElementSpacing',0.25);
azangles = -180:180;
response = phased.ArrayResponse('SensorArray',array);
resp = abs(response(fc,azangles));
plot(azangles,mag2db((resp/max(resp))))
grid on
title('Azimuth Cut at Zero Degrees Elevation')
xlabel('Azimuth Angle (degrees)')
```


Visualize the array response using the pattern method. Create a 3-D plot of the response in UV space; other plotting options are available.
pattern(array,fc,[-1:.01:1],[-1:.01:1],'CoordinateSystem','uv',...
'PropagationSpeed', physconst('Lightspeed'))

3D Directivity Pattern in u-v space

Reception of Plane Wave Across Array

You can simulate the effects of phase shifts across your array using the collectPlaneWave method of any array System object.

The collectPlaneWave method modulates input signals by the element of the steering vector corresponding to an array element. Stated differently, collectPlaneWave accounts for phase shifts across elements in the array based on the angle of arrival. However, collectPlaneWave does not account for the response of individual elements in the array.

Plane-Wave Reception Across ULA

Simulate the reception of a $100-\mathrm{Hz}$ sine wave modulated by a carrier frequency of 1 GHz at a 4 element ULA. Assume the angle of arrival of the signal is ($-90 ; 0$).

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call to the function with the equivalent step syntax. For example, replace myObject (x) with step(my0bject,x).
array $=$ phased.ULA(4);
$\left.\mathrm{t}=\operatorname{unigrid}\left(0,0.001,0.01, \mathrm{C}^{\prime}\right)^{\prime}\right)$;
$x=\cos \left(2 *\right.$ pi $\left.^{*} 100 * t\right)$;
y = collectPlaneWave(array, $\mathrm{x},[-90 ; 0], 1 e 9$, physconst('LightSpeed'));
The preceding code is equivalent to the following.
steervec = phased.SteeringVector('SensorArray',array); sv = steervec(1e9,[-90;0]);
y1 = x*sv.';

See Also

Related Examples

- "Microphone ULA Array" on page 2-10

Microphone ULA Array

This example shows how to construct and visualize a four-element ULA with custom cardioid microphone elements. Specify the polar pattern frequencies as 500 and 1000 Hz .

Create a microphone element with a cardioid response pattern. Use the default values of the FrequencyVector property.

```
freq = [500 1000];
microphone = phased.CustomMicrophoneElement(...
    'PolarPatternFrequencies',freq);
microphone.PolarPattern= mag2db([...
    0.5+0.5*cosd(microphone.PolarPatternAngles); .. .
    0.6+0.4*cosd(microphone.PolarPatternAngles)]);
```

Plot the polar pattern of the microphone at 0.5 kHz and 1 kHz .

```
pattern(microphone,freq,[-180:180],0,'CoordinateSystem','polar','Type','powerdb',...
```

 'Normalize', true);

Normalized Power (dB), Broadside at 0.00°

Construct a ULA of custom microphone elements.
array $=$ phased.ULA('NumElements',4,'ElementSpacing',0.5,...
'Element',microphone);
Plot the response of the array at 0.5 kHz and 1 kHz .
pattern(array,freq,[-180:180],0,'CoordinateSystem','polar','Type','powerdb',... 'Normalize',true,'PropagationSpeed',340.0);

Normalized Power (dB), Broadside at 0.00°

Uniform Rectangular Array

In this section...
"Support for Uniform Rectangular Arrays" on page 2-12
"Uniform Rectangular Array of Isotropic Antenna Elements" on page 2-12

Support for Uniform Rectangular Arrays

You can implement a uniform rectangular array (URA) with phased. URA. Array elements are distributed in the $y z$-plane with the array look direction along the positive x-axis. When you use phased.URA, you must specify these aspects of the array:

- Sensor elements of the array
- Number of rows and the spacing between them
- Number of columns and the spacing between them
- Geometry of the planar lattice, which can be rectangular or triangular

Uniform Rectangular Array of Isotropic Antenna Elements

This example shows you how to create a uniform rectangular array (URA) and obtain information about the element positions, the array response, and inter-element time delays. Then, simulate the reception of two sine waves coming from different directions. Both signals have a 1 GHz carrier frequency.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call to the function with the equivalent step syntax. For example, replace myObject(x) with step (my0bject,x).

Create the URA and obtain the element positions

Create and view a six-element URA with two elements along the y-axis and three elements along the z-axis. Use a rectangular lattice, with the default spacing of 0.5 meters along both the row and column dimensions of the array. Each element is an isotropic antenna element, which is the default element type for a URA.

```
fc = 1e9;
array = phased.URA([3,2]);
viewArray(array)
```


Array Geometry

pos = getElementPosition(array);
The x-coordinate is zero for all elements of the array.

Compute the element delays

Calculate the element delays for signals arriving from $+45^{\circ}$ and -45° azimuth and 0° elevation.

```
delay = phased.ElementDelay('SensorArray',array);
ang = [45,-45];
tau = delay(ang);
```

The first column of tau contains the element delays for the signal incident on the array from $+45^{\circ}$ azimuth. The second column contains the delays for the signal arriving from -45°. The delays are equal in magnitude but opposite in sign, as expected.

Compute the received signals

The following code simulates the reception of two sinusoidal waves arriving from far field sources. One signal is a $100-\mathrm{Hz}$ sine wave arriving from 20° azimuth and 10° elevation. The second signal is a $300-\mathrm{Hz}$ sine wave arriving from -30° azimuth and 5° elevation.

```
t = linspace(0,1,1000);
x1 = cos(2*pi*100*t)';
x2 = cos(2*pi*300*t)';
ang1 = [20;10];
ang2 = [-30;5];
recsig = collectPlaneWave(array,[x1 x2],[ang1 ang2],fc);
```

Each column of recsig represents the received signals at the corresponding element of the URA.

Plot the array response in 3D

You can plot the array response using the pattern method.

```
pattern(array,fc,[-180:180],[-90:90],'PropagationSpeed',physconst('LightSpeed'),...
    'CoordinateSystem','rectangular','Type','powerdb')
```


Conformal Array

In this section...

"Support for Arrays with Custom Geometry" on page 2-15
"Create Default Conformal Array" on page 2-15
"Uniform Circular Array Created from Conformal Array" on page 2-15
"Custom Antenna Array" on page 2-18

Support for Arrays with Custom Geometry

The phased. ConformalArray object lets you model a phased array with arbitrary geometry. For example, you can use phased. ConformalArray to design:

- A planar array with a nonrectangular geometry, such as a circular array
- An array with nonuniform geometry, such as a linear array with variable spacing
- A nonplanar array

When you use phased.ConformalArray, you must specify these aspects of the array:

- Sensor element of the array
- Element positions
- Direction normal to each array element

Create Default Conformal Array

To create a conformal array with default properties, use this command:

```
array = phased.ConformalArray
array =
    phased.ConformalArray with properties:
            Element: [1x1 phased.IsotropicAntennaElement]
        ElementPosition: [3x1 double]
            ElementNormal: [2x1 double]
                        Taper: 1
```

This default conformal array consists of a single phased. IsotropicAntennaElement antenna located at the origin of the local coordinate system. The direction normal to the sensor element is 0° azimuth and 0° elevation.

Uniform Circular Array Created from Conformal Array

This example shows how to construct a 60 -element uniform circular array. In constructing a uniform circular array, you can use either the phased. UCA or the phased. ConformalArray System objects. The conformal array approach is more general because it allows you to point the array elements in arbitrary directions. A UCA restricts the array element directions to lie in the plane of the array. This example illustrates how you can use the phased. ConformalArray System object to create any
other array shape. Assume an operating frequency of 400 MHz . Tune the array by specifying the arclength between the elements to be 0.5λ where λ is the wavelength corresponding to the operating frequency. Array elements lie in the x - y-plane. Element normal directions are set to $\left(\phi_{n}, 0\right)$ where ϕ_{n} is the azimuth angle of the $n^{\text {th }}$ array element.

Set the number of elements and the operating frequency of the array.
$\mathrm{N}=60$;
fc = 400e6;
Compute the element spacing in radians.

```
theta = 360/N;
thetarad = deg2rad(theta);
```

Choose the radius so that the inter-element arclength is one-half wavelength.

```
arclength = 0.5*(physconst('LightSpeed')/fc);
radius = arclength/thetarad;
```

Compute the element azimuth angles. Azimuth angles must lie in the range ($-180^{\circ}, 180^{\circ}$).

```
ang = (0:N-1)*theta;
ang(ang >= 180.0) = ang(ang >= 180.0) - 360.0;
array = phased.ConformalArray;
array.ElementPosition = [radius*cosd(ang);...
    radius*sind(ang);...
    zeros(1,N)];
array.ElementNormal = [ang;zeros(1,N)];
```

Show the UCA array geometry.

```
viewArray(array)
```


Plot the array response pattern at 1 GHz .
pattern(array,1e9,[-180:180],0,'PropagationSpeed', physconst('LightSpeed'),...
'CoordinateSystem','polar','Type','powerdb','Normalize',true)

Normalized Power (dB), Broadside at 0.00°

Custom Antenna Array

This example shows how to construct and visualize a custom-geometry array containing antenna elements with a custom radiation pattern. The radiation pattern of each element is constant over each azimuth angle and has a cosine pattern for the elevation angles.

Define the custom antenna element and plot its radiation pattern.

```
az = -180:180;
el = -90:90;
fc = 3e8;
elresp = cosd(el);
antenna = phased.CustomAntennaElement('AzimuthAngles',az,...
    'ElevationAngles',el,...
    'MagnitudePattern',repmat(elresp',1,numel(az)));
pattern(antenna,3e8,0,el,'CoordinateSystem','polar','Type','powerdb',...
    'Normalize',true);
```


Normalized Power (dB), Broadside at 0.00°

Define the locations and normal directions of the elements. All elements lie in the z-plane. The elements are located at $(1 ; 0 ; 0),(0 ; 1 ; 0)$, and $(0 ;-1 ; 0)$ meters. The element normal azimuth angles are $0^{\circ}, 120^{\circ}$, and -120°, respectively. All normal elevation angles are 0°.

```
xpos = [1 0 0];
ypos = [[0 1 -1];
zpos = [0 0 0];
normal_az = [0 120 -120];
normal_el = [0 0 0];
```

Define a conformal array with those elements.

```
array = phased.ConformalArray('Element',antenna,...
    'ElementPosition',[xpos; ypos; zpos],...
    'ElementNormal',[normal_az; normal_el]);
```

Plot the positions and normal directions of the elements.

```
viewArray(array,'ShowNormals',true)
view(0,90)
```


Array Geometry

Array Span:
Xaxis $=1 \mathrm{~m}$
Y axis $=2 \mathrm{~m}$
Z axis $=0 \mathrm{~m}$
pattern(array,fc,az,el,'CoordinateSystem','polar','Type','powerdb',... 'Normalize', true, 'PropagationSpeed', physconst('LightSpeed'))

Subarrays Within Arrays

In this section...
"Definition of Subarrays" on page 2-22
"Benefits of Using Subarrays" on page 2-22
"Support for Subarrays Within Arrays" on page 2-22
"Rectangular Array Partitioned into Linear Subarrays" on page 2-23
"Linear Subarray Replicated to Form Rectangular Array" on page 2-26
"Linear Subarray Replicated in a Custom Grid" on page 2-27

Definition of Subarrays

In Phased Array System Toolbox software, a subarray is an accessible subset of array elements. When you use an array that contains subarrays, you can access measurements from the subarrays but not from the individual elements. Similarly, you can perform processing at the subarray level but not at the level of the individual elements. As a result, the system has fewer degrees of freedom than if you controlled the system at the level of the individual elements.

Benefits of Using Subarrays

Radar applications often use subarrays because operations, such as phase shifting and analog-todigital conversion, are too expensive to implement for each element. It is less expensive to group the elements of an array through hardware, thus creating subarrays within the array. Grouping elements through hardware limits access to measurements and processing to the subarray level.

Support for Subarrays Within Arrays

To work with subarrays, you must define the array and the subarrays within it. You can either define the array first or begin with the subarray. Choose one of these approaches:

- Define one subarray, and then build a larger array by arranging copies of the subarray. The subarray can be a ULA, URA, or conformal array. The copies are identical, except for their location and orientation. You can arrange the copies spatially in a grid or a custom layout.

When you use this approach, you build the large array by creating a phased.ReplicatedSubarray System object. This object stores information about the subarray and how the copies of it are arranged to form the larger array.

- Define an array, and then partition it into subarrays. The array can be a ULA, URA, or conformal array. The subarrays do not need to be identical. A given array element can be in more than one subarray, leading to overlapped subarrays.

When you use this approach, you partition your array by creating a phased.PartitionedArray System object. This object stores information about the array and its subarray structure.

After you create a phased.ReplicatedSubarray or phased. PartitionedArray object, you can use it to perform beamforming, steering, or other operations. To do so, specify your object as the value of the SensorArray or Sensor property in objects that have such a property and that support subarrays. Objects that support subarrays in their SensorArray or Sensor property include:

- phased.AngleDopplerResponse
- phased.ArrayGain
- phased.ArrayResponse
- phased.Collector
- phased.ConstantGammaClutter
- phased.MVDRBeamformer
- phased.PhaseShiftBeamformer
- phased.Radiator
- phased.STAPSMIBeamformer
- phased.SteeringVector
- phased.SubbandPhaseShiftBeamformer
- phased.WidebandCollector

Rectangular Array Partitioned into Linear Subarrays

This example shows how to set up a rectangular array containing linear subarrays. The example also finds the phase centers of the subarrays.

Create a 2-by-3 rectangular array.
array $=$ phased.URA('Size',[2 3]);
Plot the positions of the array elements in the $y z$-plane (all x-coordinates are zero.) Include labels that indicate the numbering of the elements. The numbering is important for selecting which elements are included in each subarray.

```
viewArray(array,'ShowIndex','All')
```


Array Geometry

> Aperture Size:
> Y axis $=1.5 \mathrm{~m}$
> Z axis $=1.0 \mathrm{~m}$
> Element Spacing:
> $\Delta y=500 \mathrm{~mm}$
> $\Delta z=500 \mathrm{~mm}$

Create and view an array consisting of three 2 -element linear subarrays each parallel to the z-axis. Use the indices from the plot to form the matrix for the SubarraySelection property. The getSubarrayPosition method returns the phase centers of the three subarrays.

```
subarray1 = [1 1 0 0 0 0; 0 0 1 1 0 0; 0 0 0 0 1 1];
partitionedarray1 = phased.PartitionedArray('Array',array,...
    'SubarraySelection',subarray1);
viewArray(partitionedarray1)
```


Array Geometry

> Array Span:
> X axis $=0 \mathrm{~mm}$
> Y axis $=1000 \mathrm{~mm}$
> Z axis $=500 \mathrm{~mm}$

```
subarray1pos = getSubarrayPosition(partitionedarray1)
subarraylpos = 3×3
\begin{tabular}{rrr}
0 & 0 & 0 \\
-0.5000 & 0 & 0.5000 \\
0 & 0 & 0
\end{tabular}
```

Create and view another array consisting of two 3-element linear subarrays parallel to the y-axis. Using the getSubarrayPosition method, find the phase centers of the two subarrays.

```
subarray2 = [0 1 0 1 0 1; 1 0 1 0 1 0];
partitionedarray2 = phased.PartitionedArray('Array',array,...
    'SubarraySelection',subarray2);
viewArray(partitionedarray2)
```

Array Geometry

Array Span:
Xaxis $=0 \mathrm{~mm}$
Y axis $=1000 \mathrm{~mm}$
Zaxis $=500 \mathrm{~mm}$

```
subarraypos2 = getSubarrayPosition(partitionedarray2)
subarraypos2 = 3\times2
    0 0
    0 0
    -0.2500 0.2500
```


Linear Subarray Replicated to Form Rectangular Array

This example shows how to arrange copies of a linear subarray to form a rectangular array.
Create a 4 -element linear array parallel to the y-axis.
array $=$ phased.ULA('NumElements',4);
Create a rectangular array by arranging two copies of the linear array.

```
replsubarray = phased.ReplicatedSubarray('Subarray',array,'GridSize',[2 1]);
```

Plot the positions of the array elements (filled circles) and the phase centers of the subarrays (unfilled circles). The elements lie in the $y z$-plane because all the x-coordinates are zero.

```
viewArray(replsubarray);
```

hold on;

```
subarraypos = getSubarrayPosition(replsubarray);
sx = subarraypos(1,:);
sy = subarraypos(2,:);
sz = subarraypos(3,:);
scatter3(sx,sy,sz,'ro')
hold off
```

Array Geometry

Array Span:
X axis $=0 \mathrm{~mm}$
Y axis $=1500 \mathrm{~mm}$
Z axis $=500 \mathrm{~mm}$

Linear Subarray Replicated in a Custom Grid

This example shows how to arrange copies of a linear subarray in a triangular layout.
Create a 4-element linear array.
antenna = phased.CosineAntennaElement('CosinePower',1);
array $=$ phased.ULA('NumElements',4,'Element',antenna);
Create a larger array by arranging three copies of the linear array. Define the phase centers and normal directions of the three copies explicitly.

```
vertex_ang = [60 180 -60];
vertex = 2*[cosd(vertex_ang); sind(vertex_ang); zeros(1,3)];
subarray_pos = 1/2*[...
    (vertex(:,1)+vertex(:,2)) ...
    (vertex(:,2)+vertex(:,3)) ...
    (vertex(:,3)+vertex(:,1))];
replsubarray = phased.ReplicatedSubarray('Subarray',array,...
```

```
'Layout','Custom',...
'SubarrayPosition',subarray_pos,...
'SubarrayNormal',[120 0;-120 0;0 0].');
```

Plot the positions of the array elements (blue) and the phase centers (red) of the subarrays. The plot is in the $x y$-plane because all the z-coordinates are zero.

```
viewArray(replsubarray,'ShowSubarray',[])
hold on
scatter3(subarray_pos(1,:),subarray_pos(2,:),\ldots
    subarray_pos(3,:),'ro')
hold off
```

Array Geometry

See Also

Related Examples

- "Subarrays in Phased Array Antennas" on page 17-110

Plot Array Directivity Using Sensor Array Analyzer App

The sensorArrayAnalyzer app lets you examine important properties of a phased array such as its shape and directivity.

Open sensorArrayAnalyzer App

When you type sensorArrayAnalyzer from the command line or select the app from the App Toolstrip, an interactive window opens. The default window shows the geometry of a 4 -element uniform linear array. You can then select various options to analyze different arrays, other element types, geometry, and directivity.

Create 3D Directivity Plot of 4-by-4 URA

As an example, use the app to create a 4 -by- 4 uniform rectangular array of cosine antenna elements and then show the array directivity. Space the elements 0.4 wavelengths apart.

1 Set the Array to URA.
2 Set the Element to Cosine.
3 Set Cosine Power to [2 2].

4 Set the Size of the array to [4 4].
5 Set the Element Spacing to [0.4 0.4]. Set the element spacing units to wavelength.
6 Set Propagation Speed to physconst('Lightspeed ').
7 From the Steering pull down menu, set the Steer Angle to [-30, 0] to steer the array - 30 degrees in azimuth.
8 In the Plot menu, select 3D Pattern.
Then, you will see a plot of array directivity similar to this.

Signal Radiation and Collection

- "Signal Radiation" on page 3-2
- "Signal Collection" on page 3-4

Signal Radiation

In this section...

"Support for Modeling Signal Radiation" on page 3-2
"Radiate Signal with Uniform Linear Array" on page 3-2

Support for Modeling Signal Radiation

You can use the phased.Radiator and phased.Collector objects to model narrowband signal radiation and collection with an array. The array can be a single microphone or antenna element, or an array of sensor elements.

To radiate a signal from a sensor array, use phased.Radiator. When you use this object, you must specify these aspects of the radiator:

- Whether the output of all sensor elements is combined
- Operating frequency of the array
- Propagation speed of the wave
- Sensor (single element) or sensor array
- Whether or not to apply weights to signals radiated by different elements in the array. You apply weights, when you execute the System object.

Radiate Signal with Uniform Linear Array

Construct a radiator using a two-element ULA with elements spaced 0.5 meters apart (the default ULA). The operating frequency is 300 MHz , the propagation speed is the speed of light, and the element outputs are combined to simulate the far field radiation pattern.

```
Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call to the function with the equivalent step syntax. For example, replace my0bject(x) with step (myObject,x).
```

```
array = phased.ULA('NumElements',2,'ElementSpacing',0.5);
```

array = phased.ULA('NumElements',2,'ElementSpacing',0.5);
radiator = phased.Radiator('Sensor',array,...
'OperatingFrequency',300e6,...
'PropagationSpeed',physconst('LightSpeed'),...
'CombineRadiatedSignals',true);

```

Create a signal to radiate and propagate to the far field at an angle of \(\left(45^{\circ}, 0^{\circ}\right)\).
```

x = [1 -1 1 -1]';
y = radiator(x,[45;0]);

```

The far field signal results from multiplying the signal by the array pattern. The array pattern is the product of the array element pattern and the array factor. For a uniform linear array, the array factor is the superposition of elements in the steering vector phased. SteeringVector.

The following code produces an identical far-field signal by explicitly using the array factor.
```

array = phased.ULA('NumElements',2,'ElementSpacing',0.5);
steervec = phased.SteeringVector('SensorArray',array,...

```
```

 'IncludeElementResponse',true);
 sv = steervec(300e6,[45;0]);
y1 = x*sum(sv);

```

Compare y1 to y.
\(\operatorname{disp}(y 1-y)\)
0
0
0
0

\section*{Signal Collection}

\author{
In this section... \\ "Support for Modeling Signal Collection" on page 3-4 \\ "Narrowband Collector for Uniform Linear Array" on page 3-5 \\ "Narrowband Collector for a Single Antenna Element" on page 3-6 \\ "Wideband Signal Collection" on page 3-7
}

\section*{Support for Modeling Signal Collection}

To model the collection of a signal with a sensor element or sensor array, you can use the phased.Collector or phased.WidebandCollector. Both collector objects assume that incident signals have propagated to the location of the array elements, but have not been received by the array. In other words, the collector objects do not model the actual reception by the array. See "Receiver Preamp" on page 4-30 for signal effects related to the gain and internal noise of the array's receiver.

In many array processing applications, the ratio of the signal's bandwidth to the carrier frequency is small. Expressed as a percentage, this ratio does not exceed a few percent. Examples include radar applications where a pulse waveform is modulated by a carrier frequency in the microwave range. These are narrowband signals. For narrowband signals, you can express the steering vector as a function of a single frequency, the carrier frequency. For narrowband signals, the phased. Collector object is appropriate.

In other applications, the narrowband assumption is not justified. In many acoustic and sonar applications, the wave impinging on the array is a pressure wave that is unmodulated. It is not possible to express the steering vector as a function of a single frequency. In these cases, the subband approach implemented in phased. WidebandCollector is appropriate. The wideband collector decomposes the input into subbands and computes the steering vector for each subband.

When you use the narrowband collector, phased. Collector, you must specify these aspects of the collector:
- Operating frequency of the array
- Propagation speed of the wave
- Sensor (single element) or sensor array
- Type of incoming wave. Choices are 'Plane' and 'Unspecified '. If you select 'Plane', the input signals are multiple plane waves impinging on the entire array. Each plane wave is received by all collecting elements. If you select 'Unspecified ' , the input signal are individual waves impinging on individual sensors.
- Whether to apply weights to signals collected by different elements in the array. If you want to apply weights, you specify them when you execute the System object.

When you use the wideband collector, phased. WidebandCollector, you must specify these aspects of the collector:
- Carrier frequency
- Whether the signal is demodulated to the baseband
- Operating frequency of the array
- Propagation speed of the wave
- Sampling rate
- Sensor (single element) or sensor array
- Type of incoming wave. Choices are 'Plane' and 'Unspecified '. If you select 'Plane', the input signals are multiple plane waves impinging on the entire array. Each plane wave is received by all collecting elements. If you select 'Unspecified ', the input signal are individual waves impinging on individual sensors.
- Whether to apply weights to signals collected by different elements in the array. If you want to apply weights, you specify them when you execute the System object.

\section*{Narrowband Collector for Uniform Linear Array}

This example shows how to construct a narrowband collector that models a plane wave impinging on a two-element uniform linear array. The array has an element spacing of 0.5 m (default for a ULA). The operating frequency of the array is 300 MHz .

Create the array and collector System objects.
```

array = phased.ULA('NumElements',2,'ElementSpacing',0.5);
collector = phased.Collector('Sensor',array,...
'PropagationSpeed',physconst('LightSpeed'),...
'OperatingFrequency',3e8,'Wavefront','Plane');

```

Create the signal and simulate reception from an angle of \((45 ; 0)\).
```

x =[1 -1 1 -1]';
y = collector(x,[45;0])
y = 4x2 complex
0.4433 - 0.8964i 0.4433 + 0.8964i
-0.4433 + 0.8964i -0.4433 - 0.8964i
0.4433-0.8964i 0.4433 + 0.8964i
-0.4433 + 0.8964i -0.4433-0.8964i

```

In the preceding case, the collector object multiplies the input signal, \(x\), by the corresponding element of the steering vector for the two-element ULA. The following code produces the response in an equivalent manner. First, create the ULA and then create the steering vector. Compare with the previous result.
```

array = phased.ULA('NumElements',2,'ElementSpacing',0.5);
steeringvec = phased.SteeringVector('SensorArray',array);
sv = steeringvec(3e8,[45;0]);
x =[1 -1 1 -1]';
yl = x*sv.'
y1 = 4×2 complex
0.4433-0.8964i 0.4433 + 0.8964i
-0.4433 + 0.8964i -0.4433 - 0.8964i
0.4433-0.8964i 0.4433 + 0.8964i
-0.4433 + 0.8964i -0.4433 - 0.8964i

```

\section*{Narrowband Collector for a Single Antenna Element}

The Sensor property of a phased. Collector System object \({ }^{T M}\) can specify a single antenna element. In this example, create a custom antenna element using the phased.CustomAntennaElement System object. The antenna element has a cosine response over elevation angles from \(\left(-90^{\circ}, 90^{\circ}\right)\). Plot the polar pattern response of the antenna at 1 GHz on an elevation cut at \(0^{\circ}\) azimuth. Display the antenna voltage response at \(0^{\circ}\) azimuth and \(45^{\circ}\) elevation.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call to the function with the equivalent step syntax. For example, replace my0bject(x) with step(my0bject,x).
```

fc = 1e9;
antenna = phased.CustomAntennaElement;
antenna.AzimuthAngles = -180:180;
antenna.ElevationAngles = -90:90;
antenna.MagnitudePattern = mag2db(...
repmat(cosd(antenna.ElevationAngles)',1,numel(antenna.AzimuthAngles)));
resp = antenna(fc,[0;45])
resp = 0.7071

```
pattern(antenna,fc,0,[-90:90],'Type','powerdb')


Normalized Power (dB), Broadside at \(0.00^{\circ}\)
The antenna voltage response at \(0^{\circ}\) azimuth and \(45^{\circ}\) elevation is \(\cos \left(45^{\circ}\right)\) as expected.

Assume a narrowband sinusoidal input incident on the antenna element from \(0^{\circ}\) azimuth and \(45^{\circ}\) elevation. Determine the signal collected at the element.
```

collector = phased.Collector('Sensor',antenna,'OperatingFrequency',fc);
x =[1 -1 1 -1]';
y = collector(x,[0;45])
y = 4×1
0.7071
0.7071
0.7071
-0.7071

```

\section*{Wideband Signal Collection}

This example shows how to simulate the reception of a wideband acoustic signal by a single omnidirectional microphone element.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call to the function with the equivalent step syntax. For example, replace my0bject (x) with step (my0bject,x).
\(x=r a n d n(10,1)\);
c = 340.0;
microphone \(=\) phased.OmnidirectionalMicrophoneElement(...
'FrequencyRange',[20 20e3],'BackBaffled',true);
collector \(=\) phased.WidebandCollector('Sensor', microphone, \(\ldots\).
'PropagationSpeed' ' c, 'SampleRate', 50e3,...
'ModulatedInput',false);
\(y=\) collector(x,[30;10]);

\section*{Waveforms, Transmitter, and Receiver}
- "Rectangular Pulse Waveforms" on page 4-2
- "Linear Frequency Modulated Pulse Waveforms" on page 4-6
- "Stepped FM Pulse Waveforms" on page 4-13
- "FMCW Waveforms" on page 4-16
- "Phase-Coded Waveforms" on page 4-18
- "Basic Radar Using Phase-Coded Waveform" on page 4-19
- "Waveforms with Staggered PRFs" on page 4-21
- "Plot Spectrogram Using Radar Waveform Analyzer App" on page 4-23
- "Transmitter" on page 4-25
- "Receiver Preamp" on page 4-30
- "Model Coherent-on-Receive Behavior" on page 4-33
- "Radar Equation" on page 4-35
- "Display Vertical Coverage Diagram" on page 4-38
- "Compute Peak Power Using Radar Equation Calculator App" on page 4-39

\section*{Rectangular Pulse Waveforms}

\section*{In this section...}
"Definition of Rectangular Pulse Waveform" on page 4-2
"How to Create Rectangular Pulse Waveforms" on page 4-2
"Rectangular Waveform Plot" on page 4-2
"Pulses of Rectangular Waveform" on page 4-3

\section*{Definition of Rectangular Pulse Waveform}

Define the following function of time:
\[
a(t)= \begin{cases}1 & 0 \leq t \leq \tau \\ 0 & \text { otherwise }\end{cases}
\]

Assume that a radar transmits a signal of the form:
\[
x(t)=a(t) \sin \left(\omega_{C} t\right)
\]
where \(\omega_{\mathrm{c}}\) denotes the carrier frequency. Note that \(a(t)\) represents an on-off rectangular amplitude modulation of the carrier frequency. After demodulation, the complex envelope of \(x(t)\) is the realvalued rectangular pulse \(a(t)\) of duration \(\tau\) seconds.

\section*{How to Create Rectangular Pulse Waveforms}

To create a rectangular pulse waveform, use phased. RectangularWaveform. You can customize certain characteristics of the waveform, including:
- Sampling rate
- Pulse duration
- Pulse repetition frequency
- Number of samples or pulses in each vector that represents the waveform

\section*{Rectangular Waveform Plot}

This example shows how to create a rectangular pulse waveform variable using phased.RectangularWaveform. The example also plots the pulse and finds the bandwidth of the pulse.

Construct a rectangular pulse waveform with a duration of \(50 \mu \mathrm{~s}\), a sample rate of 1 MHz , and a pulse repetition frequency (PRF) of 10 kHz .
```

waveform = phased.RectangularWaveform('SampleRate',1e6,...
'PulseWidth',50e-6,'PRF',10e3);

```

Plot a single rectangular pulse by calling plot directly on the rectangular waveform variable. plot is a method of phased. RectangularWaveform. This method produces an annotated graph of your pulse waveform.
```

plot(waveform)

```


Find the bandwidth of the rectangular pulse.
```

bw = bandwidth(waveform)
bw = 20000

```

The bandwidth, bw, of a rectangular pulse in hertz is approximately the reciprocal of the pulse duration 1/sRect. PulseWidth.

\section*{Pulses of Rectangular Waveform}

This example shows how to create rectangular pulse waveform signals having different durations. The example plots two pulses of each waveform.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call to the function with the equivalent step syntax. For example, replace my0bject (x) with step(my0bject,x).

Create a rectangular pulse with a duration of \(100 \mu \mathrm{~s}\) and a PRF of 1 kHz . Set the number of pulses in the output equal to two.
```

waveform = phased.RectangularWaveform('PulseWidth',100e-6,...
'PRF',1e3,'OutputFormat','Pulses','NumPulses',2);

```

Make a copy of your rectangular pulse and change the pulse width in your original waveform to 10 \(\mu \mathrm{s}\).
```

waveform2 = clone(waveform);
waveform.PulseWidth = 10e-6;

```
sRect and sRect1 now specify different rectangular pulses because you changed the pulse width of waveform.

Execute the System objects to return two pulses of your rectangular pulse waveforms.
y = waveform();
y2 = waveform2();
Plot the real part of the waveforms.
```

totaldur = 2*1/waveform.PRF;
totnumsamp = totaldur*waveform.SampleRate;
t = unigrid(0,1/waveform.SampleRate,totaldur,'[)');
subplot(2,1,1)
plot(t.*1000,real(y))
axis([0 totaldur*1e3 0 1.5])
title('Two 10-\musec duration pulses (PRF = 1 kHz)')
set(gca,'XTick',0:0.2:totaldur*1e3)
subplot(2,1,2)
plot(t.*1000,real(y2))
axis([0 totaldur*1e3 0 1.5])
xlabel('Milliseconds')
title('Two 100-\musec duration pulses (PRF = 1 kHz)')
set(gca,'XTick',0:0.2:totaldur*1e3)

```


\section*{Linear Frequency Modulated Pulse Waveforms}

\section*{In this section...}
"Benefits of Using Linear FM Pulse Waveform" on page 4-6
"Definition of Linear FM Pulse Waveform" on page 4-6
"How to Create Linear FM Pulse Waveforms" on page 4-6
"Create Linear FM Pulse Waveform" on page 4-7
"Linear FM Pulse Waveform Plot" on page 4-7
"Ambiguity Function of Linear FM Waveform" on page 4-9
"Compare Autocorrelation for Rectangular and Linear FM Waveforms" on page 4-10

\section*{Benefits of Using Linear FM Pulse Waveform}

Increasing the duration of a transmitted pulse increases its energy and improves target detection capability. Conversely, reducing the duration of a pulse improves the range resolution of the radar.

For a rectangular pulse, the duration of the transmitted pulse and the processed echo are effectively the same. Therefore, the range resolution of the radar and the target detection capability are coupled in an inverse relationship.

Pulse compression techniques enable you to decouple the duration of the pulse from its energy by effectively creating different durations for the transmitted pulse and processed echo. Using a linear frequency modulated pulse waveform is a popular choice for pulse compression.

\section*{Definition of Linear FM Pulse Waveform}

The complex envelope of a linear FM pulse waveform with increasing instantaneous frequency is:
\[
\tilde{x}(t)=a(t) e^{j \Pi(\beta / \tau) t^{2}}
\]
where \(\beta\) is the bandwidth and \(\tau\) is the pulse duration.
If you denote the phase by \(\Theta(\mathrm{t})\), the instantaneous frequency is:
\[
\frac{1}{2 \pi} \frac{d \Theta(t)}{d t}=\frac{\beta}{\tau} t
\]
which is a linear function of \(t\) with slope equal to \(\beta / \tau\).
The complex envelope of a linear FM pulse waveform with decreasing instantaneous frequency is:
\[
\tilde{x}(t)=a(t) e^{-j \Pi \beta / \tau\left(t^{2}-2 \tau t\right)}
\]

Pulse compression waveforms have a time-bandwidth product, \(\beta \tau\), greater than 1 .

\section*{How to Create Linear FM Pulse Waveforms}

To create a linear FM pulse waveform, use phased. LinearFMWaveform. You can customize certain characteristics of the waveform, including:
- Sample rate
- Duration of a single pulse
- Pulse repetition frequency
- Sweep bandwidth
- Sweep direction (up or down), corresponding to increasing and decreasing instantaneous frequency
- Envelope, which describes the amplitude modulation of the pulse waveform. The envelope can be rectangular or Gaussian.
- The rectangular envelope is as follows, where \(\tau\) is the pulse duration.
\[
a(t)= \begin{cases}1 & 0 \leq t \leq \tau \\ 0 & \text { otherwise }\end{cases}
\]
- The Gaussian envelope is:
\[
a(t)=e^{-t^{2} / \tau^{2}} \quad t \geq 0
\]
- Number of samples or pulses in each vector that represents the waveform

\section*{Create Linear FM Pulse Waveform}

This example shows how to create a linear FM pulse waveform using phased. LinearFMWaveform. The example illustrates how to specify property settings.

Create a linear FM pulse with a sample rate of 1 MHz , a pulse duration of \(50 \mu\) s with an increasing instantaneous frequency, and a sweep bandwidth of 100 kHz . The pulse repetition frequency is 10 kHz and the amplitude modulation is rectangular.
```

waveform = phased.LinearFMWaveform('SampleRate',1e6,...
'PulseWidth',50e-6,'PRF',10e3,...
'SweepBandwidth',100e3,'SweepDirection','Up',...
'Envelope','Rectangular',...
'OutputFormat','Pulses','NumPulses',1);

```

\section*{Linear FM Pulse Waveform Plot}

This example shows how to plot a linear FM (LFM) pulse waveform. The LFM waveform has a duration of 100 microseconds, a bandwidth of 200 kHz , and a PRF of 4 kHz . Use the default values for the other properties. Compute the time-bandwidth product. Plot the real part of the waveform and plot one full pulse repetition interval.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call to the function with the equivalent step syntax. For example, replace my0bject (x) with step (my0bject,x).
waveform = phased.LinearFMWaveform('PulseWidth',100e-6,...
'SweepBandwidth',200e3, 'PRF', 4e3) ;
Display the time-bandwidth product of the FM sweep.
disp(waveform. PulseWidth*waveform. SweepBandwidth)

Plot the real part of the waveform.
plot(waveform)
Linear FM pulse waveform: real part, pulse 1


Use the step method to obtain one full repetition interval of the signal. Plot the real and imaginary parts.
```

y = waveform();
t = unigrid(0,1/waveform.SampleRate,1/waveform.PRF,'[)');
figure
subplot(2,1,1)
plot(t,real(y))
axis tight
title('Real Part')
subplot(2,1,2)
plot(t,imag(y))
xlabel('Time (s)')
title('Imaginary Part')
axis tight

```


\section*{Ambiguity Function of Linear FM Waveform}

This example shows how to plot the ambiguity function of a linear FM pulse waveform.
Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call to the function with the equivalent step syntax. For example, replace my0bject (x) with step (my0bject,x).

Define and set up the linear FM waveform.
```

waveform = phased.LinearFMWaveform('PulseWidth',100e-6,...
'SweepBandwidth',2e5,'PRF',1e3);

```

Generate samples of the waveform.
```

wav = waveform();

```

Create a 3-D surface plot of the ambiguity function for the waveform.
```

[afmag_lfm,delay_lfm,doppler_lfm] = ambgfun(wav,...
waveform.SampleRate,waveform.PRF);
surf(delay_lfm*le6,doppler_lfm/le3,afmag_lfm,...
'LineStyle','none')
axis tight
grid on
view([140,35])

```
```

colorbar
xlabel('Delay \tau (\mus)')
ylabel('Doppler f_d (kHz)')
title('Linear FM Pulse Waveform Ambiguity Function')

```


The surface has a narrow ridge that is slightly tilted. The tilt indicates better resolution in the zero delay cut.

\section*{Compare Autocorrelation for Rectangular and Linear FM Waveforms}

This example shows how to compute and plot the ambiguity function magnitudes for a rectangular and linear FM pulse waveform. The zero Doppler cut (magnitudes of the autocorrelation sequences) illustrates pulse compression in the linear FM pulse waveform.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call to the function with the equivalent step syntax. For example, replace my0bject (x) with step (my0bject,x).

Create a rectangular waveform and a linear FM pulse waveform having the same duration and PRF. Generate samples of each waveform.
rectwaveform = phased.RectangularWaveform('PRF',20e3);
lfmwaveform = phased.LinearFMWaveform('PRF',20e3);
xrect = rectwaveform();
xlfm = lfmwaveform();

Compute the ambiguity function magnitudes for each waveform.
```

[ambrect,delay] = ambgfun(xrect,rectwaveform.SampleRate,rectwaveform.PRF,...
'Cut','Doppler');
ambfm = ambgfun(xlfm,lfmwaveform.SampleRate,lfmwaveform.PRF,...
'Cut','Doppler');

```

Plot the ambiguity function magnitudes.
```

subplot(211)
stem(delay,ambrect)
title('Autocorrelation of Rectangular Pulse')
axis([-5e-5 5e-5 0 1])
set(gca,'XTick',1e-5*(-5:5))
subplot(212)
stem(delay,ambfm)
xlabel('Delay (seconds)')
title('Autocorrelation of Linear FM Pulse')
axis([-5e-5 5e-5 0 1])
set(gca,'XTick',1e-5*(-5:5))

```


\section*{See Also}

\section*{Related Examples}
- "Waveform Analysis Using the Ambiguity Function" on page 17-149

\section*{Stepped FM Pulse Waveforms}

A stepped frequency pulse waveform consists of a series of \(N\) narrowband pulses. The frequency is increased from step to step by a fixed amount, \(\Delta \mathrm{f}\), in Hz .

Similar to linear FM pulse waveforms, stepped frequency waveforms are a popular pulse compression technique. Using this approach enables you to increase the range resolution of the radar without sacrificing target detection capability.

To create a stepped FM pulse waveform, use phased.SteppedFMWaveform.
The stepped frequency pulse waveform has the following modifiable properties:
- SampleRate - Sampling rate in Hz
- PulseWidth - Pulse duration in seconds
- PRF - Pulse repetition frequency in Hz
- FrequencyStep - Frequency step in Hz
- NumSteps - Number of frequency steps
- OutputFormat - Output format in pulses or samples
- NumSamples - Number of samples in the output when the OutputFormat property is 'Samples'
- NumPulses - Number of pulses in the output when the OutputFormat property is 'Pulses '

\section*{Create and Plot Stepped FM Pulse Waveform}

This example shows how to create and plot a 5-step stepped FM pulse waveform using the phased.SteppedFM System object \({ }^{\text {TM }}\). Set the pulse width (duration) to \(50 \mu \mathrm{~s}\), the pulse repetition frequency (PRF) to 10 kHz , and the frequency step size to 20 kHz . The sampling rate is 1 MHz . By default, the OutputFormat property is set to 'Pulses' and NumPulses is one.
```

waveform = phased.SteppedFMWaveform('SampleRate',1e6,...
'PulseWidth',50e-6,'PRF',10e3,...
'FrequencyStep',20e3,'NumSteps',5);

```

Use the bandwidth method to show that the bandwidth of the stepped FM pulse waveform equals the product of the frequency step size and the number of steps.
```

bandwidth(waveform)

```
ans =

100000

Because the OutputFormat property is set to 'Pulses' and the NumPulses property is set to one, executing the System object returns one pulse repetition interval (PRI). The pulse duration within that interval is set by the PulseWidth property. The signal in the remainder of the PRI consists of zeros.

The frequency of the initial pulse is zero Hz (DC). Each time you execute the System object, the frequency of the narrowband pulse increments by the value of the FrequencyStep property. If you
execute the System object more times than the value of the NumSteps property, the process repeats, starting over with the DC pulse.

Execute the System object to return successively higher frequency pulses. Plot the pulses one by one in the same figure window. Pause the loop to visualize the increment in frequency with each execution of the System object. Execute the System object one more time than the number of pulses to demonstrate that the process starts over with the DC pulse.

This figure shows the pulse plot for the last iteration of the loop.
```

t = unigrid(0,1/waveform.SampleRate,1/waveform.PRF,'[)');
for i = 1:waveform.NumSteps
plot(t,real(waveform()))
pause(0.5)
axis tight
end

```


This plot shows how the pulse returns to its DC value.
plot(t,waveform())


\section*{FMCW Waveforms}

\author{
In this section... \\ "Benefits of Using FMCW Waveform" on page 4-16 \\ "How to Create FMCW Waveforms" on page 4-16 \\ "Double Triangular Sweep" on page 4-16
}

\section*{Benefits of Using FMCW Waveform}

Radar systems that use frequency-modulated, continuous-wave (FMCW) waveforms are typically smaller and less expensive to manufacture than pulsed radar systems. FMCW waveforms can estimate the target range effectively, whereas the simplest continuous-wave waveforms cannot.

FMCW waveforms are common in automotive radar systems and ground-penetrating radar systems.

\section*{How to Create FMCW Waveforms}

To create an FMCW waveform, use phased. FMCWWaveform. You can customize certain characteristics of the waveform, including:
- Sample rate.
- Period and bandwidth of the FM sweep. These quantities can cycle through multiple values during your simulation.

Tip To find targets up to a given maximum range, \(r\), you can typically use a sweep period of approximately \(5^{*}\) range2time \((r)\) or \(6 *\) range 2 time \((r)\). To achieve a range resolution of delta_r, use a bandwidth of at least range2bw(delta_r).
- Sweep shape. This shape can be sawtooth (up or down) or triangular.

Tip For moving targets, you can use a triangular sweep to resolve ambiguity between range and Doppler.
phased. FMCWWaveform assumes that all frequency modulations are linear. For triangular sweeps, the slope of the down sweep is the opposite of the slope of the up sweep.

\section*{Double Triangular Sweep}

This example shows how to sample an FMCW waveform with a double triangular sweep in which the two sweeps have different slopes. Then, the example plots a spectrogram.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call to the function with the equivalent step syntax. For example, replace my0bject(x) with step(my0bject,x).

Create an FMCW waveform object for which the SweepTime and SweepBandwidth properties are vectors of length two. For each period, the waveform alternates between the pairs of corresponding sweep time and bandwidth values.
```

st = [1e-3 1.1e-3];
bw = [1e5 9e4];
waveform = phased.FMCWWaveform('SweepTime',st,...
'SweepBandwidth',bw,'SweepDirection','Triangle',...
'SweepInterval','Symmetric','SampleRate',2e5,...
'NumSweeps',4);

```

Compute samples from four sweeps (two periods). In a triangular sweep, each period consists of an up sweep and down sweep.
x = waveform();
Plot the spectrogram.
```

[S,F,T] = spectrogram(x,32,16,32,waveform.SampleRate);
image(T,fftshift(F),fftshift(mag2db(abs(S))))
xlabel('Time (sec)')
ylabel('Frequency (Hz)')

```


\section*{Phase-Coded Waveforms}
```

In this section...
"When to Use Phase-Coded Waveforms" on page 4-18
"How to Create Phase-Coded Waveforms" on page 4-18

```

\section*{When to Use Phase-Coded Waveforms}

Situations in which you might use a phase-coded waveform instead of another type of waveform include:
- When a rectangular pulse cannot provide both of these characteristics:
- Short enough pulse for good range resolution
- Enough energy in the signal to detect the reflected echo at the receiver
- When two or more radar systems are close to each other and you want to reduce interference among them.
- When digital processing suggests using a waveform with a discrete set of phases. For example, a Barker-coded waveform is a bi-phase waveform.

Conversely, you might use another waveform instead of a phase-coded waveform in the following situations:
- When you need to detect or track high-speed targets

Phase-coded waveforms tend to perform poorly when signals have Doppler shifts.
- When the hardware requirements for phase-coded waveforms are prohibitively expensive

\section*{How to Create Phase-Coded Waveforms}

To create a phase-coded waveform, use phased. PhaseCodedWaveform. You can customize certain characteristics of the waveform, including:
- Type of phase code
- Number of chips
- Chip width
- Sample rate
- Pulse repetition frequency (PRF)
- Sequence index (Zadoff-Chu code only)

After you create a phased. PhaseCodedWaveform object, you can plot the waveform using the plot method of this class. You can also generate samples of the waveform using the step method.

For a full list of properties and methods, see the phased. PhaseCodedWaveform reference page.

\section*{Basic Radar Using Phase-Coded Waveform}

Instead of the rectangular waveform used in the "End-to-End Radar System" example, you can use a phase-coded waveform instead of a rectangular waveform. To do so, replace the phased.RectangularWaveform System object \({ }^{\text {TM }}\) with phased. PhaseCodedWaveform.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call to the function with the equivalent step syntax. For example, replace my0bject (x) with step (my0bject,x).
waveform = phased. PhaseCodedWaveform('Code','Frank','NumChips',4,...
'ChipWidth',1e-6,'PRF',5e3,'OutputFormat','Pulses',...
'NumPulses',1);
Then, redefine the pulse width, tau , using the properties of the new waveform.
```

tau = waveform.ChipWidth*waveform.NumChips;

```

The remainder of the code is almost identical to the code in the original examples and is presented here without comments. For a detailed explanation of how the code works, see the original "End-toEnd Radar System" example.
```

antenna = phased.IsotropicAntennaElement('FrequencyRange',[1e9 10e9]);
target = phased.RadarTarget('Model','Nonfluctuating',...
'MeanRCS',0.5,'PropagationSpeed',physconst('LightSpeed'),...
'OperatingFrequency',4e9);
transmitterplatform = phased.Platform('InitialPosition',[0;0;0],...
'Velocity',[0;0;0]);
targetplatform = phased.Platform('InitialPosition',[7000; 5000; 0],...
'Velocity',[-15;-10;0]);
[tgtrng,tgtang] = rangeangle(targetplatform.InitialPosition,...
transmitterplatform.InitialPosition);
Pd = 0.9;
Pfa = 1e-6;
numpulses = 10;
SNR = albersheim(Pd,Pfa,10);
maxrange = 1.5e4;
lambda = physconst('LightSpeed')/4e9;
Pt = radareqpow(lambda,maxrange,SNR,tau,'RCS',0.5,'Gain',20);
transmitter = phased.Transmitter('PeakPower',50e3,'Gain',20,...
'LossFactor',0,'InUse0utputPort',true,...
'CoherentOnTransmit',true);
radiator = phased.Radiator('Sensor',antenna,...
'PropagationSpeed',physconst('LightSpeed'),...
'OperatingFrequency',4e9);
collector = phased.Collector('Sensor',antenna,...
'PropagationSpeed',physconst('LightSpeed'),...
'Wavefront','Plane','OperatingFrequency',4e9);
receiver = phased.ReceiverPreamp('Gain',20,'NoiseFigure',2,...
'ReferenceTemperature',290,'SampleRate',1e6,...
'EnableInputPort',true,'SeedSource','Property','Seed',1e3);
channel = phased.FreeSpace(...
'PropagationSpeed',physconst('LightSpeed'),...
'OperatingFrequency',4e9,'TwoWayPropagation',false,...
'SampleRate',1e6);

```
```

T = 1/waveform.PRF;
txpos = transmitterplatform.InitialPosition;
rxsig = zeros(waveform.SampleRate*T,numpulses);
for n = 1:numpulses
[tgtpos,tgtvel] = targetplatform(T);
[tgtrng,tgtang] = rangeangle(tgtpos,txpos);
sig = waveform();
[sig,txstatus] = transmitter(sig);
sig = radiator(sig,tgtang);
sig = channel(sig,txpos,tgtpos,[0;0;0],tgtvel);
sig = target(sig);
sig = channel(sig,tgtpos,txpos,tgtvel,[0;0;0]);
sig = collector(sig,tgtang);
rxsig(:,n) = receiver(sig,~txstatus);
end
rxsig = pulsint(rxsig,'noncoherent');
t = unigrid(0,1/receiver.SampleRate,T,'[)');
rangegates = (physconst('LightSpeed')*t)/2;
plot(rangegates,rxsig)
hold on
xlabel('Meters'); ylabel('Power')
ylim = get(gca,'YLim');
plot([tgtrng,tgtrng],[0 ylim(2)],'r')
hold off

```


\section*{Waveforms with Staggered PRFs}

\section*{In this section...}
"When to Use Staggered PRFs" on page 4-21
"Linear FM Waveform with Staggered PRF" on page 4-21

\section*{When to Use Staggered PRFs}

Using a nonconstant PRF has important applications in radar. This approach is called PRF or PRI staggering.

Uses of staggered PRFs include
- Removal of Doppler ambiguities, or blind speeds, where Doppler frequencies that are multiples of the PRF are aliased to zero
- Mitigation of the effects of jamming

To implement a staggered PRF, configure your waveform object using a vector instead of a scalar for the PRF property value.

\section*{Linear FM Waveform with Staggered PRF}

This example shows how to model a linear FM pulse waveform with two PRFs of 1 and 2 kHz . Set the sweep bandwidth to 200 kHz and the duration of \(100 \mu \mathrm{~s}\). The sample rate is 1 MHz . Output 5 pulses.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call to the function with the equivalent step syntax. For example, replace my0bject(x) with step (my0bject,x).
```

prfs = [1e3 2e3];

```
waveform = phased.LinearFMWaveform('PRF',prfs,'SweepBandwidth',200e3,...
    'PulseWidth',100e-6, 'NumPulses', 5) ;
sig = waveform();
\(\mathrm{T}=\) length(sig)*(1/waveform.SampleRate);
t = unigrid(0,1/waveform.SampleRate, T,'[)');
plot(t.*1000, real(sig))
set(gca,'xtick',[0 1 1.5 2.5 3]);
xlabel('millisec')


\section*{Plot Spectrogram Using Radar Waveform Analyzer App}

The radarWaveformAnalyzer is a Matlab \({ }^{\mathrm{TM}}\) App that lets you explore important properties of a signal such as its waveform, spectrum, and ambiguity function.

\section*{Open radarWaveformAnalyzer App}

When you type radarWaveformAnalyzer from the command line or select the app from the App Toolstrip, an interactive window opens. The default window shows a rectangular waveform and its spectrum. You can then select various options to analyze different waveforms.
radarWaveformAnalyzer


\section*{Show the spectrogram of baseband FMCW signal}

As an example, use the app to show the spectrogram of a continuous FMCW waveform.
1 Set the Waveform to FMCW
2 Set the Sweep Interval to Symmet ric
3 Set the Number of Sweeps to 4

4 In the Analysis tab, select Spect rogram
Then, you will see a plot of the spectrogram of the signal similar to this.


\section*{Transmitter}
```

In this section...
"Transmitter Object" on page 4-25
"Phase Noise" on page 4-27

```

\section*{Transmitter Object}

The phased.Transmitter object lets you model key components of the radar equation including the peak transmit power, the transmit gain, and a system loss factor. You can use phased.Transmitter together with radareqpow, radareqrng, and radareqsnr, to relate the received echo power to your transmitter specifications.

While the preceding functionality is important in applications dependent on amplitude such as signal detectability, Doppler processing depends on the phase of the complex envelope. In order to accurately estimate the radial velocity of moving targets, it is important that the radar operates in either a fully coherent or pseudo-coherent mode. In the fully coherent, or coherent on transmit, mode, the phase of the transmitted pulses is constant. Constant phase provides you with a reference to detect Doppler shifts.

A transmitter that applies a random phase to each pulse creates phase noise that can obscure Doppler shifts. If the components of the radar do not enable you to maintain constant phase, you can create a pseudo-coherent, or coherent on receive radar by keeping a record of the random phase errors introduced by the transmitter. The receiver can correct for these errors by modulation of the complex envelope. The phased.Transmitter object enables you to model both coherent on transmit and coherent on receive behavior.

The transmitter object has the following modifiable properties:
- PeakPower - Peak transmit power in watts
- Gain - Transmit gain in decibels
- LossFactor - Loss factor in decibels
- InUseOutputPort - Track transmitter's status. Setting this property to true outputs a vector of 1 s and 0 s indicating when transmitter is on and off. In a monostatic radar, the transmitter and receiver cannot operate simultaneously.
- CoherentOnTransmit - Preserve coherence among transmitter pulses. Setting this property to true (the default) models the operation of a fully coherent transmitter where the pulse-to-pulse phase is constant. Setting this property to false introduces random phase noise from pulse to pulse and models the operation of a non-coherent transmitter.
- PhaseNoiseOutputPort - Output the random pulse phases introduced by non-coherent operation of the transmitter. This property only applies if the CoherentOnTransmit property is false. By keeping a record of the random pulse phases, you can create a pseudo-coherent, or coherent on receive radar.

\section*{Transmit Linear FM Pulse}

Amplify and transmit a linear FM pulse.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call to the function with the equivalent step syntax. For example, replace my0bject (x) with step (myObject,x).

Construct a transmitter with a peak transmit power of 1000 watts, a transmit gain of 20 decibels (dB), and a loss factor of 0 dB . Set the InUseOutPutPort property to true to record the transmitter status. Pulse waveform values are scaled based on the peak transmit power and the ratio of the transmitter gain to loss factor.
```

transmitter = phased.Transmitter('PeakPower',1e3,'Gain',20,...
'LossFactor',0,'InUseOutputPort',true)
transmitter =
phased.Transmitter with properties:
PeakPower: 1000
Gain: 20
LossFactor: 0
InUseOutputPort: true
CoherentOnTransmit: true

```

The waveform scaling factor is sqrt(PeakPower*db2pow(Gain - LossFactor))
Construct a linear FM pulse waveform for transmission. Use a \(100 \mu \mathrm{sec}\) linear FM pulse having a bandwidth of 200 kHz . Use the default sweep direction and sample rate. Set the pulse repetition frequency (PRF) to 2 kHz . Obtain one pulse by setting the NumPulses property of the phased.LinearFMWaveform object to unity.
```

waveform = phased.LinearFMWaveform('PulseWidth',100e-6,'PRF',2e3,...
'SweepBandwidth',200e3,'OutputFormat','Pulses','NumPulses',1);

```

Generate the pulse by executing the phased. LinearFMWaveform waveform System object \({ }^{\mathrm{TM}}\). Then, transmit the pulse by executing the phased.Transmitter System object.
```

wf = waveform();
[txoutput,txstatus] = transmitter(wf);
t = unigrid(0,1/waveform.SampleRate,1/waveform.PRF,'[)');
subplot(211)
plot(t,real(txoutput))
axis tight
grid on
ylabel('Amplitude')
title('Transmitter Output (real part) - One PRI')
subplot(212)
plot(t,txstatus)
axis([0 t(end) 0 1.5])
xlabel('Seconds')
grid on
ylabel('Off-On Status')
set(gca,'ytick',[0 1])
title('Transmitter Status')

```


\section*{Phase Noise}

To model a coherent on receive radar, you can set the CoherentOnTransmit property to false and the PhaseNoiseOutputPort property to true. You can output the random phase added to each sample when you execute the System object.

\section*{Transmit Rectangular Pulse With Phase Noise}

This example illustrates adding phase noise to a rectangular pulse waveform having five pulses. A random phase is added to each sample of the waveform. Compute the phase of the output waveform and compare the phase to the phase noise returned when executing the System object \({ }^{\mathrm{TM}}\).

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call to the function with the equivalent step syntax. For example, replace my0bject (x) with step(myObject,x).

For convenience, set the gain of the transmitter to 0 dB , the peak power to 1 W , and seed the random number generator to ensure reproducible results.
```

waveform = phased.RectangularWaveform('NumPulses',5);
transmitter = phased.Transmitter('Coherent0nTransmit',false,...
'PhaseNoiseOutputPort', true, 'Gain',0,'PeakPower',1,...
'SeedSource','Property','Seed',1000);
wf = waveform();
[txtoutput,phnoise] = transmitter(wf);

```
```

phdeg = rad2deg(phnoise);
phdeg(phdeg>180)= phdeg(phdeg>180) - 360;
plot(wf)
title('Input Waveform')
axis([0 length(wf) 0 1.5])
ylabel('Amplitude')
grid on

```

\section*{Input Waveform}

```

subplot(2,1,1)
plot(rad2deg(atan2(imag(txtoutput),real(txtoutput))))
title('Phase of the Output')
ylabel('Degrees')
axis([0 length(wf) -180 180])
grid on
subplot(2,1,2)
plot(phdeg)
title('Phase Noise'); ylabel('Degrees')
axis([0 length(wf) -180 180])
grid on

```


The first figure shows the waveform. The phase of each pulse at the input to the transmitter is zero. In the second figure, the top plot shows the phase of the transmitter output waveform. The bottom plot shows the phase added to each sample. Focus on the first 100 samples. The pulse waveform is equal to 1 for samples 1-50 and 0 for samples 51-100. The added random phase is a constant \(-124.7^{\circ}\) for samples 1-100, but this affects the output only when the pulse waveform is nonzero. In the output waveform, you see that the output waveform has a phase of \(-124.7^{\circ}\) for samples \(1-50\) and 0 for samples 51-100. Examining the transmitter output and phase noise for samples where the input waveform is nonzero, you can see that the phase output the System object and the phase of the transmitter output agree.

\section*{Receiver Preamp}

\section*{In this section...}
"Operation of Receiver Preamp" on page 4-30
"Configuring Receiver Preamp" on page 4-30
"Model Receiver Effects on Sinusoidal Input" on page 4-31

\section*{Operation of Receiver Preamp}

The phased.ReceiverPreamp object lets you model the effects of gain and component-based noise on the signal-to-noise ratio (SNR) of received signals. phased. ReceiverPreamp operates on baseband signals. The object is not intended to model system effects at RF or intermediate frequency (IF) stages.

\section*{Configuring Receiver Preamp}

The phased.ReceiverPreamp object has the following modifiable properties:
- EnableInputPort - A logical property that enables you to specify when the receiver is on or off. Input the actual status of the receiver as a vector to step. This property is useful when modeling a monostatic radar system. In a monostatic radar, it is important to ensure the transmitter and receiver are not operating simultaneously. See phased.Transmitter and "Transmitter" on page 4-25.
- Gain - Gain in dB \(\left(G_{d B}\right)\)
- LossFactor - Loss factor in dB \(\left(L_{d B}\right)\)
- NoiseMethod - Specify noise input as noise power or noise temperature
- NoiseFigure - Receiver noise figure in \(\mathrm{dB}\left(F_{d B}\right)\)
- ReferenceTemperature - Receiver reference temperature in kelvin ( \(T\) )
- SampleRate - Sample rate ( \(f_{s}\) )
- NoisePower - Noise power specified in Watts \(\left(\sigma^{2}\right)\)
- NoiseComplexity - Specify noise as real-valued or complex-valued
- EnableInputPort - Add input to specify when the receiver is active
- PhaseNoiseInputPort - Add input to specify phase noise for coherent on receive receiver
- SeedSource - Lets you specify random number generator seed
- Seed - Random number generator seed

The output signal, \(y[n]\), of the phased. ReceiverPreamp System object equals the input signal scaled by the ratio of receiver amplitude gain to amplitude loss plus additive noise
\[
y[n]=\frac{G}{L} x[n]+\frac{\sigma}{\sqrt{2}} w[n]
\]
where \(x[n]\) is the complex-valued input signal and \(w[n]\) is unit-variance noise complex-valued noise.
When the input signal is real-valued, the output signal, \(y[n]\), equals the real-valued input signal scaled by the ratio of receiver amplitude gain to amplitude loss plus real-valued additive noise
\[
y[n]=\frac{G}{L} x[n]+\sigma w[n]
\]

The amplitude gain, \(G\), and loss, \(L\), can be express in terms of the input dB parameters by
\[
\begin{aligned}
& G=10^{G_{d B} / 20} \\
& L=10^{L_{d B} / 20}
\end{aligned}
\]
respectively.
The additive noise for the receiver is modeled as a zero-mean complex white Gaussian noise vector with variance, \(\sigma^{2}\), equal to the noise power. The real and imaginary parts of the noise vector each have variance equal to \(1 / 2\) the noise power.

You can set the noise power directly by choosing the NoiseMethod property to be 'Noise power' and then setting the NoisePower property to a real positive number. Alternatively, you can set the noise power using the system temperature by choosing the NoiseMethod property to be 'Noise temperature'. Then
\[
\sigma^{2}=k_{B} B T F
\]
where \(k_{B}\) is Boltzmann's constant, \(B\) is the noise bandwidth which is equal to the sample rate, \(f_{s}, T\) is the system temperature, and \(F\) is the noise figure in power units.

The noise figure, \(F\), is a dimensionless quantity that indicates how much a receiver deviates from an ideal receiver in terms of internal noise. An ideal receiver produces thermal noise power defined by noise bandwidth and temperature. In terms of power units, the noise figure \(F=10^{F_{d B} / 10}\). A noise figure of 0 dB indicates that the noise power of a receiver equals the noise power of an ideal receiver. Because an actual receiver cannot exhibit a noise power value less than an ideal receiver, the noise figure is always greater than or equal to one. In decibels, the noise figure must be greater than or equal to zero.

To model the effect of the receiver preamp on the signal, phased. ReceiverPreamp computes the effective system noise temperature by taking the product of the reference temperature, \(T\), and the noise figure \(F\) in power units. See systemp for details.

\section*{Model Receiver Effects on Sinusoidal Input}

Specify a phased.ReceiverPreamp System object \({ }^{\text {TM }}\) with a gain of 20 dB , a noise figure of 5 dB , and a reference temperature of 290 degrees kelvin.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call to the function with the equivalent step syntax. For example, replace my0bject(x) with step (my0bject,x).
```

receiver = phased.ReceiverPreamp('Gain',20,...
'NoiseFigure',5,'ReferenceTemperature',290,...
'SampleRate',le6,'SeedSource',''Property','Seed ',1e3);

```

Assume a \(100-\mathrm{Hz}\) sine wave input with an amplitude of 1 microvolt. Because the Phased Array System Toolbox assumes that all modeling is done at baseband, use a complex exponential as the input when executing the System object.
```

t = unigrid(0,0.001,0.1,'[)');
x = 1e-6*exp(1i*2*pi*100*t).';
y = receiver(x);

```

The output of the phased.ReceiverPreamp.step method is complex-valued as expected.
Now show how the same output can be produced from the multiplicative amplitude gain and additive noise. First assume that the noise bandwidth equals the sample rate of the receiver preamp ( 1 MHz ). Then, the noise power is equal to:
```

NoiseBandwidth = receiver.SampleRate;
noisepow = physconst('Boltzmann')*...
systemp(receiver.NoiseFigure,receiver.ReferenceTemperature)*NoiseBandwidth;

```

The noise power is the variance of the additive white noise. To determine the correct amplitude scaling of the input signal, note that the gain is 20 dB . Because the loss factor in this case is 0 dB , the scaling factor for the input signal is found by solving the following equation for the multiplicative gain \(G\) from the gain in \(\mathrm{dB}, G_{d B}\) :
\[
\begin{aligned}
& G=10^{\left(G_{d B} / 20\right)} \\
G= & 10^{\wedge}(\text { receiver. Gain } / 20) \\
G= & 10
\end{aligned}
\]

The gain is 10 . By scaling the input signal by a factor of ten and adding complex white Gaussian noise with the appropriate variance, you produce an output equivalent to the preceding call to phased. ReceiverPreamp. step (use the same seed for the random number generation).
```

rng(1e3);

```
\(y 1=G * x+\operatorname{sqrt}(n o i s e p o w / 2) *\left(\operatorname{randn}(\operatorname{size}(x))+1 j^{*}\right.\) randn(size(x)));

Compare a few values of y to y 1 .
```

disp(y1(1:10) - y(1:10))
0
0
0
0
0
0
0
0
0
0

```

\section*{Model Coherent-on-Receive Behavior}

When modeling a coherent-on-receive monostatic radar, use the EnableInputPort and PhaseNoiseInputPort properties. In a monostatic radar, the transmitter and receiver cannot operate simultaneously. Therefore, it is important to keep track of when the transmitter is active so that you can disable the receiver at those times. By setting the EnableInputPort to true, you can input a record of when the transmitter is active as an argument when executing the phased.ReceiverPreamp System object.

In a coherent-on-receive radar, the receiver corrects for the phase noise introduced at the transmitter by using the record of those phase errors. By setting the PhaseNoiseInputPort property to true, you can input a record of the transmitter phase errors as an argument when executing the phased.ReceiverPreamp System object.

\section*{Coherent-on-Receive for Rectangular Pulse}

To illustrate coherent-on-receive, construct a rectangular pulse waveform with five pulses. The waveform pulse repetition frequency (PRF) is 10 kHz and the pulse width is \(50 \mu \mathrm{~s}\). The pulse repetition interval (PRI) is exactly two times the pulse width so the transmitter alternates between active and inactive time intervals of the same duration. For convenience, set the gains on both the transmitter and receiver to 0 dB and the peak power on the transmitter to 1 W .

Use the PhaseNoiseOutputPort and InUseOutputPort properties of the transmitter to record the phase noise and the status of the transmitter.

Enable the EnableInputPort and PhaseNoiseInputPort properties of the receiver preamp to determine when the receiver is active and to correct for the phase noise introduced at the transmitter.

Delay the output of the transmitter using the delayseq function to simulate the waveform arriving at the receiver preamp when the transmitter is inactive and the receiver is active.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call to the function with the equivalent step syntax. For example, replace my0bject (x) with step(my0bject,x).
waveform = phased.RectangularWaveform('NumPulses',5); transmitter \(=\) phased.Transmitter('CoherentOnTransmit',false,...
'PhaseNoiseOutputPort', true, 'Gain' , 0, 'PeakPower', 1, ...
'SeedSource','Property','Seed',1000,'InUse0utputPort',true);
wf = waveform();
[troutput,trstatus, phasenoise] = transmitter(wf);
troutput = delayseq(troutput,waveform.PulseWidth,...
waveform. SampleRate);
receiver = phased.ReceiverPreamp('Gain',0,...
'PhaseNoiseInputPort', true, 'EnableInputPort',true);
\(y=\) receiver(troutput, \(\sim\) trstatus, phasenoise);
subplot \((2,1,1)\)
plot(real(troutput))
title('Delayed Transmitter Output with Phase Noise')
ylabel('Amplitude')
subplot \((2,1,2)\)
plot(real(y))
xlabel('Samples')
ylabel('Amplitude')
title('Received Signal with Phase Correction')



\section*{Radar Equation}

\section*{In this section...}
"Radar Equation Theory" on page 4-35
"Link Budget Calculation Using the Radar Equation" on page 4-36
"Maximum Detectable Range for a Monostatic Radar" on page 4-36
"Output SNR at Receiver in Bistatic Radar" on page 4-37

\section*{Radar Equation Theory}

The point target radar range equation estimates the power at the input to the receiver for a target of a given radar cross section at a specified range. In this equation, the signal model is assumed to be deterministic. The equation for the power at the input to the receiver is:
\[
P_{r}=\frac{P_{t} G_{t} G_{r} \lambda^{2} \sigma}{(4 \pi)^{3} R_{t}^{2} R_{r}^{2} L}
\]
where the terms in the equation are:
- \(P_{r}-\) Received power in watts.
- \(P_{t}\) - Peak transmit power in watts.
- \(G_{t}\) - Transmitter gain.
- \(G_{r}\) - Receiver gain.
- \(\lambda\) - Radar operating frequency wavelength in meters.
- \(\sigma\) - Target's nonfluctuating radar cross section in square meters.
- \(L\) - General loss factor to account for both system and propagation loss.
- \(R_{t}\) - Range from the transmitter to the target.
- \(R_{r}\) - Range from the receiver to the target. If the radar is monostatic, the transmitter and receiver ranges are identical.

The equation for the power at the input to the receiver represents the signal term in the signal-tonoise (SNR) ratio. To model the noise term, assume the thermal noise in the receiver has a white noise power spectral density (PSD) given by:
\[
P(f)=k T
\]
where \(k\) is the Boltzmann constant and \(T\) is the effective noise temperature. The receiver acts as a filter to shape the white noise PSD. Assume that the magnitude squared receiver frequency response approximates a rectangular filter with bandwidth equal to the reciprocal of the pulse duration, \(1 / \tau\). The total noise power at the output of the receiver is:
\[
N=\frac{k T F_{n}}{\tau}
\]
where \(F_{n}\) is the receiver noise figure.
The product of the effective noise temperature and the receiver noise factor is referred to as the system temperature and is denoted by \(T_{s}\), so that \(T_{s}=T F_{n}\).

Using the equation for the received signal power and the output noise power, the receiver output SNR is:
\[
\frac{P_{r}}{N}=\frac{P_{t} \tau G_{t} G_{r} \lambda^{2} \sigma}{(4 \pi)^{3} k T_{s} R_{t}^{2} R_{r}^{2} L}
\]

Solving for the required peak transmit power:
\[
P_{t}=\frac{P_{r}(4 \pi)^{3} k T_{S} R_{t}^{2} R_{r}^{2} L}{N \tau G_{t} G_{r} \lambda^{2} \sigma}
\]

The preceding equations are implemented in the Phased Array System Toolbox by the functions: radareqpow, radareqrng, and radareqsnr. These functions and the equations on which they are based are valuable tools in radar system design and analysis.

\section*{Link Budget Calculation Using the Radar Equation}

This example shows how to compute the required peak transmit power using the radar equation. You implement a noncoherent detector with a monostatic radar operating at 5 GHz . Based on the noncoherent integration of \(101 \mu \mathrm{~s}\) pulses, you want to achieve a detection probability of 0.9 with a maximum false-alarm probability of \(10^{-6}\) for a target with a nonfluctuating radar cross section (RCS) of \(1 \mathrm{~m}^{2}\) at 30 km . The transmitter gain is 30 dB . Determine the required SNR at the receiver and use the radar equation to calculate the required peak transmit power.

Use Albersheim's equation to determine the required SNR for the specified detection and false-alarm probabilities
```

Pd = 0.9;
Pfa = le-6;
NumPulses = 10;
SNR = albersheim(Pd,Pfa,10)
SNR = 4.9904

```

The required SNR is approximately 5 dB . Use the function radareqpow to determine the required peak transmit power in watts.
```

tgtrng = 30e3;
fc = 5e9;
c = physconst('Lightspeed');
lambda = c/fc;
RCS = 1;
pulsedur = 1e-6;
G = 30;
Pt = radareqpow(lambda,tgtrng,SNR,pulsedur,'rcs',RCS,'gain',G)
Pt = 5.6485e+03

```

The required peak power is approximately 5.6 kW .

\section*{Maximum Detectable Range for a Monostatic Radar}

Assume that the minimum detectable SNR at the receiver of a monostatic radar operating at 1 GHz is 13 dB . Use the radar equation to determine the maximum detectable range for a target with a
nonfluctuating RCS of \(0.5 \mathrm{~m}^{2}\) if the radar has a peak transmit power of 1 MW . Assume the transmitter gain is 40 dB and the radar transmits a pulse that is \(0.5 \mu \mathrm{~s}\) in duration.
```

tau = 0.5e-6;
G = 40;
RCS = 0.5;
Pt = 1e6;
lambda = 3e8/1e9;
SNR = 13;
maxrng = radareqrng(lambda,SNR,Pt,tau,'rcs',RCS,'gain',G)
maxrng = 3.4516e+05

```

The maximum detectable range is approximately 345 km .

\section*{Output SNR at Receiver in Bistatic Radar}

Estimate the output SNR for a target with an RCS of \(1 \mathrm{~m}^{2}\). The radar is bistatic. The target is located 50 km from the transmitter and 75 km from the receiver. The radar operating frequency is 10 GHz . The transmitter has a peak transmit power of 1 MW with a gain of 40 dB . The pulse width is \(1 \mu \mathrm{~s}\). The receiver gain is 20 dB .
```

fc = 10e9;
lambda = physconst('LightSpeed')/10e9;
tau = 1e-6;
Pt = 1e6;
TxRvRng =[50e3 75e3];
Gain = [40 20];
snr = radareqsnr(lambda,TxRvRng,Pt,tau,'Gain',Gain)
snr = 9.0547

```

The estimated SNR is approximately 9 dB .

\section*{Display Vertical Coverage Diagram}

Display the vertical coverage diagram of an antenna transmitting at 100 MHz and placed 20 meters above the ground. Set the free-space range to 100 km . Use default plotting parameters.
```

freq = 100e6;
ant_height = 20;
rng-fs = 100;
[vcp, vcpangles] = radarvcd(freq,rng_fs,ant_height);
blakechart(vcp, vcpangles);

```


\section*{Compute Peak Power Using Radar Equation Calculator App}

The radarEquationCalculator App lets you determine key radar characteristics such as detection range, required peak transmit power, and SNR. The App works for monostatic and bistatic radars.

\section*{Open radarEquationCalculator App}

When you type radarEquationCalculator from the command line or select the app from the App Toolstrip, an interactive window opens. The default window shows a calculation of target range from SNR, power, and other parameters. You can then select various options to compute different radar parameters.
radarEquationCalculator
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{4 Radar Equation Calculator} & 回 & \(\Sigma\) \\
\hline \multicolumn{4}{|l|}{File Help} \\
\hline Calculation Type: & Target Range & & \(\checkmark\) \\
\hline \multicolumn{4}{|l|}{-Radar Specifications} \\
\hline Wavelength: & 0.3 & m & \(\checkmark\) \\
\hline Pulse Width: & 1 & \(\mu \mathrm{s}\) & \(\checkmark\) \\
\hline System Losses: & 0 & dB & \\
\hline Noise Temperature: & 290 & K & \\
\hline Target Radar Cross Section: & 1 & \(\mathrm{m}^{2}\) & \(\checkmark\) \\
\hline Configuration: & Monostatic & & \(\checkmark\) \\
\hline Gain: & 20 & dB & \\
\hline Peak Transmit Power: & 1 & kW & \(\checkmark\) \\
\hline SNR: 》 & 10 & dB & \\
\hline Target Range: & 10.32 & km & \(\checkmark\) \\
\hline
\end{tabular}

\section*{Compute Required Peak Transmit Power of Monostatic Radar}

As an example, use the app to compute the required peak transmit power for a monostatic radar to detect a large target at 100 km . The radar operates at 10 GHz with a 40 dB antenna gain. Set the probability of detection to 0.9 and the probability of false alarm to 0.0001 .

1 From the Calculation Type drop-down list, choose Peak Transmit Power
2 Set the Wavelength to 3 cm
3 Specify the Pulse Width as 2 microseconds
4 Assume total System Losses of 5 dB
5 Assuming the target is a large airplane, set Target Radar Cross Section value to 100 m 2
6 Choose Configuration as Monostatic
7 Set the Gain to be 40 dB
8 Open the SNR box
9 Specify the Probability of Detections as 0.9
10 Specify the Probability of False Alarm as 0.0001
Close the App window. Normally, you close the App using the close button.
```

hg = findall(0,'Name','Radar Equation Calculator');
close(hg)

```

You can see from this previously prepared screen shot that the required peak transmit power is . 2095 W.
```

im = imread('radarEquationExample_03.png');
figure('Position',[344 206 849 644])
image(im)
axis off
set(gca,'Position',[0.083 0.083 0.834 0.888])

```
\begin{tabular}{|c|c|c|c|}
\hline A Radar Equat on Cakulator & \multicolumn{3}{|r|}{듬} \\
\hline \multicolumn{4}{|l|}{「ile Itelp} \\
\hline Caculatior Type. & \multicolumn{3}{|l|}{Peak Tiaisinl Puwer *} \\
\hline \multicolumn{4}{|l|}{Radar Spscif cations} \\
\hline Wavelerg:h: & 3 & cm & - \\
\hline I'u se Width: & 2 & & \(\checkmark\) \\
\hline System Losecs: & 5 & cB & \\
\hline Nose Temperature: & 290 & K & \\
\hline Teigel Rada Ciuss Section. & 100 & \(\mathrm{m}^{2}\) & - \\
\hline Confg uration & \multicolumn{2}{|l|}{Morostatic} & \(\checkmark\) \\
\hline Gain: & 40 & \multicolumn{2}{|l|}{cB} \\
\hline Terget Range: & 10 & & - \\
\hline SNR \(<\) & 11.7627 & d3 & \\
\hline \multicolumn{4}{|l|}{Delection \(\mathrm{Spucc}^{\text {ficelijurs io }} \mathrm{SN}\) ?} \\
\hline Fiubeblily of Delection. & 0.9 & & \\
\hline I'robeb lity of telse Alarm: & 0.0001 & & \\
\hline Numbe o'Plses. & 1 & & \\
\hline Siverling Case Number. & & & \\
\hline Pæak Transmit Fower: & 0.0502095 & kW & - \\
\hline
\end{tabular}

\section*{Beamforming}
- "Beamforming Overview" on page 5-2
- "Conventional Beamforming" on page 5-6
- "Adaptive Beamforming" on page 5-11
- "Wideband Beamforming" on page 5-15
- "Time-Delay Beamforming of Microphone ULA Array" on page 5-21
- "Visualization of Wideband Beamformer Performance" on page 5-23
- "Fixed-Point HDL-Optimized Minimum-Variance Distortionless-Response (MVDR) Beamformer" on page 5-28

\section*{Beamforming Overview}
```

In this section...
"Conventional Beamforming" on page 5-2
"Optimal and Adaptive Beamforming" on page 5-3

```

Beamforming is the spatial equivalent of frequency filtering and can be grouped into two classes: data independent (conventional) and data-dependent (adaptive). All beamformers are designed to emphasize signals coming from some directions and suppress signals and noise arriving from other directions.

Phased Array System Toolbox provides nine different beamformers. This table summarizes the main properties of the beamformers.
\begin{tabular}{|l|l|l|l|}
\hline Beamformer Name & \begin{tabular}{l} 
Conventional or \\
Adaptive
\end{tabular} & Bandwidth & Processing Domain \\
\hline \begin{tabular}{l} 
phased. PhaseShiftB \\
eamformer
\end{tabular} & Conventional & Narrowband & Time domain \\
\hline \begin{tabular}{l} 
phased.TimeDelayBe \\
amformer
\end{tabular} & Conventional & Wideband & Time domain \\
\hline \begin{tabular}{l} 
phased.SubbandPhas \\
eShiftBeamformer
\end{tabular} & Conventional & Wideband & Frequency domain \\
\hline \begin{tabular}{l} 
phased.LCMVBeamfor \\
mer
\end{tabular} & Adaptive & Narrowband & Frequency domain \\
\hline \begin{tabular}{l} 
phased.MVDRBeamfor \\
mer
\end{tabular} & Adaptive & Narrowband & Frequency domain \\
\hline \begin{tabular}{l} 
phased. FrostBeamfo \\
rmer
\end{tabular} & Adaptive & Wideband & Time domain \\
\hline \begin{tabular}{l} 
phased.GSCBeamform \\
er
\end{tabular} & Adaptive & Wideband & Time domain \\
\hline \begin{tabular}{l} 
phased.TimeDelayLC \\
MVBeamformer
\end{tabular} & Adaptive & Wideband & Time domain \\
\hline \begin{tabular}{l} 
phased. SubbandMVDR \\
Beamformer
\end{tabular} & Adaptive & Wideband & Frequency domain \\
\hline
\end{tabular}

\section*{Conventional Beamforming}

Conventional beamforming, also called classical beamforming, is the easiest to understand. Conventional beamforming techniques include delay-and-sum beamforming, phase-shift beamforming, subband beamforming, and filter-and-sum beamforming. These beamformers are similar because the weights and parameters that define the beampattern are fixed and do not depend on the array input data. The weights are chosen to produce a specified array response to the signals and interference in the environment. A signal arriving at an array has different times of arrival at each sensor. For example, plane waves arriving at a linear array have a time delay that is a linear function of distance along the array. Delay-and-sum beamforming compensates for these delays by applying a reverse delay to each sensor. If the time delay is accurately computed, the signals from each sensor add constructively.

Finding the compensating delay at each sensor requires accurate knowledge of the sensor locations and signal direction. The delay-and-sum beamformer can be implemented in the frequency domain or in the time domain. When the signal is narrowband, time delay becomes a phase shift in the frequency domain and is implement by multiplying each sensor signal by a frequency-dependent compensatory phase shift. This algorithm is implemented in the phased. PhaseShiftBeamformer. For broadband signals, there are several approaches. One approach is to delay the signal in time by a discrete number of samples. A problem with this method is that the degree of resolution that you can distinguish is determined by the sampling rate of your data, because you cannot resolve delay differences less than the sampling interval. Because this technique only works if the sampling rate is high, you must increase the sampling frequency well beyond the Nyquist frequency so that the true delay is very close to a sample time. A second method interpolates the signal between samples. Time delay beamforming is implemented in phased.TimeDelayBeamformer. A third method Fourier transforms the signals to the frequency domain, applies a linear phase shift, and converts the signal back into the time domain. Phase-shift beamforming is performed at each frequency band (see phased.SubbandPhaseShiftBeamformer).

Beamforming is not limited to plane waves but can be applied even when there is wavefront curvature. In this case, the source lies in the near field. Perhaps the term beamforming is no longer appropriate. You can use the source-array geometry to compute the phase shift for each point in space and then apply this phase shift at each sensor element.

The advantage of a conventional beamformer is simplicity and ease of implementation. Another advantage is its robustness against pointing errors and signal direction errors. A disadvantage is its broad main lobe which decreases resolution of closely spaced sources or targets. A second disadvantage is that it has large sidelobes that allow interference sources to leak into the main beam.

\section*{Optimal and Adaptive Beamforming}

The second class of beamformers consists of the data-dependent beamformers. The terms optimal or adaptive beamformers are sometimes used for this class interchangeably but they are not quite the same. Optimal beamformers apply weights that are determined by optimizing some quantity. The MVDR beamformer determines the beamforming weights, \(w\), by maximizing the signal-to-noise +interference ratio of the array output
\[
\frac{\left|\mathbf{w}^{\prime} \mathbf{s}\right|^{2}}{\mathbf{w}^{\prime} \mathbf{R}_{\mathbf{n}} \mathbf{w}}=A^{2} \frac{\left|\mathbf{w}^{\prime} \mathbf{a}\right|^{2}}{\mathbf{w}^{\prime} \mathbf{R}_{\mathbf{n}} \mathbf{w}}
\]
where \(s\) represents the signal values at the sensors, \(a\) represents the source steering vector, and \(A^{2}\) represents the source power at the array. \(R_{n}\) is the noise+interference covariance matrix. Because the SNR is invariant under any scale factor applied to the weights, an equivalent formulation of this criterion is to minimize the noise output \(w^{\prime} R_{. n} w\) subject to a constraint
\[
\mathbf{w}^{\prime} \mathbf{R}_{\mathbf{n}} \mathbf{w} \quad \text { s.t. } \quad \mathbf{w}^{\prime} \mathbf{a}=1
\]

The solution of this equation is
\[
\mathbf{w}_{\mathrm{opt}}=\frac{\mathbf{R}_{\mathrm{n}}-\mathbf{1} \mathbf{a}}{\mathbf{a}^{\prime} \mathbf{R}_{\mathrm{n}}-\mathbf{1} \mathbf{a}}
\]
and yields the minimum variance distortionless response (MVDR) beamformer. Because of the constraint, beamformer preserves the desired signal while minimizing contributions to the array output due to noise and interference. The MVDR beamformer is implemented in
phased.MVDRBeamformer. A broadband version is implemented in phased.SubbandMVDRBeamformer.

There are several advantages to the MVDR beamformer.
- The beamformer incorporates the noise and interference into an optimal solution.
- The beamformer has higher spatial resolution than a conventional beamformer.
- The beamformer puts nulls in the direction of any interference sources.
- Sidelobes are smaller and smoother.

There are two major disadvantages to the MVDR beamformer. The MVDR beamformer is sensitive to errors in either the array parameters or arrival direction. The MVDR beamformer is susceptible to self-nulling. In addition, trying to use MVDR as an adaptive beamformer requires a matrix inversion every time the noise and interference statistics change. When there are many array elements, the inversion can be computationally expensive.

In practical applications, an accurate steering vector and an accurate covariance matrix are not always available. Generally, all that is available is the sampled covariance matrix. This deficiency can lead to both inadequate interference suppression and distortion of the desired signal. In this case, the true signal direction is slightly off from the beam pointing direction. Then the actual signal is treated as interference.

However it often turns out that the noise is not separable from the signal and it is impossible to determine \(R_{\mathrm{n}}\). In that case, you can estimate a sample covariance matrix from the data.
\[
\widehat{\mathbf{R}}_{\mathbf{x}}=\frac{1}{K_{k}} \sum_{k=1}^{K} x(k) x^{\prime}(k)
\]
and minimizes \(w^{\prime} R_{x} w\) instead. Minimizing this quantity leads to the minimum power distortionless response (MPDR) beamformer. If the data vector, \(x\), contains the signal and the estimated data covariance matrix is perfect and the steering vector of the desired signal is known exactly, the MPDR beamformer is equivalent to the MVDR beamformer. However, MPDR degrades more severely when \(R_{\chi}\) is estimated from insufficient data or the signal arrival vector is not known precisely.

Rewrite the direction constraint in the form \(a^{\prime} w=1\) by transposing both sides. This equivalent form suggests that it possible to include multiple constraints by using a matrix constraint \(C w=d\) where \(C\) is now a constraint matrix and \(d\) represents the signal gains due to the constraints. This is the form used in the linear constraint minimum variance (LCMV) beamformer. The LCMV beamformer is a generalization of MVDR beamforming and is implemented in phased. LCMVBeamformer and phased.TimeDelayLCMVBeamformer. There are several different approaches to specifying constraints such as amplitude and derivative constraints. You can, for example, specify weights that suppress interfering signals arriving from a particular direction while passing signals from a different direction without distortion. The optimal LCMV weights are determined by the equation
\[
\mathbf{w}_{\mathrm{opt}}=\mathbf{R}_{\mathrm{n}}-\mathbf{1} \mathbf{C}^{\prime}\left(\mathbf{C R}_{\mathrm{n}}-\mathbf{1} \mathbf{C}^{\prime}\right)^{-\mathbf{1}} \mathbf{d}
\]

The advantages and disadvantages of the MVDR beamformer also apply to the LCMV beamformer.
While MVDR and LCMV are adaptive in principle, re-computation of the weights requires the inversion of a potentially large covariance matrix when the array has many elements. The Frost and generalized sidelobe cancelers are reformulations of LCMV that convert the constrained optimization into minimizing an unconstrained form and then compute the weights recursively. This approach
removes any need to invert a covariance matrix. See phased. FrostBeamformer and phased.GSCBeamformer.

\section*{Conventional Beamforming}

\section*{In this section...}
"Uses for Beamformers" on page 5-6
"Support for Conventional Beamforming" on page 5-6
"Narrowband Phase Shift Beamformer For a ULA" on page 5-6

\section*{Uses for Beamformers}

You can use a beamformer to spatially filter the arriving signals. Accentuating or attenuating signals that arrive from specific directions helps you distinguish between signals of interest and interfering signals from other directions.

\section*{Support for Conventional Beamforming}

You can implement a narrowband phase shift beamformer using phased. PhaseShiftBeamformer. When you use this object, you must specify these aspects of the situation you are simulating:
- Sensor array
- Signal propagation speed
- System operating frequency
- Beamforming direction

For wideband beamformers, see "Wideband Beamforming" on page 5-15.

\section*{Narrowband Phase Shift Beamformer For a ULA}

This example shows how to create and beamform a 10 -element ULA. Assume the carrier frequency is 1 GHz . Set the array element spacing to be one-half the carrier wavelength.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call to the function with the equivalent step syntax. For example, replace my0bject ( \(x\) ) with step (myObject,x).
fc = 1e9;
lambda = physconst('LightSpeed')/fc;
array = phased.ULA('NumElements',10,'ElementSpacing',lambda/2);
By default, the ULA elements are isotropic antennas created by the phased. IsotropicAntennaElement System object \({ }^{\mathrm{TM}}\). Set the frequency range of the antenna elements so that the carrier frequency lies within the operating range.
```

array.Element.FrequencyRange = [8e8 1.2e9];

```

Simulate a test signal. For this example, use a simple rectangular pulse.
```

t = linspace(0,0.3,300)';
testsig = zeros(size(t));
testsig(201:205) = 1;

```

Assume the rectangular pulse is incident on the ULA from an angle of \(30^{\circ}\) azimuth and \(0^{\circ}\) elevation. Use the collectPlaneWave function of the ULA System object to simulate reception of the pulse waveform from the specified angle.
```

angle of arrival = [30;0];
x = collectPlaneWave(array,testsig,angle_of_arrival,fc);

```

The signal \(x\) is a matrix with ten columns. Each column represents the received signal at one of the array elements.

Add complex-valued Gaussian noise to the signal x. Reset the default random number stream for reproducible results. Plot the magnitudes of the received pulses at the first four elements of the ULA.
```

rng default
npower = 0.5;
x = x + sqrt(npower/2)*(randn(size(x)) + li*randn(size(x)));
subplot(221)
plot(t,abs(x(:,1)))
title('Element 1 (magnitude)')
axis tight
ylabel('Magnitude')
subplot(222)
plot(t,abs(x(:,2)))
title('Element 2 (magnitude)')
axis tight
ylabel('Magnitude')
subplot(223)
plot(t,abs(x(:,3)))
title('Element 3 (magnitude)')
axis tight
xlabel('Seconds')
ylabel('Magnitude')
subplot(224)
plot(t,abs(x(:,4)))
title('Element 4 (magnitude)')
axis tight
xlabel('Seconds')
ylabel('Magnitude')

```


Construct a phase-shift beamformer. Set the WeightsOutputPort property to true to output the spatial filter weights that point the beamformer to the angle of arrival.
beamformer = phased.PhaseShiftBeamformer('SensorArray', array,...
'OperatingFrequency',1e9,'Direction' ,angle_of_arrival,...
'Weights0utputPort',true);
Execute the phase shift beamformer to compute the beamformer output and to compute the applied weights.
[y,w] = beamformer(x);
Plot the magnitude of the output waveform along with the noise-free original waveform for comparison.
```

subplot(211)
plot(t,abs(testsig))
axis tight
title('Original Signal')
ylabel('Magnitude')
subplot(212)
plot(t,abs(y))
axis tight
title('Received Signal with Beamforming')
ylabel('Magnitude')
xlabel('Seconds')

```


To examine the effect of beamforming weights on the array response, plot the array normalized power response with and without beamforming weights.
```

azang = -180:30:180;
subplot(211)
pattern(array,fc,[-180:180],0,'CoordinateSystem','rectangular',...
'Type','powerdb','PropagationSpeed',physconst('LightSpeed'))
set(gca,'xtick',azang);
title('Array Response without Beamforming Weights')
subplot(212)
pattern(array,fc,[-180:180],0,'CoordinateSystem','rectangular',...
'Type','powerdb','PropagationSpeed',physconst('LightSpeed'),...
'Weights',w)
set(gca,'xtick',azang);
title('Array Response with Beamforming Weights')

```


\section*{See Also}

\section*{Related Examples}
- "Conventional and Adaptive Beamformers" on page 17-188

\section*{Adaptive Beamforming}

\author{
In this section... \\ "Benefits of Adaptive Beamforming" on page 5-11 \\ "Support for Adaptive Beamforming" on page 5-11 \\ "Nulling with LCMV Beamformer" on page 5-11
}

\section*{Benefits of Adaptive Beamforming}
"Narrowband Phase Shift Beamformer For a ULA" on page 5-6 uses weights chosen independent of any data received by the array. The weights in the narrowband phase shift beamformer steer the array response in a specified direction. However, they do not account for any interference scenarios. As a result, these conventional beamformers are susceptible to interference signals. Such interference signals can be a particular problem if they occur at sidelobes of the array response.

By contrast, adaptive, or statistically optimum, beamformers can account for interference signals. An adaptive beamformer algorithm chooses the weights based on the statistics of the received data. For example, an adaptive beamformer can improve the SNR by using the received data to place nulls in the array response. These nulls are placed at angles corresponding to the interference signals.

\section*{Support for Adaptive Beamforming}

Phased Array System Toolbox software provides these adaptive beamformers:
- Linearly constrained minimum variance (LCMV) beamformers
- Minimum variance distortionless response (MVDR) beamformers
- Frost beamformers

\section*{Nulling with LCMV Beamformer}

This example shows how to use an LCMV beamformer to point a null of the array response in the direction of an interfering source. The array is a 10 -element uniform linear array (ULA). By default, the ULA elements are isotropic antennas created by the phased. IsotropicAntennaElement System object \({ }^{\mathrm{TM}}\). Set the frequency range of the antenna elements so that the carrier frequency lies within the operating range. The carrier frequency is 1 GHz .
```

fc = 1e9;
lambda = physconst('LightSpeed')/fc;
array = phased.ULA('NumElements',10,'ElementSpacing',lambda/2);
array.Element.FrequencyRange = [8e8 1.2e9];

```

Simulate a test signal using a simple rectangular pulse.
```

t = linspace(0,0.3,300)';
testsig = zeros(size(t));
testsig(201:205) = 1;

```

Assume the rectangular pulse is incident on the ULA from an angle of \(30^{\circ}\) azimuth and \(0^{\circ}\) elevation. Use the collectPlaneWave function of the ULA System object to simulate reception of the pulse waveform from the incident angle.
angle_of_arrival = [30;0];
\(x=\) collēctPlaneWave(array,testsig,angle_of_arrival,fc);
The signal x is a matrix with ten columns. Each column represents the received signal at one of the array elements.

Construct a conventional phase-shift beamformer. Set the WeightsOutputPort property to true to output the spatial filter weights.
```

convbeamformer = phased.PhaseShiftBeamformer('SensorArray',array,...
'OperatingFrequency',1e9,'Direction',angle_of_arrival,...
'WeightsOutputPort',true);

```

Add complex-valued white Gaussian noise to the signal x. Set the default random number stream for reproducible results.
```

rng default
npower = 0.5;
x = x + sqrt(npower/2)*(randn(size(x)) + li*randn(size(x)));

```

Create an interference source using the phased.BarrageJammer System object. Specify the barrage jammer to have an effective radiated power of 10 W . The interference signal from the barrage jammer is incident on the ULA from an angle of \(120^{\circ}\) azimuth and \(0^{\circ}\) elevation. Use the collectPlaneWave function of the ULA System object to simulate reception of the jammer signal.
```

jammer = phased.BarrageJammer('ERP',10,'SamplesPerFrame',300);
jamsig = jammer();
jammer_angle = [120;0];
jamsig = collectPlaneWave(array,jamsig,jammer_angle,fc);

```

Add complex-valued white Gaussian noise to simulate noise contributions not directly associated with the jamming signal. Again, set the default random number stream for reproducible results. This noise power is 0 dB below the jammer power. Beamform the signal using a conventional beamformer.
```

noisePwr = 1e-5;
rng(2008);
noise = sqrt(noisePwr/2)*...
(randn(size(jamsig)) + 1j*randn(size(jamsig)));
jamsig = jamsig + noise;
rxsig = x + jamsig;
[yout,w] = convbeamformer(rxsig);

```

Implement the adaptive LCMV beamformer using the same ULA array. Use the target-free data, jamsig, as training data. Output the beamformed signal and the beamformer weights.
```

steeringvector = phased.SteeringVector('SensorArray',array,...
'PropagationSpeed',physconst('LightSpeed'));
LCMVbeamformer = phased.LCMVBeamformer('DesiredResponse',1,···.
'TrainingInputPort',true,'WeightsOutputPort',true);
LCMVbeamformer.Constraint = steeringvector(fc,angle_of_arrival);
LCMVbeamformer.DesiredResponse = 1;
[yLCMV,wLCMV] = LCMVbeamformer(rxsig,jamsig);

```

Plot the conventional beamformer output and the adaptive beamformer output.
```

subplot(211)
plot(t,abs(yout))
axis tight

```
```

title('Conventional Beamformer')
ylabel('Magnitude')
subplot(212)
plot(t,abs(yLCMV))
axis tight
title('LCMV (Adaptive) Beamformer')
xlabel('Seconds')
ylabel('Magnitude')

```


The adaptive beamformer significantly improves the SNR of the rectangular pulse at 0.2 s .
Using conventional and LCMV weights, plot the responses for each beamformer.
```

subplot(211)
pattern(array,fc,[-180:180],0,'PropagationSpeed',physconst('LightSpeed'),...
'CoordinateSystem','rectangular','Type','powerdb','Normalize',true,...
'Weights',w)
title('Array Response with Conventional Beamforming Weights');
subplot(212)
pattern(array,fc,[-180:180],0,'PropagationSpeed',physconst('LightSpeed'),...)
'CoordinateSystem','rectangular','Type','powerdb','Normalize',true,...
'Weights',wLCMV)
title('Array Response with LCMV Beamforming Weights');

```


The adaptive beamform places a null at the arrival angle of the interference signal, \(120^{\circ}\).

\section*{See Also}
phased.FrostBeamformer|phased.LCMVBeamformer|phased.MVDRBeamformer

\section*{Related Examples}
- "Conventional and Adaptive Beamformers" on page 17-188

\section*{Wideband Beamforming}

\author{
In this section... \\ "Support for Wideband Beamforming" on page 5-15 \\ "Time-Delay Beamforming of Microphone ULA Array" on page 5-15 \\ "Visualization of Wideband Beamformer Performance" on page 5-16
}

\section*{Support for Wideband Beamforming}

Beamforming achieved by multiplying the sensor input by a complex exponential with the appropriate phase shift only applies for narrowband signals. In the case of wideband, or broadband, signals, the steering vector is not a function of a single frequency. Wideband processing is commonly used in microphone and acoustic applications.

Phased Array System Toolbox software provides conventional and adaptive wideband beamformers. They include:
- phased.FrostBeamformer
- phased.SubbandPhaseShiftBeamformer
- phased.TimeDelayBeamformer
- phased.TimeDelayLCMVBeamformer

See "Acoustic Beamforming Using a Microphone Array" on page 17-172 for an example of using wideband beamforming to extract speech signals in noise.

\section*{Time-Delay Beamforming of Microphone ULA Array}

This example shows how to perform wideband conventional time-delay beamforming with a microphone array of omnidirectional elements. Create an acoustic (pressure wave) chirp signal. The chirp signal has a bandwidth of 1 kHz and propagates at a speed of \(340 \mathrm{~m} / \mathrm{s}\) at ground level.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call to the function with the equivalent step syntax. For example, replace my0bject(x) with step(my0bject,x).
```

c = 340;
t = linspace(0,1,50e3)';
sig = chirp(t,0,1,1000);

```

Collect the acoustic chirp with a ten-element ULA. Use omnidirectional microphone elements spaced less than one-half the wavelength at the 50 kHz sampling frequency. The chirp is incident on the ULA with an angle of \(60^{\circ}\) azimuth and \(0^{\circ}\) elevation. Add random noise to the signal.
```

microphone = phased.OmnidirectionalMicrophoneElement(...
'FrequencyRange',[20 20e3]);
array = phased.ULA('Element',microphone,'NumElements',10,...
'ElementSpacing',0.01);
collector = phased.WidebandCollector('Sensor',array,'SampleRate',5e4,...
'PropagationSpeed',c,'ModulatedInput',false);
sigang = [60;0];

```
```

rsig = collector(sig,sigang);
rsig = rsig + 0.1*randn(size(rsig));

```

Apply a wideband conventional time-delay beamformer to improve the SNR of the received signal.
```

beamformer = phased.TimeDelayBeamformer('SensorArray',array,...
'SampleRate',5e4,'PropagationSpeed',c,'Direction',sigang);
y = beamformer(rsig);
subplot(2,1,1)
plot(t(1:5000),real(rsig(1:5e3,5)))
axis([0,t(5000),-0.5,1])
title('Signal (real part) at the 5th element of the ULA')
subplot(2,1,2)
plot(t(1:5000),real(y(1:5e3)))
axis([0,t(5000),-0.5,1])
title('Signal (real part) with time-delay beamforming')
xlabel('Seconds')

```

Signal (real part) at the 5th element of the ULA


Signal (real part) with time-delay beamforming


\section*{Visualization of Wideband Beamformer Performance}

This example shows how to plot the response of an acoustic microphone element and an array of microphone elements to validate the performance of a beamformer. The array must maintain an acceptable array pattern throughout the bandwidth.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call to the function with the equivalent step syntax. For example, replace my0bject (x) with step (myObject,x).

Create an 11-element uniform linear array (ULA) of microphones using cosine antenna elements as microphones. The phased. CosineAntennaElement System object \({ }^{\text {tm }}\) is general enough to be used as a microphone element as well because it creates or receives a scalar field. You need to change the response frequencies to the audible range. In addition make sure the PropagationSpeed parameter in the array pattern methods are set to the speed of sound in air.
```

c = 340;
freq = [1000 2750];
fc = 2000;
numels = 11;
microphone = phased.CosineAntennaElement('FrequencyRange',freq);
array = phased.ULA('NumElements',numels,...
'ElementSpacing',0.5*c/fc,'Element',microphone);

```

Plot the response pattern of the microphone element over a set of frequencies.
```

plotFreq = linspace(min(freq),max(freq),15);
pattern(microphone,plotFreq,[-180:180],0,'CoordinateSystem','rectangular',...
'PlotStyle','waterfall','Type','powerdb')

```

Azimuth Cut (elevation angle \(=0.0^{\circ}\) )


This plot shows that the element pattern is constant over the entire bandwidth.
Plot the response pattern of an 11-element array over the same set of frequencies.
```

pattern(array,plotFreq,[-180:180],0,'CoordinateSystem','rectangular',...

```
'PlotStyle', 'waterfall','Type','powerdb', 'PropagationSpeed ', c)


This plot shows that the element pattern mainlobe decreases with frequency.
Apply a subband phase shift beamformer to the array. The direction of interest is \(30^{\circ}\) azimuth and \(0^{\circ}\) elevation. There are 8 subbands.
```

direction = [30;0];
numbands = 8;
beamformer = phased.SubbandPhaseShiftBeamformer('SensorArray',array,...
'Direction',direction,...
'OperatingFrequency',fc,'PropagationSpeed',c,...
'SampleRate',1e3,...
'Weights0utputPort',true,'Subbands0utputPort',true,...
'NumSubbands',numbands);
rx = ones(numbands,numels);
[y,w,centerfreqs] = beamformer(rx);

```

Plot the response pattern of the array using the weights and center frequencies from the beamformer.
```

pattern(array,centerfreqs.',[-180:180],0,'Weights',w,'CoordinateSystem','rectangular',...

```
    'PlotStyle', 'waterfall','Type', 'powerdb','PropagationSpeed' , c)

\section*{Azimuth Cut (elevation angle \(=0.0^{\circ}\) )}


The above plot shows the beamformed pattern at the center frequency of each subband.
Plot the response pattern at three frequencies in two-dimensions.
```

centerfreqs = fftshift(centerfreqs);
w = fftshift(w,2);
idx = [1,5,8];
pattern(array,centerfreqs(idx).',[-180:180],0,'Weights',w(:,idx),'CoordinateSystem','rectangular
'PlotStyle','overlay','Type','powerdb','PropagationSpeed ',c)
legend('Location','South')

```


This plot shows that the main beam direction remains constant while the beamwidth decreases with frequency.

\section*{Time-Delay Beamforming of Microphone ULA Array}

This example shows how to perform wideband conventional time-delay beamforming with a microphone array of omnidirectional elements. Create an acoustic (pressure wave) chirp signal. The chirp signal has a bandwidth of 1 kHz and propagates at a speed of \(340 \mathrm{~m} / \mathrm{s}\) at ground level.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call to the function with the equivalent step syntax. For example, replace my0bject(x) with step(my0bject,x).
```

c = 340;
t = linspace(0,1,50e3)';
sig = chirp(t,0,1,1000);

```

Collect the acoustic chirp with a ten-element ULA. Use omnidirectional microphone elements spaced less than one-half the wavelength at the 50 kHz sampling frequency. The chirp is incident on the ULA with an angle of \(60^{\circ}\) azimuth and \(0^{\circ}\) elevation. Add random noise to the signal.
```

microphone = phased.OmnidirectionalMicrophoneElement(...
'FrequencyRange',[20 20e3]);
array = phased.ULA('Element',microphone,'NumElements',10,...
'ElementSpacing',0.01);
collector = phased.WidebandCollector('Sensor',array,'SampleRate',5e4,...
'PropagationSpeed',c,'ModulatedInput',false);
sigang = [60;0];
rsig = collector(sig,sigang);
rsig = rsig + 0.1*randn(size(rsig));

```

Apply a wideband conventional time-delay beamformer to improve the SNR of the received signal.
```

beamformer = phased.TimeDelayBeamformer('SensorArray',array,...
'SampleRate',5e4,'PropagationSpeed',c,'Direction',sigang);
y = beamformer(rsig);
subplot(2,1,1)
plot(t(1:5000),real(rsig(1:5e3,5)))
axis([0,t(5000),-0.5,1])
title('Signal (real part) at the 5th element of the ULA')
subplot(2,1,2)
plot(t(1:5000),real(y(1:5e3)))
axis([0,t(5000),-0.5,1])
title('Signal (real part) with time-delay beamforming')
xlabel('Seconds')

```


\section*{Visualization of Wideband Beamformer Performance}

This example shows how to plot the response of an acoustic microphone element and an array of microphone elements to validate the performance of a beamformer. The array must maintain an acceptable array pattern throughout the bandwidth.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call to the function with the equivalent step syntax. For example, replace my0bject (x) with step (my0bject,x).

Create an 11-element uniform linear array (ULA) of microphones using cosine antenna elements as microphones. The phased. CosineAntennaElement System object \({ }^{\mathrm{tm}}\) is general enough to be used as a microphone element as well because it creates or receives a scalar field. You need to change the response frequencies to the audible range. In addition make sure the PropagationSpeed parameter in the array pattern methods are set to the speed of sound in air.
```

c = 340;
freq = [1000 2750];
fc = 2000;
numels = 11;
microphone = phased.CosineAntennaElement('FrequencyRange',freq);
array = phased.ULA('NumElements',numels,...
'ElementSpacing',0.5*c/fc,'Element',microphone);

```

Plot the response pattern of the microphone element over a set of frequencies.
```

plotFreq = linspace(min(freq),max(freq),15);
pattern(microphone,plotFreq,[-180:180],0,'CoordinateSystem','rectangular',...
'PlotStyle','waterfall','Type','powerdb')

```


This plot shows that the element pattern is constant over the entire bandwidth.
Plot the response pattern of an 11-element array over the same set of frequencies.
```

pattern(array,plotFreq,[-180:180],0,'CoordinateSystem','rectangular',...
'PlotStyle','waterfall','Type','powerdb','PropagationSpeed', c)

```

Azimuth Cut (elevation angle \(=0.0^{\circ}\) )


This plot shows that the element pattern mainlobe decreases with frequency.
Apply a subband phase shift beamformer to the array. The direction of interest is \(30^{\circ}\) azimuth and \(0^{\circ}\) elevation. There are 8 subbands.
```

direction = [30;0];
numbands = 8;
beamformer = phased.SubbandPhaseShiftBeamformer('SensorArray',array,...
'Direction',direction,...
'OperatingFrequency',fc,'PropagationSpeed ',c,...
'SampleRate',1e3,...
'Weights0utputPort',true,'Subbands0utputPort',true,...
'NumSubbands',numbands);
rx = ones(numbands,numels);
[y,w,centerfreqs] = beamformer(rx);

```

Plot the response pattern of the array using the weights and center frequencies from the beamformer.
```

pattern(array,centerfreqs.',[-180:180],0,'Weights',w,'CoordinateSystem','rectangular',...
'PlotStyle','waterfall','Type','powerdb','PropagationSpeed', c)

```


The above plot shows the beamformed pattern at the center frequency of each subband.
Plot the response pattern at three frequencies in two-dimensions.
```

centerfreqs = fftshift(centerfreqs);
w = fftshift(w,2);
idx = [1,5,8];
pattern(array,centerfreqs(idx).',[-180:180],0,'Weights',w(:,idx),'CoordinateSystem','rectangular
'PlotStyle','overlay','Type','powerdb','PropagationSpeed', c)
legend('Location','South')

```


This plot shows that the main beam direction remains constant while the beamwidth decreases with frequency.

\section*{Fixed-Point HDL-Optimized Minimum-Variance DistortionlessResponse (MVDR) Beamformer}

This example shows how to implement a fixed-point HDL-optimized minimum-variance distortionlessresponse (MVDR) beamformer. For more information on beamformers, see "Conventional and Adaptive Beamformers" on page 17-256.

\section*{MVDR Objective}

The MVDR beamformer preserves the gain in the direction of arrival of a desired signal and attenuates interference from other directions [1], [2].

Given readings from a sensor array, such as the uniform linear array (ULA) in the following diagram, form data matrix \(A\) from samples of the array, where \(a(t)\) is an \(n\)-by- 1 column vector of readings from the array sampled at time \(t\), and \(a(t)^{H}\) is one row of matrix \(A\). Many more samples are taken than there are elements in the array. This results in the number of rows in \(A\) being much greater than the number of columns. An estimate of the covariance matrix is \(A^{H} A\), where \(A^{H}\) is the Hermitian or complex-conjugate transpose of \(A\).


Compute the MVDR beamformer response by solving the following equation for \(x\), where \(b\) is a steering vector pointing in the direction of the desired signal.
\[
\left(A^{H} A\right) x=b
\]

The MVDR weight vector \(w\) is computed from \(x\) and \(b\) using the following equation, which normalizes \(x\) to preserve the gain in the direction of arrival of the desired signal.
\[
w=\frac{x}{b^{H} x}
\]

The MVDR system response is the inner product between the MVDR weight vector \(w\) and a current sample from the sensor array \(a(t)\).
\[
y=w^{H} a(t)
\]

\section*{HDL-Optimized MVDR}

The three equations in the previous section are implemented by the three main blocks in the following model. The rate changes give the matrix solve additional clock cycles to update before the next input sample. The number of clock cycles between a valid input and when the complex matrix solve block is ready is twice its input wordlength to allow time for CORDIC iterations, plus 15 cycles for internal delays.
```

load_system('MVDRBeamformerHDLOptimizedModel');
open_system('MVDRBeamformerHDLOptimizedModel/MVDR - HDL Optimized')

```
Warning: Cannot find library called 'embsystolicmatrixops'. To use this
library, install <a
href="matlab:com.mathworks.addons.AddonsLauncher.showDetailPageInExplorerFor('P0', 'A0_MODEL_RP')
Designer</a>.
Warning: Cannot find library called 'embreciprocals'. To use this library,
install <a
href="matlab:com.mathworks.addons.AddonsLauncher.showDetailPageInExplorerFor('P0', 'A0_MODEL_RP')
Designer</a>.


Instead of forming data matrix \(A\) and computing the Cholesky factorization of covariance matrix \(A^{H} A\), the upper-triangular matrix of the QR decomposition of \(A\) is computed directly and updated as each data vector \(a(t)\) streams in from the sensor array. Because the data is updated indefinitely, a forgetting factor is applied after each factorization. To integrate with an equivalent of a matrix of \(m\) rows, the forgetting factor \(\alpha\) should be set to
\[
\alpha=\exp (-1 /(2 m)) .
\]

This example simulates the equivalent of a matrix with \(m=300\) rows, so the forgetting factor is set to 0.9983 .

The Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting
Factor block is implemented using the method found in [3]. The upper-triangular matrix \(R\) from the QR decomposition of \(A\) is identical to the Cholesky factorization of \(A^{H} A\) except the signs of values on the diagonal. Solving the matrix equation \(\left(A^{H} A\right) x=b\) by computing the Cholesky factorization of \(A^{H} A\) is not as efficient or as numerically sound as computing the QR decomposition of \(A\) directly [4].

\section*{Run Model}

Open and simulate the model.
open_system('MVDRBeamformerHDLOptimizedModel')



As the model is simulating, you can adjust the signal direction, steering angle and noise directions by dragging the sliders, or by editing the constant values.

When the signal direction and steering angle are aligned as indicated by the blue and green lines, you can see that the beam pattern has a gain of 0 dB . The noise sources are nulled as indicated by the red lines.


The desired pulse appears when the noise sources are nulled. This example simulates with the same latency as the hardware, so you can see the signal settle over time as the simulation starts and when the directions are changed.


\section*{Set Parameters}

The parameters for the beamformer are set in the model workspace. You can modify the parameters by editing and running the setMVDRExampleModelWorkspace function.

\section*{References}
[1] V. Behar et al. "Parameter Optimization of the adaptive MVDR QR-based beamformer for jamming and multipath supression in GPS/GLONASS receivers". In: Proc. 16th Saint Petersburg International Conference on Integrated Navigation systems. Saint Petersburg, Russia, May 2009, pp. 325--334.
[2] Jack Capon. "High-resolution frequency-wavenumber spectrum analysis". In: vol. 57. 1969, pp. 1408-1418.
[3] C.M. Rader. "VLSI Systolic Arrays for Adaptive Nulling". In: IEEE Signal Processing Magazine (July 1996), pp. 29--49.
[4] Charles F. Van Loan. Introduction to Scientific Computing: A Matrix-Vector Approach Using Matlab. Second edition. Prentice-Hall, 2000. isbn: 0-13-949157-0.

\section*{Direction-of-Arrival Estimation}
- "Beamscan Direction-of-Arrival Estimation" on page 6-2
- "Super-Resolution DOA Estimation" on page 6-4
- "MUSIC Super-Resolution DOA Estimation" on page 6-7
- "Target Tracking Using Sum-Difference Monopulse Radar" on page 6-12

\section*{Beamscan Direction-of-Arrival Estimation}

This example shows how to use the nonparametric beamscan technique to estimate the directions of arrival (DOA) of two signals. The beamscan algorithm estimates the DOAs by scanning the array beam over a region of interest. The algorithm computes the output power for each beamscan angle and identifies the maxima as the DOA estimates.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call to the function with the equivalent step syntax. For example, replace my0bject (x) with step (my0bject,x).

Construct a uniform linear array (ULA) consisting of ten isotropic antenna elements. The carrier frequency of the incoming narrowband sources is 1 GHz .
```

fc = 1e9;
lambda = physconst('LightSpeed')/fc;
antenna = phased.IsotropicAntennaElement('FrequencyRange',[8e8 1.2e9]);
array = phased.ULA('Element',antenna,'NumElements',10,'ElementSpacing',lambda/2);

```

The incident wavefield consists of linear FM pulses from two sources. The DOAs of the two sources are \(30^{\circ}\) azimuth and \(60^{\circ}\) azimuth. Both sources have elevation angles of \(0^{\circ}\).
```

waveform = phased.LinearFMWaveform('SweepBandwidth',1e5,...
'PulseWidth',5e-6,'OutputFormat','Pulses','NumPulses',1);
sig1 = waveform();
sig2 = sig1;
ang1 = [30; 0];
ang2 = [60;0];
arraysig = collectPlaneWave(array,[sig1 sig2],[ang1 ang2],fc);
rng default
npower = 0.01;
noise = sqrt(npower/2)*...
(randn(size(arraysig)) + li*randn(size(arraysig)));
rxsig = arraysig + noise;

```

Implement a beamscan DOA estimator. Scan the azimuth angles from \(-90^{\circ}\) to \(90^{\circ}\). Output the DOA estimates, and plot the spatial spectrum. The locations of the two largest peaks of the spectrum identify the DOAs of the signals.
```

estimator = phased.BeamscanEstimator('SensorArray',array,...
'OperatingFrequency',fc,'ScanAngles',-90:90,...
'DOAOutputPort',true,'NumSignals',2);
[y,sigang] = estimator(rxsig);
disp(sigang)
64 28

```

Plot the spatial spectrum as a function of broadside angle.
```

plotSpectrum(estimator)

```


\section*{See Also}

\section*{Related Examples}
- "Super-Resolution DOA Estimation" on page 6-4

\section*{Super-Resolution DOA Estimation}

This example shows how to estimate angles of arrival from two separate signal sources when both angles fall within the main lobe of the array response a uniform linear array (ULA). In this case, a beamscan DOA estimator cannot resolve the two sources. However, a super-resolution DOA estimator using the root MUSIC algorithm is able to do so.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call to the function with the equivalent step syntax. For example, replace myObject (x) with step (my0bject,x).

Plot the array response of the ULA. Zoom in on the main lobe.
\(\mathrm{fc}=1 \mathrm{e} 9\);
lambda = physconst('LightSpeed')/fc;
array = phased.ULA('NumElements',10,'ElementSpacing',lambda/2);
array.Element.FrequencyRange = [8e8 1.2e9];
plotResponse(array,fc,physconst('LightSpeed'))
axis([-25 25-30 0]);


Receive two signal sources with DOAs separated by \(10^{\circ}\)
ang1 \(=\) [30; 0];
ang2 = [40; 0];
Nsnapshots = 1000;
rng default
```

npower = 0.01;
rxsig = sensorsig(getElementPosition(array)/lambda,...
Nsnapshots,[ang1 ang2],npower);

```

Estimate the directions of arrival using the beamscan estimator. Because both DOAs fall inside the main lobe of the array response, the beamscan DOA estimator cannot resolve them as separate sources.
```

beamscanestimator = phased.BeamscanEstimator('SensorArray',array,...
'OperatingFrequency',fc,'ScanAngles',-90:90,...
'DOAOutputPort',true,'NumSignals',2);
[~,sigang] = beamscanestimator(rxsig);
plotSpectrum(beamscanestimator)

```

Beamscan Spatial Spectrum


Use the super-resolution DOA estimator to estimate the two directions. This estimator offers better resolution than the nonparametric beamscan estimator.
```

MUSICestimator = phased.RootMUSICEstimator('SensorArray',array,...
'OperatingFrequency',fc,'NumSignalsSource','Property',...
'NumSignals',2,'ForwardBackwardAveraging',true);
doa_est = MUSICestimator(rxsig)
doa_est = 1\times2
40.0091 30.0048

```

This estimator correctly identifies the two distinct directions of arrival.

\section*{See Also}
phased.RootMUSICEstimator

\section*{Related Examples}
- "Beamscan Direction-of-Arrival Estimation" on page 6-2
- "High Resolution Direction of Arrival Estimation" on page 17-214

\section*{MUSIC Super-Resolution DOA Estimation}

\section*{In this section...}
"Signal Model" on page 6-7
"Signal and Noise Subspaces" on page 6-8
"Root-MUSIC" on page 6-9
"Spatial Smoothing of Correlated Sources" on page 6-9
MUltiple SIgnal Classification (MUSIC) is a high-resolution direction-finding algorithm based on the eigenvalue decomposition of the sensor covariance matrix observed at an array. MUSIC belongs to the family of subspace-based direction-finding algorithms.

\section*{Signal Model}

The signal model relates the received sensor data to the signals emitted by the source. Assume that there are \(D\) uncorrelated or partially correlated signal sources, \(s_{d}(t)\). The sensor data, \(x_{m}(t)\), consists of the signals, as received at the array, together with noise, \(n_{m}(t)\). A sensor data snapshot is the sensor data vector received at the \(M\) elements of an array at a single time \(t\).
\[
\begin{aligned}
& x(t)=A s(t)+n(t) \\
& \left.s(t)=\left[s_{1}(t), s_{2}(t), \ldots, s_{D}(t)\right)\right]^{\prime} \\
& A=\left[a\left(\theta_{1}\right)\left|a\left(\theta_{2}\right)\right| \ldots \mid a\left(\theta_{D}\right)\right]
\end{aligned}
\]
- \(\quad \chi(t)\) is an \(M\)-by-1 vector of received snapshot of sensor data which consist of signals and additive noise.
- \(A\) is an \(M\)-by- \(D\) matrix containing the arrival vectors. An arrival vector consists of the relative phase shifts at the array elements of the plane wave from one source. Each column of \(A\) represents the arrival vector from one of the sources and depends on the direction of arrival, \(\theta_{d}\). \(\theta_{d}\) is the direction of arrival angle for the \(d\) th source and can represents either the broadside angle for linear arrays or the azimuth and elevation angle for planar or 3D arrays.
- \(s(t)\) is a \(D\)-by-1 vector of source signal values from \(D\) sources.
- \(n(t)\) is an \(M\)-by- 1 vector of sensor noise values.

An important quantity in any subspace method is the sensor covariance matrix, \(R_{x}\), derived from the received signal data. When the signals are uncorrelated with the noise, the sensor covariance matrix has two components, the signal covariance matrix and the noise covariance matrix.
\[
R_{x}=E\left\{x x^{H}\right\}=A R_{s} A^{H}+\sigma_{n}^{2} I
\]
where \(R_{s}\) is the source covariance matrix. The diagonal elements of the source covariance matrix represent source power and the off-diagonal elements represent source correlations.
\[
R_{S}=E\left\{s s^{H}\right\}
\]

For uncorrelated sources or even partially correlated sources, \(R_{s}\) is a positive-definite Hermitian matrix and has full rank, \(D\), equal to the number of sources.

The signal covariance matrix, \(A R_{s} A^{H}\), is an \(M\)-by- \(M\) matrix, also with \(\operatorname{rank} D<M\).

An assumption of the MUSIC algorithm is that the noise powers are equal at all sensors and uncorrelated between sensors. With this assumption, the noise covariance matrix becomes an \(M\)-by- \(M\) diagonal matrix with equal values along the diagonal.

Because the true sensor covariance matrix is not known, MUSIC estimates the sensor covariance matrix, \(R_{x}\), from the sample sensor covariance matrix. The sample sensor covariance matrix is an average of multiple snapshots of the sensor data
\[
R_{\chi}=\frac{1}{T} \sum_{k=1}^{T} x(t) x(t)^{H}
\]
where \(T\) is the number of snapshots.

\section*{Signal and Noise Subspaces}

Because \(A R_{s} A^{H}\) has rank \(D\), it has \(D\) positive real eigenvalues and \(M-D\) zero eigenvalues. The eigenvectors corresponding to the positive eigenvalues span the signal subspace, \(U_{s}=\left[v_{1}, \ldots, v_{D}\right]\). The eigenvectors corresponding to the zero eigenvalues are orthogonal to the signal space and span the null subspace, \(U_{n}=\left[u_{D+1}, \ldots, u_{N}\right]\). The arrival vectors also belong to the signal subspace, but they are eigenvectors. Eigenvectors of the null subspace are orthogonal to the eigenvectors of the signal subspace. Null-subspace eigenvectors, \(u_{i}\), satisfy this equation:
\[
A R_{S} A^{H} u_{i}=0 \Rightarrow u^{H} A R_{S} A^{H} u_{i}=0 \Rightarrow\left(A^{H} u_{i}\right)^{H} R_{S}\left(A^{H} u_{i}\right)=0 \Rightarrow A^{H} u_{i}=0
\]

Therefore the arrival vectors are orthogonal to the null subspace.
When noise is added, the eigenvectors of the sensor covariance matrix with noise present are the same as the noise-free sensor covariance matrix. The eigenvalues increase by the noise power. Let \(v_{i}\) be one of the original noise-free signal space eigenvectors. Then
\[
R_{\chi} v_{i}=A R_{S} A^{H} v_{i}+\sigma_{0}^{2} I v_{i}=\left(\lambda_{i}+\sigma_{0}^{2}\right) v_{i}
\]
shows that the signal space eigenvalues increase by \(\sigma_{0}{ }^{2}\).
The null subspace eigenvectors are also eigenvectors of \(R_{x}\). Let \(u_{i}\) be one of the null eigenvectors. Then
\[
R_{\chi} u_{i}=A R_{s} A^{H} u_{i}+\sigma_{0}^{2} I u_{i}=\sigma_{0}^{2} u_{i}
\]
with eigenvalues of \(\sigma_{0}{ }^{2}\) instead of zero. The null subspace becomes the noise subspace.
MUSIC works by searching for all arrival vectors that are orthogonal to the noise subspace. To do the search, MUSIC constructs an arrival-angle-dependent power expression, called the MUSIC pseudospectrum:
\[
P_{\text {MUSIC }}(\vec{\phi})=\frac{1}{a^{H}(\vec{\phi}) U_{n} U_{n}^{H} a(\vec{\phi})}
\]

When an arrival vector is orthogonal to the noise subspace, the peaks of the pseudospectrum are infinite. In practice, because there is noise, and because the true covariance matrix is estimated by the sampled covariance matrix, the arrival vectors are never exactly orthogonal to the noise subspace. Then, the angles at which \(P_{\text {MUSIC }}\) has finite peaks are the desired directions of arrival.

Because the pseudospectrum can have more peaks than there are sources, the algorithm requires that you specify the number of sources, \(D\), as a parameter. Then the algorithm picks the \(D\) largest peaks. For a uniform linear array (ULA), the search space is a one-dimensional grid of broadside angles. For planar and 3D arrays, the search space is a two-dimensional grid of azimuth and elevation angles.

\section*{Root-MUSIC}

For a ULA, the denominator in the pseudospectrum is a polynomial in \(e^{i k d c o s \varphi}\), but can also be considered a polynomial in the complex plane. In this cases, you can use root-finding methods to solve for the roots, \(z_{i}\). These roots do not necessarily lie on the unit circle. However, Root-MUSIC assumes that the \(D\) roots closest to the unit circle correspond to the true source directions. Then you can compute the source directions from the phase of the complex roots.

\section*{Spatial Smoothing of Correlated Sources}

When some of the \(D\) source signals are correlated, \(R_{s}\) is rank deficient, meaning that it has fewer than \(D\) nonzero eigenvalues. Therefore, the number of zero eigenvalues of \(A R_{s} A^{H}\) exceeds the number, \(M\) \(D\), of zero eigenvalues for the uncorrelated source case. MUSIC performance degrades when signals are correlated, as occurs in a multipath propagation environment. A way to compensate for correlation is to use spatial smoothing.

Spatial smoothing takes advantage of the translation properties of a uniform array. Consider two correlated signals arriving at an \(L\)-element ULA. The source covariance matrix, \(R_{s}\) is a singular 2-by-2 matrix. The arrival vector matrix is an \(L\)-by- 2 matrix
\[
A_{1}=\left[\begin{array}{cc}
1 & 1 \\
e^{i k d \cos \varphi_{1}} & e^{i k d \cos \varphi_{2}} \\
\vdots & \vdots \\
e^{i(L-1) k d \cos \varphi_{1}} e^{i(L-1) k d \cos \varphi_{2}}
\end{array}\right]=\left[a\left(\varphi_{1}\right) \mid a\left(\varphi_{2}\right)\right]
\]
for signals arriving from the broadside angles \(\varphi_{1}\) and \(\varphi_{2}\). The quantity \(k\) is the signal wave number. \(a(\varphi)\) represents an arrival vector at the angle \(\varphi\).

You can create a second array by translating the first array along its axis by one element distance, \(d\). The arrival matrix for the second array is
\[
A_{2}=\left[\begin{array}{cc}
e^{i k d \cos \varphi_{1}} & e^{i k d \cos \varphi_{2}} \\
e^{i 2 k d \cos \varphi_{1}} e^{i 2 k d \cos \varphi_{2}} \\
\vdots & \vdots \\
e^{i L k d \cos \varphi_{1}} e^{i L k d \cos \varphi_{2}}
\end{array}\right]=\left[e^{i k d \cos \varphi_{1}} a\left(\varphi_{1}\right) \mid e^{i k d \cos \varphi_{2}} a\left(\varphi_{2}\right)\right]
\]
where the arrival vectors are equal to the original arrival vectors but multiplied by a directiondependent phase shift. When you translate the original array \(J-1\) more times, you get \(J\) copies of the array. If you form a single array from all these copies, then the length of the single array is \(M=L+(J\) -1).

In practice, you start with an \(M\)-element array and form \(J\) overlapping subarrays. The number of elements in each subarray is \(L=M-J+1\). The following figure shows the relationship between the overall length of the array, \(M\), the number of subarrays, \(J\), and the length of each subarray, \(L\).


For the \(p\) th subarray, the source signal arrival matrix is
\[
\begin{gathered}
A_{p}=\left[e^{i k(p-1) d \cos \varphi_{1}} a\left(\varphi_{1}\right) \mid e^{i k(p-1) d \cos \varphi_{2}} a\left(\varphi_{2}\right)\right] \\
=\left[a\left(\varphi_{1}\right) \mid a\left(\varphi_{2}\right)\right]\left[\begin{array}{cc}
e^{i k(p-1) d \cos \varphi_{1}} & 0 \\
0 & e^{i k(p-1) d \cos \varphi_{2}}
\end{array}\right]=A_{1} P^{p-1} \\
P=\left[\begin{array}{cc}
e^{i k d \cos \varphi_{1}} & 0 \\
0 & e^{i k d \cos \varphi_{2}}
\end{array}\right]
\end{gathered}
\]

The original arrival vector matrix is postmultiplied by a diagonal phase matrix.
The last step is averaging the signal covariance matrices over all \(J\) subarrays to form the averaged signal covariance matrix, \(R^{\text {avg }}\). The average signal covariance matrix depends on the smoothed source covariance matrix, \(R^{\text {smooth }}\).
\[
\begin{aligned}
& R_{S}^{\text {avg }}=A_{1}\left(\frac{1}{J} \sum_{p=1}^{J} P^{p-1} R_{S}\left(P^{p-1}\right)^{H}\right) A_{1}^{H}=A_{1} R^{\text {smooth }} A_{1}^{H} \\
& R^{\text {smooth }}=\frac{1}{J} \sum_{p=1}^{J} P^{p-1} R_{s}\left(P^{p-1}\right)^{H} .
\end{aligned}
\]

You can show that the diagonal elements of the smoothed source covariance matrix are the same as the diagonal elements of the original source covariance matrix.
\[
R_{i i}^{s m o o t h}=\frac{1}{J} \sum_{p=1}^{J}\left(P^{p-1}\right)_{i m}\left(R_{s}\right)_{m n}\left(P^{p-1}\right)_{n i} H=\frac{1}{J} \sum_{p=1}^{J} R_{s}=\left(R_{s}\right)_{i i}
\]

However, the off-diagonal elements are reduced. The reduction factor is the beam pattern of a J element array.
\[
R_{i j}^{\text {smooth }}=\frac{1}{J} \sum_{p=1}^{J} e^{\left.i k d(p-1)\left(\cos \varphi_{1}-\cos \varphi_{2}\right)_{\left(R_{s}\right)}\right)_{i j}=\frac{1}{J} \frac{\sin \left(k d J\left(\cos \varphi_{1}-\cos \varphi_{2}\right)\right)}{\sin \left(k d\left(\cos \varphi_{1}-\cos \varphi_{2}\right)\right)}\left(R_{s}\right)_{i j}, ~}
\]

In summary, you can reduce the degrading effect of source correlation by forming subarrays and using the smoothed covariance matrix as input to the MUSIC algorithm. Because of the beam pattern, larger angular separation of sources leads to reduced correlation.

Spatial smoothing for linear arrays is easily extended to 2D and 3D uniform arrays.

\section*{Target Tracking Using Sum-Difference Monopulse Radar}

This example shows how to use the phased. SumDifferenceMonopulseTracker System object to track a moving target. The phased. SumDifferenceMonopulseTracker tracker solves for the direction of a target from signals arriving on a uniform linear array (ULA). The sum-difference monopulse algorithm requires a prior estimate of the target direction which is assumed to be close to the actual direction. In a tracker, the current estimate serves as the prior information for the next estimate. The target is a narrowband 500 MHz emitter moving at a constant velocity of 800 kph . For a ULA array, the steering vector depends only upon the broadside angle. The broadside angle is the angle between the source direction and a plane normal to the linear array. Any arriving signal is specified by its broadside angle.

\section*{Create the target platform and define its motion}

Assume the target is located at [0,10000, 20000] with respect to the radar in the radar's local coordinate system. Assume that the target is moving along the y-axis toward the radar at 800 kph .
```

x0 = [0,10000, 20000].';
v0 = - 800;
v0 = v0*1000/3600;
targetplatform = phased.Platform(x0,[0,v0,0].');

```

\section*{Set up the ULA array}

The monopulse tracker uses a ULA array which consists of 8 isotropic antenna elements. The element spacing is set to one-half the signal wavelength.
```

fc = 500e6;
c = physconst('LightSpeed');
lam = c/fc;
antenna = phased.IsotropicAntennaElement('FrequencyRange',[100e6,800e6],...
'BackBaffled',true);
array = phased.ULA('Element',antenna,'NumElements',8,...
'ElementSpacing',lam/2);

```

Assume a narrowband signal. This kind of signal can be simulated using the phased.SteeringVector System object.
steervec \(=\) phased.SteeringVector('SensorArray',array);

\section*{Tracking Loop}

Initialize the tracking loop. Create the phased. SumDifferenceMonopulseTracker System object.
```

tracker = phased.SumDifferenceMonopulseTracker('SensorArray',array,...
'PropagationSpeed ',c,...
'OperatingFrequency',fc);

```

At each time step, compute the broadside angle of the target with respect to the array. Set the step time to 0.5 seconds.
```

T = 0.5;
nsteps = 40;
t = [1:nsteps]*T;

```

Setup data vectors for storing and displaying results
```

rng = zeros(1,nsteps);
broadang_actual = zeros(1,nsteps);
broadang_est = zeros(1,nsteps);
angerr = zeros(1,nsteps);

```

Step through the tracking loop. First provide an estimate of the initial broadside angle. In this simulation, the actual broadside angle is known but add an error of five degrees.
[tgtrng,tgtang_actual] = rangeangle(x0, [0, 0, 0].');
broadang0 = az2̄broadside(tgtang_actual(1),tgtang_actual(2));
broadang_prev = broadang0 + 5.0; \% add some sort of error
1 Compute the actual broadside angle, broadang_actual.
2 Compute the signal, signl, from the actual broadside angle, using the phased.SteeringVector System object.
3 Using the phased.SumDifferenceMonopulseTracker tracker, estimate the broadside angle, broadang_est, from the signal. The broadside angle derived from a previous step serves as an initial estimate for the current step.
4 Compute the difference between the estimated broadside angle, broadang_est, and actual broadside angle, broadang_actual. This is a measure of how good the solution is.
```

for n = 1:nsteps
x = targetplatform(T);
[rng(n),tgtang_actual] = rangeangle(x,[0,0,0].');
broadang_actua\(n) = az2broadside(tgtang_actual(1),tgtang_actual(2));
signl = steervec(fc,broadang_actual(n)).';
broadang_est(n) = tracker(signl,broadang_prev);
broadang_prev = broadang_est(n);
angerr(n) = broadang_est(n) - broadang_actual(n);
end
Results

```

Plot the range as a function of time showing the point of closest approach.
```

plot(t,rng/1000,'-o')
xlabel('time (sec)')
ylabel('Range (km)')

```


Plot the estimated broadside angle as a function of time.
plot(t,broadang_actual, '-o')
xlabel('time (sec)')
ylabel('Broadside angle (deg)')


A monopulse tracker cannot solve for the direction angle if the angular separation between samples is too large. The maximum allowable angular separation is approximately one-half the null-to-null beamwidth of the array. For an 8 -element, half-wavelength-spaced ULA, the half-beamwidth is approximately 14.3 degrees at broadside. In this simulation, the largest angular difference between samples is
```

maxangdiff = max(abs(diff(broadang_est)));
disp(maxangdiff)
0.2942

```

The angular separation between samples is less than the half-beamwidth.
Plot the angle error. This is the difference between the estimated angle and the actual angle. The plot shows a very small error, on the order of microdegrees.
```

plot(t,angerr,'-o')
xlabel('time (sec)')
ylabel('Angle error (deg)')

```


\section*{See Also}

Functions
musicdoa
Objects
phased.MUSICEstimator|phased.MUSICEstimator2D

\section*{Space-Time Adaptive Processing (STAP)}
- "Angle-Doppler Response" on page 7-2
- "Displaced Phase Center Antenna Pulse Canceller" on page 7-7
- "Adaptive Displaced Phase Center Antenna Pulse Canceller" on page 7-12
- "Sample Matrix Inversion Beamformer" on page 7-18

\section*{Angle-Doppler Response}

\author{
In this section... \\ "Benefits of Visualizing Angle-Doppler Response" on page 7-2 \\ "Angle-Doppler Response of Stationary Array to Stationary Target" on page 7-2 \\ "Angle-Doppler Response to Stationary Target at Moving Array" on page 7-4
}

\section*{Benefits of Visualizing Angle-Doppler Response}

Visualizing a signal in the angle-Doppler domain can help you identify characteristics of the signal in direction and speed. You can distinguish among targets moving at various speeds in various directions. If a transmitter platform is stationary, returns from stationary targets map to zero in the Doppler domain while returns from moving targets exhibit a nonzero Doppler shift. If you visualize the array response in the angle-Doppler domain, a stationary target produces a response at a specified angle and zero Doppler.

You can use the phased.AngleDopplerResponse object to visualize the angle-Doppler response of input data. The phased. AngleDopplerResponse object uses a conventional narrowband (phase shift) beamformer and an FFT-based Doppler filter to compute the angle-Doppler response.

\section*{Angle-Doppler Response of Stationary Array to Stationary Target}

Display the angle-Doppler response of a stationary array to a stationary target. The array is a sixelement uniform linear array (ULA) located at the global origin ( \(0,0,0\) ). The target is located at \((5000,5000,0)\) meters and has a nonfluctuating radar cross section (RCS) of 1 square meter.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call to the function with the equivalent step syntax. For example, replace myObject (x) with step(my0bject,x).

Construct the objects needed to simulate the target response at the array.
```

antenna = phased.IsotropicAntennaElement...
('FrequencyRange',[8e8 5e9],'BackBaffled',true);
lambda = physconst('LightSpeed')/4e9;
array = phased.ULA(6,'Element',antenna,'ElementSpacing',lambda/2);
waveform = phased.RectangularWaveform('PulseWidth',2e-006,...
'PRF',5e3,'SampleRate',1e6,'NumPulses',1);
radiator = phased.Radiator('Sensor',array,...
'PropagationSpeed',physconst('LightSpeed'),...
'OperatingFrequency',4e9);
collector = phased.Collector('Sensor',array,...
'PropagationSpeed',physconst('LightSpeed'),...
'OperatingFrequency',4e9);
txplatform = phased.Platform('InitialPosition',[0;0;0],...
'Velocity',[0;0;0]);
target = phased.RadarTarget('MeanRCS',1,'Model','nonfluctuating');
targetplatform = phased.Platform('InitialPosition',[5e3; 5e3; 0],...
'Velocity',[0;0;0]);
freespace = phased.FreeSpace('OperatingFrequency',4e9,...
'TwoWayPropagation',false,'SampleRate',le6);
receiver = phased.ReceiverPreamp('NoiseFigure',0,...

```
```

 'EnableInputPort',true,'SampleRate',1e6,'Gain',40);
 transmitter = phased.Transmitter('PeakPower',le4,...
'InUse0utputPort',true, 'Gain',40) ;

```

Propagate ten rectangular pulses to and from the target, and collect the responses at the array.
```

PRF = 5e3;
NumPulses = 10;
wav = waveform();
tgtloc = targetplatform.InitialPosition;
txloc = txplatform.InitialPosition;
M = waveform.SampleRate*1/PRF;
N = array.NumElements;
rxsig = zeros(M,N,NumPulses);
for n = 1:NumPulses
% get angle to target
[~,tgtang] = rangeangle(tgtloc,txloc);
% transmit pulse
[txsig,txstatus] = transmitter(wav);
% radiate pulse
txsig = radiator(txsig,tgtang);
% propagate pulse to target
txsig = freespace(txsig,txloc,tgtloc,[0;0;0],[0;0;0]);
% reflect pulse off stationary target
txsig = target(txsig);
% propagate pulse to array
txsig = freespace(txsig,tgtloc,txloc,[0;0;0],[0;0;0]);
% collect pulse
rxsig(:,:,n) = collector(txsig,tgtang);
% receive pulse
rxsig(:,:,n) = receiver(rxsig(:,:,n),~txstatus);
end

```

Find and plot the angle-Doppler response. Then, add the label +Target at the expected azimuth angle and Doppler frequency.
```

tgtdoppler = 0;
tgtLocation = global2localcoord(tgtloc,'rs',txloc);
tgtazang = tgtLocation(1);
tgtelang = tgtLocation(2);
tgtrng = tgtLocation(3);
tgtcell = val2ind(tgtrng,...
physconst('LightSpeed')/(2*waveform.SampleRate));
snapshot = shiftdim(rxsig(tgtcell,:,:)); % Remove singleton dim
response = phased.AngleDopplerResponse('SensorArray',array,...
'OperatingFrequency',4e9, ...
'PropagationSpeed',physconst('LightSpeed'),...
'PRF',PRF, 'ElevationAngle',tgtelang);
plotResponse(response,snapshot);
text(tgtazang,tgtdoppler,'+Target');

```


As expected, the angle-Doppler response shows the greatest response at zero Doppler and \(45^{\circ}\) azimuth.

\section*{Angle-Doppler Response to Stationary Target at Moving Array}

This example illustrates the nonzero Doppler shift exhibited by a stationary target in the presence of array motion. In general, this nonzero shift complicates the detection of slow-moving targets because the motion-induced Doppler shift and spread of the clutter returns obscure the Doppler shifts of such targets.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call to the function with the equivalent step syntax. For example, replace my0bject ( \(x\) ) with step(my0bject,x).

The scenario in this example is identical to that of "Angle-Doppler Response of Stationary Array to Stationary Target" on page 7-2 except that the ULA is moving at a constant velocity. For convenience, the MATLAB \({ }^{\mathrm{TM}}\) code to set up the objects is repeated. Notice that the InitialPosition and Velocity properties of the txplatform System object \({ }^{\text {tm }}\) have changed. The InitialPosition property value is set to simulate an airborne ULA. The motivation for selecting the particular value of the Velocity property is explained in "Applicability of DPCA Pulse Canceller" on page 7-7.
```

antenna = phased.IsotropicAntennaElement...
('FrequencyRange',[8e8 5e9],'BackBaffled',true);
lambda = physconst('LightSpeed')/4e9;
array = phased.ULA(6,'Element',antenna,'ElementSpacing',lambda/2);

```
```

waveform = phased.RectangularWaveform('PulseWidth',2e-006,...
'PRF',5e3,'SampleRate',1e6,'NumPulses',1);
radiator = phased.Radiator('Sensor',array,...
'PropagationSpeed',physconst('LightSpeed'),...
'OperatingFrequency',4e9);
collector = phased.Collector('Sensor',array,...
'PropagationSpeed',physconst('LightSpeed'),...
'OperatingFrequency',4e9);
vy = (array.ElementSpacing*waveform.PRF)/2;
txplatform = phased.Platform('InitialPosition',[0;0;3e3],...
'Velocity',[0;vy;0]);
target = phased.RadarTarget('MeanRCS',1,'Model','nonfluctuating');
tgtvel = [0;0;0];
targetplatform = phased.Platform('InitialPosition',[5e3; 5e3; 0],...
'Velocity',tgtvel);
freespace = phased.FreeSpace('OperatingFrequency',4e9,...
'TwoWayPropagation',false,'SampleRate',1e6);
receiver = phased.ReceiverPreamp('NoiseFigure',0,...
'EnableInputPort',true, 'SampleRate',1e6,'Gain',40);
transmitter = phased.Transmitter('PeakPower',le4,...
'InUseOutputPort',true,'Gain',40);

```

Transmit ten rectangular pulses toward the target as the ULA is moving. Then, collect the received echoes.
```

PRF = 5e3;
NumPulses = 10;
wav = waveform();
tgtloc = targetplatform.InitialPosition;
M = waveform.SampleRate*1/PRF;
N = array.NumElements;
rxsig = zeros(M,N,NumPulses);
fasttime = unigrid(0,1/waveform.SampleRate,1/PRF,'[)');
rangebins = (physconst('LightSpeed')*fasttime)/2;
for n = 1:NumPulses
% move transmitter
[txloc,txvel] = txplatform(1/PRF);
% get angle to target
[~,tgtang] = rangeangle(tgtloc,txloc);
% transmit pulse
[txsig,txstatus] = transmitter(wav);
% radiate pulse
txsig = radiator(txsig,tgtang);
% propagate pulse to target
txsig = freespace(txsig,txloc,tgtloc,txvel,tgtvel);
% reflect pulse off stationary target
txsig = target(txsig);
% propagate pulse to array
txsig = freespace(txsig,tgtloc,txloc,tgtvel,txvel);
% collect pulse
rxsig(:,:,n) = collector(txsig,tgtang);
% receive pulse
rxsig(:,:,n) = receiver(rxsig(:,:,n),~txstatus);
end

```

Calculate the target angles and range with respect to the ULA. Then, calculate the Doppler shift induced by the motion of the phased array.
```

sp = radialspeed(tgtloc,tgtvel,txloc,txvel);
tgtdoppler = 2*speed2dop(sp,lambda);
tgtLocation = global2localcoord(tgtloc,'rs',txloc);
tgtazang = tgtLocation(1);
tgtelang = tgtLocation(2);
tgtrng = tgtLocation(3);

```

The two-way Doppler shift is approximately 1626 Hz . The azimuth angle is \(45^{\circ}\) and is identical to the value obtained in the stationary ULA example.

Plot the angle-Doppler response.
```

tgtcell = val2ind(tgtrng,...
physconst('LightSpeed')/(2*waveform.SampleRate));
snapshot = shiftdim(rxsig(tgtcell,:,:)); % Remove singleton dim
hadresp = phased.AngleDopplerResponse('SensorArray',array,...
'OperatingFrequency',4e9, ...
'PropagationSpeed',physconst('LightSpeed'),...
'PRF',PRF, 'ElevationAngle',tgtelang);
plotResponse(hadresp,snapshot);
text(tgtazang,tgtdoppler,'+Target');

```


The angle-Doppler response shows the greatest response at \(45^{\circ}\) azimuth at the expected Doppler shift.

\title{
Displaced Phase Center Antenna Pulse Canceller
}

\section*{In this section...}
"When to Use the DPCA Pulse Canceller" on page 7-7
"DPCA Pulse Canceller to Reject Clutter" on page 7-7

\section*{When to Use the DPCA Pulse Canceller}

In a moving target indication (MTI) radar, clutter returns can make it more difficult to detect and track the targets of interest. A rudimentary way to mitigate the effects of clutter returns in such a system is to implement a displaced phase center antenna (DPCA) pulse canceller on the slow-time data.

You can implement a DPCA pulse canceller with phased. DPCACanceller. This implementation assumes that the entire array is used on transmit. On receive, the array is divided into two subarrays. The phase centers of the subarrays are separated by twice the distance the platform moves in one pulse repetition interval.

\section*{Applicability of DPCA Pulse Canceller}

The DPCA pulse canceller is applicable when both these conditions are true:
- Clutter is stationary across pulses.
- The motion satisfies
\[
\begin{equation*}
v T=d / 2 \tag{7-1}
\end{equation*}
\]
where:
- \(v\) indicates the speed of the platform
- \(T\) represents the pulse repetition interval
- \(d\) indicates the interelement spacing of the array

\section*{DPCA Pulse Canceller to Reject Clutter}

This example implements a DPCA pulse canceller for clutter rejection. Assume you have an airborne radar platform modeled by a six-element ULA operating at 4 GHz . The array elements are spaced at one-half the wavelength of the 4 GHz carrier frequency. The radar emits ten rectangular pulses two microseconds in duration with a PRF of 5 kHz . The platform moves along the array axis with a speed equal to one-half the product of the element spacing and the PRF. DPCA pulse cancellation is applicable because \(v T=d / 2\) where
- \(v\) indicates the speed of the platform
- \(T\) represents the pulse repetition interval
- \(d\) indicates the interelement spacing of the array

The target has a nonfluctuating RCS of 1 square meter and moves with a constant velocity vector of \((15,15,0)\).

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call to the function with the equivalent step syntax. For example, replace my0bject (x) with step (my0bject,x).
```

PRF = 5e3;
fc = 4e9;
fs = 1e6;
c = physconst('LightSpeed');
antenna = phased.IsotropicAntennaElement...
('FrequencyRange',[8e8 5e9],'BackBaffled',true);
lambda = c/fc;
array = phased.ULA(6,'Element',antenna,'ElementSpacing',lambda/2);
waveform = phased.RectangularWaveform('PulseWidth',2e-6,...
'PRF',PRF,'SampleRate',fs,'NumPulses',1);
radiator = phased.Radiator('Sensor',array,...
'PropagationSpeed',c,...
'OperatingFrequency',fc);
collector = phased.Collector('Sensor',array,...
'PropagationSpeed',c,...
'OperatingFrequency',fc);
vy = (array.ElementSpacing*PRF)/2;
transmitplatform = phased.Platform('InitialPosition',[0;0;3e3],...
'Velocity',[0;vy;0]);
clutter = phased.ConstantGammaClutter('Sensor',array,...
'PropagationSpeed ',radiator.PropagationSpeed,...
'OperatingFrequency',radiator.OperatingFrequency,....
'SampleRate',fs,...
'TransmitSignalInputPort',true,...
'PRF',PRF,...
'Gamma',surfacegamma('woods',radiator.OperatingFrequency),...
'EarthModel','Flat',...
'BroadsideDepressionAngle',0,...
'MaximumRange',radiator.PropagationSpeed/(2*PRF),...
'PlatformHeight',transmitplatform.InitialPosition(3),...
'PlatformSpeed',norm(transmitplatform.Velocity),...
'PlatformDirection',[90;0]);
target = phased.RadarTarget('MeanRCS',1,...
'Model','Nonfluctuating','OperatingFrequency',fc);
targetplatform = phased.Platform('InitialPosition',[5e3; 5e3; 0],...
'Velocity',[15;15;0]);
channel = phased.FreeSpace('OperatingFrequency',fc,...
'TwoWayPropagation',false,'SampleRate',fs);
receiver = phased.ReceiverPreamp('NoiseFigure',0,...
'EnableInputPort',true, 'SampleRate',fs, 'Gain',40);
transmitter = phased.Transmitter('PeakPower',1e4,...
'InUseOutputPort',true,'Gain',40);

```

Propagate ten rectangular pulses to target and back, and collect the responses at the array. Also, compute clutter echoes using the constant gamma model with a gamma value corresponding to wooded terrain.
```

NumPulses = 10;
wav = waveform();
M = fs/PRF;
N = array.NumElements;
rxsig = zeros(M,N,NumPulses);
csig = zeros(M,N,NumPulses);
fasttime = unigrid(0,1/fs,1/PRF,'[)');

```
```

rangebins = (c*fasttime)/2;
clutter.SeedSource = 'Property';
clutter.Seed = 5;
for n = 1:NumPulses
[txloc,txvel] = transmitplatform(1/PRF); % move transmitter
[tgtloc,tgtvel] = targetplatform(1/PRF); % move target
[~,tgtang] = rangeangle(tgtloc,txloc); % get angle to target
[txsigl,txstatus] = transmitter(wav); % transmit pulse
csig(:,:,n) = clutter(txsigl(abs(txsig1)>0)); % collect clutter
txsig = radiator(txsig1,tgtang); % radiate pulse
txsig = channel(txsig,txloc,tgtloc,...
txvel,tgtvel); % propagate to target
txsig = target(txsig); % reflect off target
txsig = channel(txsig,tgtloc,txloc,...
tgtvel,txvel); % propagate to array
rxsig(:,:,n) = collector(txsig,tgtang); % collect pulse
rxsig(:,:,n) = receiver(rxsig(:,:,n) + csig(:,:,n),...
~txstatus); % receive pulse plus clutter return
end

```

Determine the target range, range gate, and two-way Doppler shift.
```

sp = radialspeed(tgtloc,tgtvel,txloc,txvel);
tgtdoppler = 2*speed2dop(sp,lambda);
tgtLocation = global2localcoord(tgtloc,'rs',txloc);
tgtazang = tgtLocation(1);
tgtelang = tgtLocation(2);
tgtrng = tgtLocation(3);
tgtcell = val2ind(tgtrng,c/(2*fs));

```

Use noncoherent pulse integration to visualize the signal received by the ULA for the first of the ten pulses. Mark the target range gate with a vertical dashed line.
```

firstpulse = pulsint(rxsig(:,:,1),'noncoherent');
plot([tgtrng/le3 tgtrng/le3],[0 0.1],'-.',rangebins/1e3,firstpulse)
title('Noncoherent Integration of 1st Pulse at the ULA')
xlabel('Range (km)')
ylabel('Magnitude');

```


The large-magnitude clutter returns obscure the presence of the target. Apply the DPCA pulse canceller to reject the clutter.
```

canceller = phased.DPCACanceller('SensorArray',array,'PRF',PRF,...
'PropagationSpeed ', c, ...
'OperatingFrequency',fc,...
'Direction',[0;0],'Doppler',tgtdoppler,...
'Weights0utputPort',true);
[y,w] = canceller(rxsig,tgtcell);

```

Plot the result of applying the DPCA pulse canceller. Mark the target range gate with a vertical dashed line.
```

plot([tgtrng/1e3,tgtrng/1e3],[0 3.5e-5],'-.',rangebins/1e3,abs(y))
title('DPCA Canceller Output')
xlabel('Range (km)')
ylabel('Magnitude')

```


The DPCA pulse canceller has significantly rejected the clutter. As a result, the target is visible at the expected range gate.

\title{
Adaptive Displaced Phase Center Antenna Pulse Canceller
}

\section*{In this section...}
"When to Use the Adaptive DPCA Pulse Canceller" on page 7-12
"Adaptive DPCA Pulse Canceller To Reject Clutter and Interference" on page 7-12

\section*{When to Use the Adaptive DPCA Pulse Canceller}

Consider an airborne radar system that needs to suppress clutter returns and possibly jammer interference. Under any of the following conditions, you might choose an adaptive DPCA (ADPCA) pulse canceller for suppressing these effects.
- Jamming and other interference effects are substantial. The DPCA pulse canceller is susceptible to interference because the DPCA pulse canceller does not use the received data.
- The sample matrix inversion (SMI) algorithm is inapplicable because of computational expense or a rapidly changing environment.

The phased.ADPCAPulseCanceller object implements an ADPCA pulse canceller. This pulse canceller uses the data received from two consecutive pulses to estimate the space-time interference covariance matrix. In particular, the object lets you specify:
- The number of training cells. The algorithm uses training cells to estimate the interference. In general, a larger number of training cells leads to a better estimate of interference.
- The number of guard cells close to the target cells. The algorithm recognizes guard cells to prevent target returns from contaminating the estimate of the interference.

\section*{Adaptive DPCA Pulse Canceller To Reject Clutter and Interference}

This example implements an adaptive DPCA pulse canceller for clutter and interference rejection. The scenario is identical to the one in "DPCA Pulse Canceller to Reject Clutter" on page 7-7 except that a stationary broadband barrage jammer is added at ( \(3.5 e 3,1 e 3,0\) ). The jammer has an effective radiated power of 1 kW .

To repeat the scenario for convenience, the airborne radar platform is a six-element ULA operating at 4 GHz . The array elements are spaced at one-half the wavelength of the 4 GHz carrier frequency. The radar emits ten rectangular pulses of two \(\mu \mathrm{s}\) duration with a PRF of 5 kHz . The platform is moving along the array axis with a speed equal to one-half the product of the element spacing and the PRF. ADPCA pulse cancellation is applicable because \(v T=d / 2\) where
- \(v\) indicates the speed of the platform
- \(T\) represents the pulse repetition interval
- dindicates the interelement spacing of the array

The target has a nonfluctuating RCS of 1 square meter and is moving with a constant velocity vector of \((15,15,0)\).

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call to the function with the equivalent step syntax. For example, replace my0bject ( \(x\) ) with step(my0bject,x).
```

PRF = 5e3;
fc = 4e9;
fs = le6;
c = physconst('LightSpeed');
antenna = phased.IsotropicAntennaElement
('FrequencyRange',[8e8 5e9],'BackBaffled',true);
lambda = c/fc;
array = phased.ULA(6,'Element',antenna,'ElementSpacing',lambda/2);
waveform = phased.RectangularWaveform('PulseWidth', 2e-6,...
'PRF',PRF,'SampleRate',fs,'NumPulses',1);
radiator = phased.Radiator('Sensor',array,...
'PropagationSpeed',c,...
'OperatingFrequency',fc);
collector = phased.Collector('Sensor',array,...
'PropagationSpeed ',c,...
'OperatingFrequency',fc);
vy = (array.ElementSpacing * PRF)/2;
transmitterplatform = phased.Platform('InitialPosition',[0;0;3e3],...
'Velocity',[0;vy;0]);
clutter = phased.ConstantGammaClutter('Sensor',array,...
'PropagationSpeed',radiator.PropagationSpeed,...
'OperatingFrequency',radiator.OperatingFrequency,...
'SampleRate',fs,...
'TransmitSignalInputPort',true,...
'PRF',PRF,...
'Gamma',surfacegamma('woods',radiator.OperatingFrequency),...
'EarthModel','Flat',...
'BroadsideDepressionAngle',0,...
'MaximumRange',radiator.PropagationSpeed/(2*PRF),...
'PlatformHeight',transmitterplatform.InitialPosition(3),...
'PlatformSpeed',norm(transmitterplatform.Velocity),...
'PlatformDirection',[90;0]);
target = phased.RadarTarget('MeanRCS',1,...
'Model','Nonfluctuating','OperatingFrequency',fc);
targetplatform = phased.Platform('InitialPosition',[5e3; 5e3; 0],...
'Velocity',[15;15;0]);
jammer = phased.BarrageJammer('ERP',1e3,'SamplesPerFrame',200);
jammerplatform = phased.Platform(...
'InitialPosition',[3.5e3; 1e3; 0],'Velocity',[0;0;0]);
channel = phased.FreeSpace('OperatingFrequency',fc,...
'TwoWayPropagation',false,'SampleRate',fs);
receiver = phased.ReceiverPreamp('NoiseFigure',0,...
'EnableInputPort',true,'SampleRate',fs,'Gain',40);
transmitter = phased.Transmitter('PeakPower',1e4,...
'InUseOutputPort',true,'Gain',40);

```

Propagate the ten rectangular pulses to the target and back and collect the responses at the array. Compute clutter echoes using the constant gamma model with a gamma value corresponding to wooded terrain. Also, propagate the jamming signal from the jammer location to the airborne ULA.
```

NumPulses = 10;
wav = waveform();
M = fs/PRF;
N = array.NumElements;
rxsig = zeros(M,N,NumPulses);
csig = zeros(M,N,NumPulses);
jsig = zeros(M,N,NumPulses);
fasttime = unigrid(0,1/fs,1/PRF,'[)');

```
```

rangebins = (c * fasttime)/2;
clutter.SeedSource = 'Property';
clutter.Seed = 40543;
jammer.SeedSource = 'Property';
jammer.Seed = 96703;
receiver.SeedSource = 'Property';
receiver.Seed = 56113;
jamloc = jammerplatform.InitialPosition;
for n = 1:NumPulses
[txloc,txvel] = transmitterplatform(1/PRF); % move transmitter
[tgtloc,tgtvel] = targetplatform(1/PRF); % move target
[~,tgtang] = rangeangle(tgtloc,txloc); % get angle to target
[txsig,txstatus] = transmitter(wav); % transmit pulse
csig(:,:,n) = clutter(txsig(abs(txsig)>0)); % collect clutter
txsig = radiator(txsig,tgtang); % radiate pulse
txsig = channel(txsig,txloc,tgtloc,...
txvel,tgtvel); % propagate pulse to target
txsig = target(txsig); % reflect off target
txsig = channel(txsig,tgtloc,txloc,...
tgtvel,txvel); % propagate to array
rxsig(:,:,n) = collector(txsig,tgtang); % collect pulse
jamsig = jammer(); % generate jammer signal
[~,jamang] = rangeangle(jamloc,txloc); % angle from jammer to transmitter
jamsig = channel(jamsig,jamloc,txloc,...
[0;0;0],txvel); % propagate jammer signal
jsig(:,:,n) = collector(jamsig,jamang); % collect jammer signal
rxsig(:,:,n) = receiver(...
rxsig(:,:,n) + csig(:,:,n) + jsig(:,:,n),...
~txstatus); % receive pulse plus clutter return plus jammer signal
end

```

Determine the target range, range gate, and two-way Doppler shift.
```

sp = radialspeed(tgtloc, targetplatform.Velocity, ...
txloc, transmitterplatform.Velocity);
tgtdoppler = 2*speed2dop(sp,lambda);
tgtLocation = global2localcoord(tgtloc,'rs',txloc);
tgtazang = tgtLocation(1);
tgtelang = tgtLocation(2);
tgtrng = tgtLocation(3);
tgtcell = val2ind(tgtrng,c/(2*fs));

```

Process the array responses using the nonadaptive DPCA pulse canceller. To do so, construct the DPCA object, and apply it to the received signals.
```

canceller = phased.DPCACanceller('SensorArray',array,'PRF',PRF,...
'PropagationSpeed',c,...
'OperatingFrequency',fc,...
'Direction',[0;0],'Doppler',tgtdoppler,...
'Weights0utputPort',true);
[y,w] = canceller(rxsig,tgtcell);

```

Plot the DPCA result with the target range marked by a vertical dashed line. Notice how the presence of the interference signal has obscured the target.
plot([tgtrng/1e3,tgtrng/1e3],[0 7e-2],'-.', rangebins/1e3,abs(y))
axis tight
xlabel('Range (km)')
ylabel('Magnitude')
title('DPCA Canceller Output with Jamming')


Apply the adaptive DPCA pulse canceller. Use 100 training cells and 4 guard cells, two on each side of the target range gate.
```

canceller = phased.ADPCACanceller('SensorArray',array,'PRF',PRF,...
'PropagationSpeed',c,...
'OperatingFrequency',fc,...
'Direction',[0;0],'Doppler',tgtdoppler,...
'WeightsOutputPort',true,'NumGuardCells',4,...
'NumTrainingCells',100);
[y_adpca,w_adpca] = canceller(rxsig,tgtcell);

```

Plot the result with the target range marked by a vertical dashed line. Notice how the adaptive DPCA pulse canceller enables you to detect the target in the presence of the jamming signal.
```

plot([tgtrng/1e3,tgtrng/1e3],[0 4e-7],'-.',rangebins/1e3,abs(y_adpca))
axis tight
title('ADPCA Canceller Output with Jamming')
xlabel('Range (km)')
ylabel('Magnitude')

```


Examine the angle-Doppler response. Notice the presence of the clutter ridge in the angle-Doppler plane and the null at the jammer's broadside angle for all Doppler frequencies.
```

angdopplerersponse = phased.AngleDopplerResponse('SensorArray',array,...
'OperatingFrequency',fc,...
'PropagationSpeed',c,...
'PRF',PRF,'ElevationAngle',tgtelang);
plotResponse(angdopplerersponse,w_adpca)
title('Angle-Doppler Response with ADPCA Pulse Cancellation')
text(az2broadside(jamang(1),jamang(2)) + 10,...
0,'\leftarrow Interference Null')

```

Angle-Doppler Response with ADPCA Pulse Cancellation


\section*{Sample Matrix Inversion Beamformer}

\author{
In this section... \\ "When to Use the SMI Beamformer" on page 7-18 \\ "Sample Matrix Inversion Beamformer" on page 7-18
}

\section*{When to Use the SMI Beamformer}

In situations where an airborne radar system needs to suppress clutter returns and jammer interference, the system needs a more sophisticated algorithm than a DPCA pulse canceller can provide. One option is the sample matrix inversion (SMI) algorithm. SMI is the optimum STAP algorithm and is often used as a baseline for comparison with other algorithms.

The SMI algorithm is computationally expensive and assumes a stationary environment across many pulses. If you need to suppress clutter returns and jammer interference with less computation, or in a rapidly changing environment, consider using an ADPCA pulse canceller instead.

The phased.STAPSMIBeamformer object implements the SMI algorithm. In particular, the object lets you specify:
- The number of training cells. The algorithm uses training cells to estimate the interference. In general, a larger number of training cells leads to a better estimate of interference.
- The number of guard cells close to the target cells. The algorithm recognizes guard cells to prevent target returns from contaminating the estimate of the interference.

\section*{Sample Matrix Inversion Beamformer}

This scenario is identical to the one presented in "Adaptive DPCA Pulse Canceller To Reject Clutter and Interference" on page 7-12. You can run the code for both examples to compare the ADPCA pulse canceller with the SMI beamformer. The example details and code are repeated for convenience.

To repeat the scenario for convenience, the airborne radar platform is a six-element ULA operating at 4 GHz . The array elements are spaced at one-half the wavelength of the 4 GHz carrier frequency. The radar emits ten rectangular pulses two \(\mu \mathrm{s}\) in duration with a PRF of 5 kHz . The platform is moving along the array axis with a speed equal to one-half the product of the element spacing and the PRF. The target has a nonfluctuating RCS of 1 square meter and is moving with a constant velocity vector of \((15,15,0)\). A stationary broadband barrage jammer is located at ( \(3.5 e 3,1 e 3,0\) ). The jammer has an effective radiated power of 1 kW .
```

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace my0bject (x) with
step (myObject,x).
PRF $=5 \mathrm{e} 3$;
$\mathrm{fc}=4 \mathrm{e} 9$;
fs = le6;
c = physconst('LightSpeed');
antenna $=$ phased.IsotropicAntennaElement...
('FrequencyRange',[8e8 5e9],'BackBaffled',true);
lambda = c/fc;
array $=$ phased.ULA(6,'Element', antenna, 'ElementSpacing',lambda/2);

```
```

waveform = phased.RectangularWaveform('PulseWidth', 2e-6,...
'PRF',PRF,'SampleRate',fs,'NumPulses',1);
radiator = phased.Radiator('Sensor',array,...
'PropagationSpeed',c,...
'OperatingFrequency',fc);
collector = phased.Collector('Sensor',array,...
'PropagationSpeed', c, ...
'OperatingFrequency',fc);
vy = (array.ElementSpacing * PRF)/2;
transmitterplatform = phased.Platform('InitialPosition',[0;0;3e3],...
'Velocity',[0;vy;0]);
clutter = phased.ConstantGammaClutter('Sensor',array,...
'PropagationSpeed',radiator.PropagationSpeed,...
'OperatingFrequency',radiator.OperatingFrequency,...
'SampleRate',fs,...
'TransmitSignalInputPort',true,...
'PRF',PRF,...
'Gamma',surfacegamma('woods',radiator.OperatingFrequency),...
'EarthModel','Flat',...
'BroadsideDepressionAngle',0,...
'MaximumRange',radiator.PropagationSpeed/(2*PRF),...
'PlatformHeight',transmitterplatform.InitialPosition(3),...
'PlatformSpeed',norm(transmitterplatform.Velocity),...
'PlatformDirection',[90;0]);
target = phased.RadarTarget('MeanRCS',1,...
'Model','Nonfluctuating','OperatingFrequency',fc);
targetplatform = phased.Platform('InitialPosition',[5e3; 5e3; 0],...
'Velocity',[15;15;0]);
jammer = phased.BarrageJammer('ERP',le3,'SamplesPerFrame',200);
jammerplatform = phased.Platform(...
'InitialPosition',[3.5e3; 1e3; 0],'Velocity',[0;0;0]);
channel = phased.FreeSpace('OperatingFrequency',fc,...
'TwoWayPropagation',false,'SampleRate',fs);
receiverpreamp = phased.ReceiverPreamp('NoiseFigure',0,...
'EnableInputPort',true,'SampleRate',fs,'Gain',40);
transmitter = phased.Transmitter('PeakPower',le4,...
'InUseOutputPort',true,'Gain',40);

```

Propagate the ten rectangular pulses to and from the target and collect the responses at the array. Compute clutter echoes using the constant gamma model with a gamma value corresponding to wooded terrain. Also, propagate the jamming signal from the jammer location to the airborne ULA.
```

NumPulses = 10;
wav = waveform();
M = fs/PRF;
N = array.NumElements;
rxsig = zeros(M,N,NumPulses);
csig = zeros(M,N,NumPulses);
jsig = zeros(M,N,NumPulses);
fasttime = unigrid(0,1/fs,1/PRF,'[)');
rangebins = (c*fasttime)/2;
clutter.SeedSource = 'Property';
clutter.Seed = 40543;
jammer.SeedSource = 'Property';
jammer.Seed = 96703;
receiverpreamp.SeedSource = 'Property';
receiverpreamp.Seed = 56113;
jamloc = jammerplatform.InitialPosition;

```
```

for n = 1:NumPulses
[txloc,txvel] = transmitterplatform(1/PRF); % move transmitter
[tgtloc,tgtvel] = targetplatform(1/PRF); % move target
[~,tgtang] = rangeangle(tgtloc,txloc); % get angle to target
[txsig,txstatus] = transmitter(wav); % transmit pulse
csig(:,:,n) = clutter(txsig(abs(txsig)>0)); % collect clutter
txsig = radiator(txsig,tgtang); % radiate pulse
txsig = channel(txsig,txloc,tgtloc,...
txvel,tgtvel); % propagate pulse to target
txsig = target(txsig); % reflect off target
txsig = channel(txsig,tgtloc,txloc,...
tgtvel,txvel); % propagate to array
rxsig(:,:,n) = collector(txsig,tgtang); % collect pulse
jamsig = jammer(); % generate jammer signal
[~,jamang] = rangeangle(jamloc,txloc); % angle from jammer to transmitter
jamsig = channel(jamsig,jamloc,txloc,...
[0;0;0],txvel); % propagate jammer signal
jsig(:,:,n) = collector(jamsig,jamang); % collect jammer signal
rxsig(:,:,n) = receiverpreamp(...
rxsig(:,:,n) + csig(:,:,n) + jsig(:,:,n),...
~txstatus); % receive pulse plus clutter return plus jammer signal
end

```

Determine the target's range, range gate, and two-way Doppler shift.
```

sp = radialspeed(tgtloc, targetplatform.Velocity, ...
txloc, transmitterplatform.Velocity);
tgtdoppler = 2*speed2dop(sp,lambda);
tgtLocation = global2localcoord(tgtloc,'rs',txloc);
tgtazang = tgtLocation(1);
tgtelang = tgtLocation(2);
tgtrng = tgtLocation(3);
tgtcell = val2ind(tgtrng,c/(2 * fs));

```

Construct an SMI beamformer object. Use 100 training cells, 50 on each side of the target range gate. Use four guard cells, two range gates in front of the target cell and two range gates beyond the target cell. Obtain the beamformer response and weights.
```

tgtang = [tgtazang; tgtelang];
beamformer = phased.STAPSMIBeamformer('SensorArray',array,...
'PRF',PRF,'PropagationSpeed',c,...
'OperatingFrequency',fc,...
'Direction',tgtang,'Doppler',tgtdoppler,...
'Weights0utputPort',true,...
'NumGuardCells',4,'NumTrainingCells',100);
[y,weights] = beamformer(rxsig,tgtcell);

```

Plot the resulting array output after beamforming.
```

plot([tgtrng,tgtrng],[0 5e-6],'-.',rangebins,abs(y))
axis tight
title('SMI Beamformer Output')
xlabel('Range (meters)')
ylabel('Magnitude')

```


Plot the angle-Doppler response with the beamforming weights.
```

response = phased.AngleDopplerResponse('SensorArray',array,...
'OperatingFrequency',4e9,'PRF',PRF,...
'PropagationSpeed',physconst('LightSpeed'));
plotResponse(response,weights)
title('Angle-Doppler Response with SMI Beamforming Weights')

```

Angle-Doppler Response with SMI Beamforming Weights


\section*{Detection}
- "Neyman-Pearson Hypothesis Testing" on page 8-2
- "Receiver Operating Characteristics" on page 8-6
- "Monte-Carlo ROC Simulation" on page 8-11
- "Matched Filtering" on page 8-19
- "Stretch Processing" on page 8-25
- "FMCW Range Estimation" on page 8-27
- "Range-Doppler Response" on page 8-29
- "Constant False-Alarm Rate (CFAR) Detectors" on page 8-34
- "Measure Intensity Levels Using the Intensity Scope" on page 8-41

\section*{Neyman-Pearson Hypothesis Testing}
```

In this section...
"Purpose of Hypothesis Testing" on page 8-2
"Support for Neyman-Pearson Hypothesis Testing" on page 8-2
"Threshold for Real-Valued Signal in White Gaussian Noise" on page 8-2
"Threshold for Two Pulses of Real-Valued Signal in White Gaussian Noise" on page 8-4
"Threshold for Complex-Valued Signals in Complex White Gaussian Noise" on page 8-4

```

\section*{Purpose of Hypothesis Testing}

In phased-array applications, you sometimes need to decide between two competing hypotheses to determine the reality underlying the data the array receives. For example, suppose one hypothesis, called the null hypothesis, states that the observed data consists of noise only. Suppose another hypothesis, called the alternative hypothesis, states that the observed data consists of a deterministic signal plus noise. To decide, you must formulate a decision rule that uses specified criteria to choose between the two hypotheses.

\section*{Support for Neyman-Pearson Hypothesis Testing}

When you use Phased Array System Toolbox software for applications such as radar and sonar, you typically use the Neyman-Pearson (NP) optimality criterion to formulate your hypothesis test.

When you choose the NP criterion, you can use npwgnthresh to determine the threshold for the detection of deterministic signals in white Gaussian noise. The optimal decision rule derives from a likelihood ratio test (LRT). An LRT chooses between the null and alternative hypotheses based on a ratio of conditional probabilities.
npwgnthresh enables you to specify the maximum false-alarm probability as a constraint. A false alarm means determining that the data consists of a signal plus noise, when only noise is present.

For details about the statistical assumptions the npwgnthresh function makes, see the reference page for that function.

\section*{Threshold for Real-Valued Signal in White Gaussian Noise}

This example shows how to compute empirically the probability of false alarm for a real-valued signal in white Gaussian noise.

Determine the required signal-to-noise (SNR) in decibels for the NP detector when the maximum tolerable false-alarm probability is \(10^{\wedge}-3\).
```

Pfa = 1e-3;
T = npwgnthresh(Pfa,1,'real');

```

Determine the actual detection threshold corresponding to the desired false-alarm probability, assuming the variance is 1 .
```

variance = 1;
threshold = sqrt(variance * db2pow(T));

```

Verify empirically that the detection threshold results in the desired false-alarm probability under the null hypothesis. To do so, generate 1 million samples of a Gaussian random variable, and determine the proportion of samples that exceed the threshold.
```

rng default
N = le6;
x = sqrt(variance) * randn(N,1);
falsealarmrate = sum(x > threshold)/N
falsealarmrate = 9.9500e-04

```

Plot the first 10,000 samples. The red horizontal line shows the detection threshold.
```

x1 = x(1:1e4);

```
plot(x1)
line([1 length(x1)],[threshold threshold],'Color','red')
xlabel('Sample')
ylabel('Value')


You can see that few sample values exceed the threshold. This result is expected because of the small false-alarm probability.

\section*{Threshold for Two Pulses of Real-Valued Signal in White Gaussian Noise}

This example shows how to empirically verify the probability of false alarm in a system that integrates two real-valued pulses. In this scenario, each integrated sample is the sum of two samples, one from each pulse.

Determine the required SNR for the NP detector when the maximum tolerable false-alarm probability is \(10^{-3}\).
pfa \(=1 \mathrm{e}-3\);
\(\mathrm{T}=\) npwgnthresh(pfa, 2,'real');
Generate two sets of one million samples of a Gaussian random variable.
```

rng default
variance = 1;
N = 1e6;
pulse1 = sqrt(variance)*randn(N,1);
pulse2 = sqrt(variance)*randn(N,1);
intpuls = pulse1 + pulse2;
Compute the proportion of samples that exceed the threshold.

```
```

threshold = sqrt(variance*db2pow(T));

```
threshold = sqrt(variance*db2pow(T));
falsealarmrate = sum(intpuls > threshold)/N
falsealarmrate = sum(intpuls > threshold)/N
falsealarmrate = 9.8900e-04
```

falsealarmrate = 9.8900e-04

```

The empirical false alarm rate is very close to .001

\section*{Threshold for Complex-Valued Signals in Complex White Gaussian Noise}

This example shows how to empirically verify the probability of false alarm in a system that uses coherent detection of complex-valued signals. Coherent detection means that the system utilizes information about the phase of the complex-valued signals.

Determine the required SNR for the NP detector in a coherent detection scheme with one sample.
Use a maximum tolerable false-alarm probability of \(10^{-3}\).
```

pfa = 1e-3;
T = npwgnthresh(pfa,1,'coherent');

```

Test that this threshold empirically results in the correct false-alarm rate The sufficient statistic in the complex-valued case is the real part of the received sample.
```

rng default
variance = 1;
N = le6;
x = sqrt(variance/2)*(randn(N,1)+1j*randn(N,1));
threshold = sqrt(variance*db2pow(T));
falsealarmrate = sum(real(x)>threshold)/length(x)
falsealarmrate = 9.9500e-04

```

\section*{Receiver Operating Characteristics}

Receiver Operating Characteristic (ROC) curves present graphical summaries of a detector's performance. You can generate ROC curves using the rocpfa and rocsnr functions.

If you are interested in examining the effect of varying the false-alarm probability on the probability of detection for a fixed SNR, you can use rocsnr. For example, the threshold SNR for the NeymanPearson detector of a single sample in real-valued Gaussian noise is approximately 13.5 dB . Use rocsnr to plot the probability of detection varies as a function of the false-alarm rate at that SNR.
```

T = npwgnthresh(1e-6,1,'real');
rocsnr(T,'SignalType','real')

```

\section*{Real}


The ROC curve lets you easily read off the probability of detection for a given false-alarm rate.
You can use rocsnr to examine detector performance for different received signal types at a fixed SNR.
```

SNR = 13.54;
[Pd_real,Pfa_real] = rocsnr(SNR,'SignalType','real',...
'MinPfa',1e-8);
[Pd_coh,Pfa_coh] = rocsnr(SNR,...
'SignalT̄ype','NonfluctuatingCoherent',...
'MinPfa',1e-8);
[Pd_noncoh,Pfa_noncoh] = rocsnr(SNR,'SignalType',...
'NonfluctuātingNoncoherent','MinPfa',1e-8);

```
```

semilogx(Pfa_real,Pd_real)
hold on
grid on
semilogx(Pfa_coh,Pd_coh,'r')
semilogx(Pfa_noncoh,Pd_noncoh,'k')
xlabel('False-Alarm Probability')
ylabel('Probability of Detection')
legend('Real','Coherent','Noncoherent','location','southeast')
title('ROC Curve Comparison for Nonfluctuating RCS Target')
hold off

```


The ROC curves clearly demonstrate the superior probability of detection performance for coherent and noncoherent detectors over the real-valued case.

The rocsnr function accepts an SNR vector input letting you quickly examine a number of ROC curves.

SNRs = (6:2:12);
rocsnr(SNRs,'SignalType','NonfluctuatingNoncoherent')


The graph shows that, as the SNR increases, the supports of the probability distributions under the null and alternative hypotheses become more disjoint. Therefore, for a given false-alarm probability, the probability of detection increases.

You can examine the probability of detection as a function of SNR for a fixed false-alarm probability with rocpfa. To obtain ROC curves for a Swerling I target model at false-alarm probabilities of (1e-6,1e-4,1e-2,1e-1), use

Pfa \(=\) [1e-6 1e-4 1e-2 1e-1];
rocpfa(Pfa,'SignalType','Swerling1')

\% Use rocpfa to examine the effect of SNR on the probability of detection for a detector using noncoherent integration with a false-alarm probability of \(1 e-4\). Assume the target has a nonfluctuating RCS and that you are integrating over 5 pulses.
```

[Pd,SNR] = rocpfa(1e-4,...
'SignalType','NonfluctuatingNoncoherent',...
'NumPulses',5);
figure;
plot(SNR,Pd); xlabel('SNR (dB)');
ylabel('Probability of Detection'); grid on;
title('Nonfluctuating Noncoherent Detector (5 Pulses)');

```


\section*{See Also}

\section*{Related Examples}
- Detector Performance Analysis using ROC Curves

\section*{Monte-Carlo ROC Simulation}

This example shows how to generate a receiver operating characteristic (ROC) curve of a radar system using a Monte-Carlo simulation. The receiver operating characteristic determines how well the system can detect targets while rejecting large spurious signal values when a target is absent (false alarms). A detection system will declare presence or absence of a target by comparing the received signal value to a preset threshold. The probability of detection \((P d)\) of a target is the probability that the instantaneous signal value is larger than the threshold whenever a target is actually present. The probability of false alarm (Pfa) is the probability that the signal value is larger than the threshold when a target is absent. In this case, the signal is due to noise and its properties depend on the noise statistics. The Monte-Carlo simulation generates a very large number of radar returns with and without a target present. The simulation computes Pd and Pfa are by counting the proportion of signal values in each case that exceed the threshold.

A ROC curve plots \(P d\) as a function of \(P f a\). The shape of a ROC curve depends on the received SNR of the signal. If the arriving signal SNR is known, then the ROC curve shows how well the system performs in terms of \(P d\) and \(P f a\). If you specify \(P d\) and \(P f a\), then you can determine how much power is needed to achieve this requirement.

You can use the function rocsnr to compute theoretical ROC curves. This example shows a ROC curve generated by a Monte-Carlo simulation of a single-antenna radar system and compares that curve with a theoretical curve.

\section*{Specify Radar Requirements}

Set the desired probability of detection to be 0.9 and the probability of false alarm to be \(10^{-6}\). Set the maximum range of the radar to 4000 meters and the range resolution to 50 meters. Set the actual target range to 3000 meters. Set the target radar cross-section to 1.5 square meters and set the operating frequency to 10 GHz . All computations are performed in baseband.
```

c = physconst('LightSpeed');
pd = 0.9;
pfa = le-6;
max_range = 4000;
target_range = 3000.0;
range_res = 50;
tgt_rcs = 1.5;
fc = 10e9;
lambda = c/fc;

```

Any simulation that computes Pfa and \(p d\) requires processing of many signals. To keep memory requirements low, process the signals in chunks of pulses. Set the number of pulses to process to 45000 and set the size of each chunk to 10000 .

Npulse = 45000;
Npulsebuffsize = 10000;

\section*{Select Waveform and Signal Parameters}

Calculate the waveform pulse bandwidth using the pulse range resolution. Calculate the pulse repetition frequency from the maximum range. Because the signal is baseband, set the sampling frequency to twice the bandwidth. Calculate the pulse duration from the pulse bandwidth.
```

pulse_bw = c/(2*range_res);
prf =- c/(2*max_range);

```
```

fs = 2*pulse_bw;
pulse_duration = 10/pulse_bw;
wavefōrm = phased.LinearF\overline{MWaveform('PulseWidth',pulse_duration,...}
'SampleRate',fs,'SweepBandwidth',...
pulse_bw,'PRF',prf);

```

Achieving a particular \(P d\) and \(P f a\) requires that sufficient signal power arrive at the receiver after the target reflects the signal. Compute the minimum SNR needed to achieve the specified probability of false alarm and probability of detection by using the Albersheim equation.
```

snr_min = albersheim(pd,pfa);

```

To to achieve this SNR, sufficient power must be transmitted to the target. Use the radareqpow function to estimate the peak transmit power required to achieve the specified SNR in dB for the target at a range of 3000 meters. The received signal also depends on the target radar cross-section (RCS). which is assumed to follow a nonfluctuating model (Swerling 0 ). Set the radar to have identical transmit and receive gains of 20 dB .
```

txrx gain = 20;
peak_power = radareqpow(lambda,target_range,...
snr_min,pulse_duration,'RCS',tgt_rcs,...
'Gaīn',txrx_gāin,'Ts',290.0);

```

\section*{Set Up the Transmitter System Objects}

Create System Objects that make up the transmission part of the simulation: radar platform, antenna, transmitter, and radiator.
```

antennaplatform = phased.Platform(...
'InitialPosition',[0; 0; 0],...
'Velocity',[0; 0; 0]);
antenna = phased.IsotropicAntennaElement(...
'FrequencyRange',[5e9 15e9]);
transmitter = phased.Transmitter(...
'Gain',txrx_gain,...
'PeakPower',
'InUse0utputPort',true);
radiator = phased.Radiator(...
'Sensor', antenna,...
'OperatingFrequency',fc);

```

\section*{Set Up the Target System Object}

Create a target System Object corresponding to an actual reflecting target with a non-zero target cross-section. Reflections from this target will simulate actual radar returns. In order to compute false alarms, create a second target System Object with zero radar cross section. Reflections from this target are zero except for noise.
```

target{1} = phased.RadarTarget(...
'MeanRCS',tgt_rcs,...
'OperatingFrequency',fc);
targetplatform{1} = phased.Platform(...
'InitialPosition',[target_range; 0; 0]);
target{2} = phased.RadarTarge\overline{t}}..
'MeanRCS',0,...
'OperatingFrequency',fc);
targetplatform{2} = phased.Platform(...
'InitialPosition',[target_range; 0; 0]);

```

\section*{Set Up Free-Space Propagation System Objects}

Model the propagation environment from the radar to the targets and back.
```

channel{1} = phased.FreeSpace(...
'SampleRate',fs,...
'TwoWayPropagation',true,...
'OperatingFrequency',fc);
channel{2} = phased.FreeSpace(...
'SampleRate',fs,...
'TwoWayPropagation',true,...
'OperatingFrequency',fc);

```

\section*{Set Up Receiver System Objects}

Specified the noise by setting the NoiseMethod property to 'Noise temperature' and the ReferenceTemperature property to 290 K .
```

collector = phased.Collector(...
'Sensor',antenna,...
'OperatingFrequency',fc);
receiver = phased.ReceiverPreamp(...
'Gain',txrx_gain,...
'NoiseMethod}',''Noise temperature',...
'ReferenceTemperature',290.0,...
'NoiseFigure',0,...
'SampleRate',fs,...
'EnableInputPort',true);
receiver.SeedSource = 'Property';
receiver.Seed = 2010;

```

\section*{Specify Fast-Time Grid}

The fast-time grid is the set of time samples within one pulse repetition time interval. Each sample corresponds to a range bin.
```

fast_time_grid = unigrid(0,1/fs,1/prf,'[)');
rangebins = c*fast_time_grid/2;

```

\section*{Create Transmitted Pulse from Waveform}

Create the waveform to you want to transmit.
wavfrm = waveform();
Create the transmitted signal that includes transmitted antenna gains.
```

[sigtrans,tx_status] = transmitter(wavfrm);

```

Create matched filter coefficients from the waveform System object. Then create the matched filter System object \({ }^{\mathrm{TM}}\).
```

MFCoeff = getMatchedFilter(waveform);
matchingdelay = size(MFCoeff,1) - 1;
filter = phased.MatchedFilter(...
'Coefficients',MFCoeff,...
'GainOutputPort',false);

```

\section*{Compute Target Range Bin}

Compute the target range, and then compute the index into the range bin array. Because the target and radar are stationary, use the same values of position and velocity throughout the simulation loop. You can assume that the range bin index is constant for the entire simulation.
```

ant pos = antennaplatform.InitialPosition;
ant_vel = antennaplatform.Velocity;
tgt_pos = targetplatform{1}.InitialPosition;
tgt_vel = targetplatform{1}.Velocity;
[tgt_rng,tgt_ang] = rangeangle(tgt_pos,ant_pos);
rangeidx = val2ind(tgt_rng,rangebins(2)-rangebins(1),rangebins(1));

```

\section*{Loop Over Pulses}

Create a signal processing loop. Each step is accomplished by executing the System objects. The loop processes the pulses twice, once for the target-present condition and once for target-absent condition.

1 Radiate the signal into space using phased.Radiator.
2 Propagate the signal to the target and back to the antenna using phased. FreeSpace.
3 Reflect the signal from the target using phased. Target.
4 Receive the reflected signals at the antenna using phased. Collector.
5 Pass the received signal though the receive amplifier using phased. ReceiverPreamp. This step also adds the random noise to the signal.
6 Match filter the amplified signal using phased.MatchedFilter.
7 Store the matched filter output at the target range bin index for further analysis.
```

rcv_pulses = zeros(length(sigtrans),Npulsebuffsize);
h1 = zeros(Npulse,1);
h0 = zeros(Npulse,1);
Nbuff = floor(Npulse/Npulsebuffsize);
Nrem = Npulse - Nbuff*Npulsebuffsize;
for n = 1:2 % H1 and H0 Hypothesis
trsig = radiator(sigtrans,tgt_ang);
trsig = channel{n}(trsig,...
ant_pos,tgt_pos,...
ant_vel,tgt_vel);
rcvsig = target{n}(trsig);
rcvsig = collector(rcvsig,tgt_ang);
for k = 1:Nbuff
for m = 1:Npulsebuffsize
rcv_pulses(:,m) = receiver(rcvsig,~(tx_status>0));
end
rcv_pulses = filter(rcv_pulses);
rcv_pulses = buffer(rcv_pulses(matchingdelay+1:end),size(rcv_pulses,1));
if \overline{n}== 1
h1((1:Npulsebuffsize) + (k-1)*Npulsebuffsize) = rcv_pulses(rangeidx,:).';
else
h0((1:Npulsebuffsize) + (k-1)*Npulsebuffsize) = rcv_pulses(rangeidx,:).';
end
end
if (Nrem > 0)
for m = 1:Nrem

```
```

 rcv_pulses(:,m) = receiver(rcvsig,~(tx_status>0));
 end
 rcv pulses = filter(rcv pulses);
 rcv_pulses = buffer(rcv_pulses(matchingdelay+1:end),size(rcv_pulses,1));
 if n == 1
 h1((1:Nrem) + Nbuff*Npulsebuffsize) = rcv_pulses(rangeidx,1:Nrem).';
 else
 h0((1:Nrem) + Nbuff*Npulsebuffsize) = rcv_pulses(rangeidx,1:Nrem).';
 end
 end
 end

```

\section*{Create Histogram of Matched Filter Outputs}

Compute histograms of the target-present and target-absent returns. Use 100 bins to give a rough estimate of the spread of signal values. Set the range of histogram values from the smallest signal to the largest signal.
```

h1a = abs(h1);
h0a = abs(h0);
thresh low = min([h1a;h0a]);
thresh_hi = max([h1a;h0a]);
nbins = 100;
binedges = linspace(thresh_low,thresh_hi,nbins);
figure
histogram(h0a,binedges)
hold on
histogram(h1a,binedges)
hold off
title('Target-Absent Vs Target-Present Histograms')
legend('Target Absent','Target Present')

```

Target-Absent Vs Target-Present Histograms


\section*{Compare Simulated and Theoretical Pd and Pfa}

To compute \(P d\) and \(P f a\), calculate the number of instances that a target-absent return and a targetpresent return exceed a given threshold. This set of thresholds has a finer granularity than the bins used to create the histogram in the previous simulation. Then, normalize these counts by the number of pulses to get an estimate of the probabilities. The vector sim_pfa is the simulated probability of false alarm as a function of the threshold, thresh. The vector sim_pd is the simulated probability of detection, also a function of the threshold. The receiver sets the threshold so that it can determine whether a target is present or absent. The histogram above suggests that the best threshold is around 1.8.
```

nbins = 1000;
thresh_steps = linspace(thresh_low,thresh_hi,nbins);
sim_pd = zeros(1,nbins);
sim_pfa = zeros(1,nbins);
for k = 1:nbins
thresh = thresh_steps(k);
sim_pd(k) = sum(h1a >= thresh);
sim_pfa(k) = sum(h0a >= thresh);
end
sim_pd = sim_pd/Npulse;
sim_pfa = sim_pfa/Npulse;

```

To plot the experimental ROC curve, you must invert the Pfa curve so that you can plot Pd against Pfa. You can invert the Pfa curve only when you can express Pfa as a strictly monotonic decreasing function of thresh. To express Pfa this way, find all array indices where the Pfa is the constant over neighboring indices. Then, remove these values from the \(P d\) and \(P f a\) arrays.
```

pfa_diff = diff(sim_pfa);
idx = (pfa_diff == \overline{0});
sim pfa(id\overline{x})= [];
sim_pd(idx) = [];

```

Limit the smallest Pfa to \(10^{-6}\).
```

minpfa = 1e-6;
N = sum(sim_pfa >= minpfa);
sim_pfa = fliplr(sim_pfa(1:N)).';
sim_pd = fliplr(sim_pd(1:N)).';

```

Compute the theoretical Pfa and Pd values from the smallest Pfa to 1. Then plot the theoretical Pfa curve.
[theor_pd,theor_pfa] = rocsnr(snr_min,'SignalType',. .
'NonfluctuatingNoncoherent',...
'MinPfa',minpfa, 'NumPoints',N, 'NumPulses',1);
semilogx(theor_pfa,theor_pd)
hold on
semilogx(sim_pfa,sim_pd,'r.')
title('Simulated and Theoretical ROC Curves')
xlabel('Pfa')
ylabel('Pd')
grid on
legend('Theoretical','Simulated','Location','SE')

Simulated and Theoretical ROC Curves


\section*{Improve Simulation Using One Million Pulses}

In the preceding simulation, \(P d\) values at low \(P f a\) do not fall along a smooth curve and do not even extend down to the specified operating regime. The reason for this is that at very low Pfa levels, very few, if any, samples exceed the threshold. To generate curves at low Pfa, you must use a number of samples on the order of the inverse of Pfa. This type of simulation takes a long time. The following curve uses one million pulses instead of 45,000 . To run this simulation, repeat the example, but set Npulse to 1000000 .


\section*{Matched Filtering}

\author{
In this section... \\ "Reasons for Using Matched Filtering" on page 8-19 \\ "Support for Matched Filtering" on page 8-19 \\ "Matched Filtering of Linear FM Waveform" on page 8-19 \\ "Matched Filtering to Improve SNR for Target Detection" on page 8-21
}

\section*{Reasons for Using Matched Filtering}

You can see from the results in "Receiver Operating Characteristics" on page 8-6 that the probability of detection increases with increasing SNR. For a deterministic signal in white Gaussian noise, you can maximize the SNR at the receiver by using a filter matched to the signal. The matched filter is a time-reversed and conjugated version of the signal. The matched filter is shifted to be causal.

\section*{Support for Matched Filtering}

Use phased. MatchedFilter to implement a matched filter.
When you use phased.MatchedFilter, you can customize characteristics of the matched filter such as the matched filter coefficients and window for spectrum weighting. If you apply spectrum weighting, you can specify the coverage region and coefficient sample rate; Taylor, Chebyshev, and Kaiser windows have additional properties you can specify.

\section*{Matched Filtering of Linear FM Waveform}

This example compares the results of matched filtering with and without spectrum weighting. Spectrum weighting is often used with linear FM waveforms to reduce the sidelobes in the time domain.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call to the function with the equivalent step syntax. For example, replace my0bject (x) with step (my0bject,x).

Create a linear FM waveform with a duration of 0.1 milliseconds, a sweep bandwidth of 100 kHz , and a pulse repetition frequency of 5 kHz . Add noise to the linear FM pulse and filter the noisy signal using a matched filter. This example applies a matched filter with and without spectrum weighting.

Specify the waveform.
```

waveform = phased.LinearFMWaveform('PulseWidth',1e-4,'PRF',5e3,...
'SampleRate',le6,'OutputFormat','Pulses','NumPulses',1,...
'SweepBandwidth',1e5);
wav = getMatchedFilter(waveform);

```

Create a matched filter with no spectrum weighting, and a matched filter that uses a Taylor window for spectrum weighting.
```

filter = phased.MatchedFilter('Coefficients',wav);
taylorfilter = phased.MatchedFilter('Coefficients',wav,...
'SpectrumWindow','Taylor');

```

Create the signal and add noise.
```

sig = waveform();
rng(17)
x = sig + 0.5*(randn(length(sig),1) + lj*randn(length(sig),1));

```

Filter the noisy signal separately with each of the filters.
\(y=\) filter \((x)\);
y_taylor = taylorfilter(x);
Plot the real parts of the waveform and noisy signal.
```

t = linspace(0,numel(sig)/waveform.SampleRate,...
waveform.SampleRate/waveform.PRF);
subplot(2,1,1)
plot(t,real(sig))
title('Input Signal')
xlim([0 max(t)])
grid on
ylabel('Amplitude')
subplot(2,1,2)
plot(t,real(x))
title('Input Signal + Noise')
xlim([0 max(t)])
grid on
xlabel('Time (sec)')
ylabel('Amplitude')

```


Plot the magnitudes of the two matched filter outputs.
```

plot(t,abs(y),'b--')
title('Matched Filter Output')
xlim([0 max(t)])
grid on
hold on
plot(t,abs(y_taylor),'r-')
ylabel('Magnitude')
xlabel('Seconds')
legend('No Spectrum Weighting','Taylor Window')
hold off

```


\section*{Matched Filtering to Improve SNR for Target Detection}

This example shows how to improve the SNR by performing matched filtering.
Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call to the function with the equivalent step syntax. For example, replace my0bject (x) with step (my0bject,x).
Place an isotropic antenna element at the global origin ( \(0 ; 0 ; 0\) ). Then, place a target with a nonfluctuating RCS of 1 square meter approximately 7 km from the transmitter at (5000;5000;10). Set the operating (carrier) frequency to 10 GHz . To simulate a monostatic radar, set the InUseOutputPort property on the transmitter to true. Calculate the range and angle from the transmitter to the target.
```

antenna = phased.IsotropicAntennaElement('FrequencyRange',[5e9 15e9]);
transmitter = phased.Transmitter('Gain',20,'InUseOutputPort',true);
fc = 10e9;
target = phased.RadarTarget('Model','Nonfluctuating',...
'MeanRCS',1,'OperatingFrequency',fc);
txloc = [0;0;0];
tgtloc = [5000;5000;10];
transmitterplatform = phased.Platform('InitialPosition',txloc);
targetplatform = phased.Platform('InitialPosition',tgtloc);
[tgtrng,tgtang] = rangeangle(targetplatform.InitialPosition,...
transmitterplatform.InitialPosition);

```

Create a rectangular pulse waveform \(25 \mu \mathrm{~s}\) in duration with a PRF of 10 kHz . Use a single pulse for this example. Determine the maximum unambiguous range for the given PRF. Use the radareqpow function to determine the peak power required to detect a target. This target has an RCS of 1 square meter at the maximum unambiguous range for the transmitter operating frequency and gain. The SNR is based on a desired false-alarm rate of \(1 \mathrm{e}-6\) for a noncoherent detector.
```

waveform = phased.RectangularWaveform('PulseWidth',25e-6,...
'OutputFormat','Pulses','PRF',10e3,''NumPulses',1);
c = physconst('LightSpeed');
maxrange = c/(2*waveform.PRF);
SNR = npwgnthresh(1e-6,1,'noncoherent');
Pt = radareqpow(c/fc,maxrange,SNR,...
waveform.PulseWidth,'RCS',target.MeanRCS,'Gain',transmitter.Gain);

```

Set the peak transmit power to the output value from radareqpow.
```

transmitter.PeakPower = Pt;

```

Create radiator and collector objects that operate at 10 GHz . Create a free space path for the propagation of the pulse to and from the target. Then, create a receiver and a matched filter for the rectangular waveform.
```

radiator = phased.Radiator('PropagationSpeed',c,...
'OperatingFrequency',fc,'Sensor',antenna);
channel = phased.FreeSpace('PropagationSpeed',c,...
'OperatingFrequency',fc,'TwoWayPropagation',false);
collector = phased.Collector('PropagationSpeed',c,...
'OperatingFrequency',fc,'Sensor',antenna);
receiver = phased.ReceiverPreamp('NoiseFigure',0,···.
'EnableInputPort',true,'SeedSource','Property','Seed',2e3);
filter = phased.MatchedFilter(...
'Coefficients',getMatchedFilter(waveform),...
'GainOutputPort',true);

```

After you create all the objects that define your model, you can propagate the pulse to and from the target. Collect the echo at the receiver, and implement the matched filter to improve the SNR.

Generate waveform.
wf = waveform();
Transmit waveform.
```

[wf,txstatus] = transmitter(wf);

```

Radiate pulse toward the target.
wf = radiator(wf,tgtang);
Propagate pulse toward the target.
wf = channel(wf,txloc,tgtloc,[0;0;0],[0;0;0]);
Reflect it off the target.
\(w f=\) target(wf);
Propagate the pulse back to transmitter.
\(w f=\) channel(wf,tgtloc,txloc, \([0 ; 0 ; 0],[0 ; 0 ; 0]) ;\)
Collect the echo.
\(w f=\) collector(wf,tgtang);
Receive target echo.
```

rx_puls = receiver(wf,~txstatus);
[mf_puls,mfgain] = filter(rx_puls);

```

Get group delay of matched filter.
```

Gd = length(filter.Coefficients)-1;

```

The group delay is constant.
Shift the matched filter output.
```

mf_puls=[mf_puls(Gd+1:end); mf_puls(1:Gd)];
subplot(2,1,1)
t = unigrid(0,1e-6,1e-4,'[)');
rangegates = c.*t;
rangegates = rangegates/2;
plot(rangegates,abs(rx_puls))
title('Received Pulse')
ylabel('Amplitude')
hold on
plot([tgtrng, tgtrng], [0 max(abs(rx_puls))],'r')
subplot(2,1,2)
plot(rangegates,abs(mf_puls))
title('With Matched Filtering')
xlabel('Meters')
ylabel('Amplitude')
hold on
plot([tgtrng, tgtrng], [0 max(abs(mf_puls))],'r')
hold off

```


\section*{Stretch Processing}

\section*{In this section...}
"Reasons for Using Stretch Processing" on page 8-25
"Support for Stretch Processing" on page 8-25
"Stretch Processing Procedure" on page 8-25

\section*{Reasons for Using Stretch Processing}

The linear FM waveform is popular in radar systems because its large time-bandwidth product can provide good range resolution. However, the large bandwidth of this waveform makes digital matched filtering difficult because it requires expensive, high-quality analog-to-digital converters. Stretch processing, also known as deramping or dechirping, is an alternative to matched filtering. Stretch processing provides pulse compression by looking for the return within a predefined range interval of interest. Stretch processing typically occurs in the analog domain. Unlike matched filtering, stretch processing reduces the bandwidth requirement of subsequent processing.

\section*{Support for Stretch Processing}

The phased.StretchProcessor System object implements stretch processing. You can use this object as part of a simulation that uses phased. LinearFMWaveform or directly with your own data.

\section*{Stretch Processing Procedure}

The typical procedure for stretch processing is as follows:
1 Choose a range interval of interest, centered on a reference range. Stretch processing focuses on this interval instead of the entire range span that the pulse can cover.
2 Define and configure a stretch processor object. The configuration includes the reference range, length of the range interval of interest, characteristics of the linear FM waveform, and signal propagation speed.
- If you are using a phased.LinearFMWaveform object to implement the linear FM waveform, use the getStretchProcessor method to define and automatically configure a stretch processor object.
- Otherwise, create a phased. StretchProcessor object directly, and set its properties as needed.
3 Perform stretch processing by calling the step method on your stretch processor object. You provide your received signal as an input argument. The step method generates a reference signal and correlates it with your received signal.
4 Compute a periodogram of the output from step, and identify the peak frequencies. You can use the following features to help you perform this step:
- periodogram
- psd
- findpeaks

5 Convert each peak frequency to the corresponding range value, using the stretchfreq 2 rng function.

\section*{See Also}
findpeaks | periodogram | phased. LinearFMWaveform | phased. StretchProcessor | stretchfreq2rng

\section*{Related Examples}
- Range Estimation Using Stretch Processing

\section*{FMCW Range Estimation}

The purpose of FMCW range estimation is to estimate the range of a target. For example, a radar for collision avoidance in an automobile needs to estimate the distance to the nearest obstacle. FMCW range estimation algorithms can vary in the details, but the typical high-level procedure is as follows:

1 Dechirp - Dechirp the received signal by mixing it with the transmitted signal. If you use the dechirp function, the transmitted signal is the reference signal.

2 Find beat frequency - From the dechirped signal, extract the beat frequency or pair of beat frequencies. If the FMCW signal has a sawtooth shape (up-sweep or down-sweep sawtooth shape), you extract one beat frequency. If the FMCW signal has a triangular sweep, you extract up-sweep and down-sweep beat frequencies.

Extracting beat frequencies can use a variety of algorithms. For example, you can use the following features to help you perform this step:
- pwelch or periodogram
- psd
- findpeaks
- rootmusic
- phased.CFARDetector

3 Compute range - Use the beat frequency or frequencies to compute the corresponding range value. The beat 2 range function can perform this computation.

While developing your algorithm, you might also perform these auxiliary tasks:
- Visualize targets in the range-Doppler domain, using the phased. RangeDopplerResponse System object.
- Determine whether you need to compensate for range-Doppler coupling. Such coupling can occur if the target is moving relative to the radar. You can use the rdcoupling function to compute the range offset due to range-Doppler coupling. If the range offset is not negligible, common compensation techniques include:
- Subtracting the range offset from your initial range estimate
- Having the FMCW signal use a triangle sweep instead of an up sweep or down sweep
- Explore the relationships among your system's range requirements and parameters of the FMCW waveform. You can use these functions:
- range2time
- time2range
- range2bw

\section*{See Also}
beat2range | dechirp | findpeaks | periodogram | phased. FMCWWaveform | phased.RangeDopplerResponse | pwelch | range2beat | range2bw | range2time | rdcoupling| rootmusic|time2range

\section*{Related Examples}
- "Automotive Adaptive Cruise Control Using FMCW Technology" on page 17-367

\section*{Range-Doppler Response}

\author{
In this section... \\ "Benefits of Producing Range-Doppler Response" on page 8-29 \\ "Support for Range-Doppler Processing" on page 8-29 \\ "Range-Speed Response Pattern of Target" on page 8-30
}

\section*{Benefits of Producing Range-Doppler Response}

Visualizing a signal in the range-Doppler domain can help you intuitively understand connections among targets. From a range-Doppler map, you can:
- See how far away the targets are and how quickly they are approaching or receding.
- Distinguish among targets moving at various speeds at various ranges, in particular:
- If a transmitter platform is stationary, a range-Doppler map shows a response from stationary targets at zero Doppler.
- For targets that are moving relative to the transmitter platform, the range-Doppler map shows a response at nonzero Doppler values.

You can also use the range-Doppler response in nonvisual ways. For example, you can perform peak detection in the range-Doppler domain and use the information to resolve the range-Doppler coupling of an FMCW radar system.

\section*{Support for Range-Doppler Processing}

You can use the phased.RangeDopplerResponse object to compute and visualize the rangeDoppler response of input data. This object performs range processing in fast time, followed by Doppler processing in slow time. The object configuration and syntax typically depend on the kind of radar system.

\section*{Pulsed Radar Systems}

This procedure is used typically to produce a range-Doppler response for a pulsed radar system. (In the special case of linear FM pulses, the procedure in "FMCW Radar Systems" on page 8-30 is an alternative option.)

1 Create a phased.RangeDopplerResponse object, setting the RangeMethod property to 'Matched Filter'.
2 Customize these characteristics, or accept default values for any of them:
- Signal propagation speed
- Sample rate
- Length of the FFT for Doppler processing
- Characteristics of the window for Doppler weighting, if any
- Doppler domain output preference in terms of radial speed or Doppler shift frequency. (If you select radial speed, also specify the signal carrier frequency.)
3 Organize your data, \(x\), into a matrix. The columns in this matrix correspond to separate, consecutive pulses.

4 Use plotResponse to plot the range-Doppler response or step to obtain data representing the range-Doppler response. Include \(x\) and matched filter coefficients in your syntax when you call plotResponse or step.

For examples, see the step reference page or "Range-Speed Response Pattern of Target" on page 830.

\section*{FMCW Radar Systems}

This procedure is used typically to produce a range-Doppler response for an FMCW radar system. You can also use this procedure for a system that uses linear FM pulsed signals. In the case of pulsed signals, you typically use stretch processing to dechirp the signal.

1 Create a phased.RangeDopplerResponse object, setting the RangeMethod property to 'Dechirp'.
2 Customize these characteristics, or accept default values for any of them:
- Signal propagation speed
- Sample rate
- FM sweep slope
- Whether the processor should dechirp or decimate your signal
- Length of the FFT for range processing. The algorithm performs an FFT to translate the dechirped data into the beat frequency domain, which provides range information.
- Characteristics of the window for range weighting, if any
- Length of the FFT for Doppler processing
- Characteristics of the window for Doppler weighting, if any
- Doppler domain output preference in terms of radial speed or Doppler shift frequency. (If you select radial speed, also specify the signal carrier frequency.)
3 Organize your data, x , into a matrix in which the columns correspond to sweeps or pulses that are separate and consecutive.

In the case of an FMCW waveform with a triangle sweep, the sweeps alternate between positive and negative slopes. However, phased. RangeDopplerResponse is designed to process consecutive sweeps of the same slope. To apply phased. RangeDopplerResponse for a triangle-sweep system, use one of the following approaches:
- Specify a positive SweepSlope property value, with x corresponding to upsweeps only. The true values of Doppler or speed are half of what step returns or plotResponse plots.
- Specify a negative SweepSlope property value, with x corresponding to downsweeps only. The true values of Doppler or speed are half of what step returns or plotResponse plots.
4 Use plotResponse to plot the range-Doppler response or step to obtain data representing the range-Doppler response. Include \(x\) in the syntax when you call plotResponse or step. If your data is not already dechirped, also include a reference signal in the syntax.

For an example, see the plotResponse reference page.

\section*{Range-Speed Response Pattern of Target}

This example shows how to visualize the speed and range of a target in a pulsed radar system that uses a rectangular waveform.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call to the function with the equivalent step syntax. For example, replace my0bject (x) with step(my0bject,x).

Place an isotropic antenna element at the global origin ( \(0,0,0\) ). Then, place a target with a nonfluctuating RCS of 1 square meter at (5000,5000,10), which is approximately 7 km from the transmitter. Set the operating (carrier) frequency to 10 GHz . To simulate a monostatic radar, set the InUseOutputPort property on the transmitter to true. Calculate the range and angle from the transmitter to the target.
```

antenna = phased.IsotropicAntennaElement(...
'FrequencyRange',[5e9 15e9]);
transmitter = phased.Transmitter('Gain',20,'InUseOutputPort',true);
fc = 10e9;
target = phased.RadarTarget('Model','Nonfluctuating',...
'MeanRCS',1,'OperatingFrequency',fc);
txloc = [0;0;0];
tgtloc = [5000;5000;10];
antennaplatform = phased.Platform('InitialPosition',txloc);
targetplatform = phased.Platform('InitialPosition',tgtloc);
[tgtrng,tgtang] = rangeangle(targetplatform.InitialPosition,...
antennaplatform.InitialPosition);

```

Create a rectangular pulse waveform \(2 \mu \mathrm{~s}\) in duration with a PRF of 10 kHz . Determine the maximum unambiguous range for the given PRF. Use the radareqpow function to determine the peak power required to detect a target. This target has an RCS of 1 square meter at the maximum unambiguous range for the transmitter operating frequency and gain. The SNR is based on a desired false-alarm rate of \(1 e^{-6}\) for a noncoherent detector.
```

waveform = phased.RectangularWaveform('PulseWidth',2e-6,...
'OutputFormat','Pulses','PRF',1e4,'NumPulses',1);
c = physconst('LightSpeed');
maxrange = c/(2*waveform.PRF);
SNR = npwgnthresh(le-6,1,'noncoherent');
Pt = radareqpow(c/fc,maxrange,SNR,...
waveform.PulseWidth,'RCS',target.MeanRCS,'Gain',transmitter.Gain);

```

Set the peak transmit power to the output value from radareqpow.
```

transmitter.PeakPower = Pt;

```

Create radiator and collector objects that operate at 10 GHz . Create a free space path for the propagation of the pulse to and from the target. Then, create a receiver.
```

radiator = phased.Radiator(...
'PropagationSpeed',c,...
'OperatingFrequency',fc,'Sensor',antenna);
channel = phased.FreeSpace(...
'PropagationSpeed',c,...
'OperatingFrequency',fc,'TwoWayPropagation',false);
collector = phased.Collector(...
'PropagationSpeed',c,...
'OperatingFrequency',fc,'Sensor',antenna);
receiver = phased.ReceiverPreamp('NoiseFigure',0,···.
'EnableInputPort',true,'SeedSource','Property',''Seed',2e3);

```

Propagate 25 pulses to and from the target. Collect the echoes at the receiver, and store them in a 25column matrix named rx_puls.
numPulses \(=25\);
rx_puls = zeros(100,numPulses);
Simulation loop
for \(n=1\) numPulses
Generate waveform
```

 wf = waveform();
    ```

Transmit waveform
```

 [wf,txstatus] = transmitter(wf);
    ```

Radiate pulse toward the target
```

wf = radiator(wf,tgtang);

```

Propagate pulse toward the target
```

wf = channel(wf,txloc,tgtloc,[0;0;0],[0;0;0]);

```

Reflect it off the target
```

wf = target(wf);

```

Propagate the pulse back to transmitter
```

wf = channel(wf,tgtloc,txloc,[0;0;0],[0;0;0]);

```

Collect the echo
```

wf = collector(wf,tgtang);

```

Receive the target echo
```

rx_puls(:,n) = receiver(wf,~txstatus);

```
end
Create a range-Doppler response object that uses the matched filter approach. Configure this object to show radial speed rather than Doppler frequency. Use plotResponse to plot the range versus speed.
```

rangedoppler = phased.RangeDopplerResponse(...
'RangeMethod','Matched Filter',...
'PropagationSpeed',c,...
'DopplerOutput','Speed','OperatingFrequency',fc);
plotResponse(rangedoppler,rx_puls,getMatchedFilter(waveform))

```


The plot shows the stationary target at a range of approximately 7000 m .

\section*{See Also}
phased.RangeDopplerResponse

\section*{Related Examples}
- "Automotive Adaptive Cruise Control Using FMCW Technology" on page 17-367

\section*{Constant False-Alarm Rate (CFAR) Detectors}

\section*{In this section...}
"False Alarm Rate For CFAR Detectors" on page 8-34
"Cell-Averaging CFAR Detector" on page 8-36
"CFAR Detector Adaptation to Noisy Input Data" on page 8-37
"Extensions of Cell-Averaging CFAR Detector" on page 8-38
"Detection Probability for CFAR Detector" on page 8-38

\section*{False Alarm Rate For CFAR Detectors}

In the Neyman-Pearson framework, the probability of detection is maximized subject to the constraint that the false-alarm probability does not exceed a specified level. The false-alarm probability depends on the noise variance. Therefore, to calculate the false-alarm probability, you must first estimate the noise variance. If the noise variance changes, you must adjust the threshold to maintain a constant false-alarm rate. Constant false-alarm rate detectors implement adaptive procedures that enable you to update the threshold level of your test when the power of the interference changes.

To motivate the need for an adaptive procedure, assume a simple binary hypothesis test where you must decide between the signal-absent and signal-present hypotheses for a single sample. The signal has amplitude 4, and the noise is zero-mean gaussian with unit variance.
\[
\begin{aligned}
& H_{0}: x=w, \quad w \sim N(0,1) \\
& H_{1}: x=4+w
\end{aligned}
\]

First, set the false-alarm rate to 0.001 and determine the threshold.
```

T = npwgnthresh(1e-3,1,'real');
threshold = sqrt(db2pow(T))
threshold =
3.0902

```

Check that this threshold yields the desired false-alarm rate probability and then compute the probability of detection.
```

pfa = 0.5*erfc(threshold/sqrt(2))
pd = 0.5*erfc((threshold-4)/sqrt(2))
pfa =
1.0000e-03
pd =
0.8185

```

Next, assume that the noise power increases by 6.02 dB , doubling the noise variance. If your detector does not adapt to this increase in variance by determining a new threshold, your false-alarm rate increases significantly.
```

pfa = 0.5*erfc(threshold/2)
pfa =
0.0144

```

The following figure shows the effect of increasing the noise variance on the false-alarm probability for a fixed threshold.
```

noisevar = 1:0.1:10;
noisepower = 10*log10(noisevar);
pfa = 0.5*erfc(threshold./sqrt(2*noisevar));
semilogy(noisepower,pfa./1e-3)
grid on
title('Increase in P {FA} due to Noise Variance')
ylabel('Increase in \overline{P}_{FA} (Orders of Magnitude)')
xlabel('Noise Power Increase (dB)')

```


\section*{Cell-Averaging CFAR Detector}

The cell-averaging CFAR detector estimates the noise variance for the range cell of interest, or cell under test, by analyzing data from neighboring range cells designated as training cells. The noise characteristics in the training cells are assumed to be identical to the noise characteristics in the cell under test (CUT).

This assumption is key in justifying the use of the training cells to estimate the noise variance in the CUT. Additionally, the cell-averaging CFAR detector assumes that the training cells do not contain any signals from targets. Thus, the data in the training cells are assumed to consist of noise only.

To make these assumptions realistic:
- It is preferable to have some buffer, or guard cells, between the CUT and the training cells. The buffer provided by the guard cells guards against signal leaking into the training cells and adversely affecting the estimation of the noise variance.
- The training cells should not represent range cells too distant in range from the CUT, as the following figure illustrates.


The optimum estimator for the noise variance depends on distributional assumptions and the type of detector. Assume the following:

1 You are using a square-law detector.
2 You have a Gaussian, complex-valued, random variable (RV) with independent real and imaginary parts.
3 The real and imaginary parts each have mean zero and variance equal to \(\sigma^{2} / 2\).

Note If you denote this RV by \(\mathrm{Z}=\mathrm{U}+\mathrm{jV}\), the squared magnitude \(|\mathrm{Z}|^{2}\) follows an exponential distribution with mean \(\sigma^{2}\).

If the samples in training cells are the squared magnitudes of such complex Gaussian RVs, you can use the sample mean as an estimator of the noise variance.

To implement cell-averaging CFAR detection, use phased.CFARDetector. You can customize characteristics of the detector such as the numbers of training cells and guard cells, and the probability of false alarm.

\section*{CFAR Detector Adaptation to Noisy Input Data}

This example shows how to create a CFAR detector and test its ability to adapt to the statistics of input data. The test uses noise-only trials. By using the default square-law detector, you can determine how close the empirical false-alarm rate is to the desired false-alarm probability.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call to the function with the equivalent step syntax. For example, replace my0bject (x) with step(myObject,x).

Create a CFAR detector object with two guard cells, 20 training cells, and a false-alarm probability of 0.001. By default, this object assumes a square-law detector with no pulse integration.
```

detector = phased.CFARDetector('NumGuardCells',2,...
'NumTrainingCells',20,'ProbabilityFalseAlarm',1e-3);

```

There are 10 training cells and 1 guard cell on each side of the cell under test (CUT). Set the CUT index to 12 .

CUTidx = 12;

Seed the random number generator for a reproducible set of input data.
```

rng(1000);

```

Set the noise variance to 0.25 . This value corresponds to an approximate -6 dB SNR. Generate a \(23-\) by-10000 matrix of complex-valued, white Gaussian rv's with the specified variance. Each row of the matrix represents 10,000 Monte Carlo trials for a single cell.
```

Ntrials = 1e4;
variance = 0.25;
Ncells = 23;
inputdata = sqrt(variance/2)*(randn(Ncells,Ntrials)+lj*randn(Ncells,Ntrials));

```

Because the example implements a square-law detector, take the squared magnitudes of the elements in the data matrix.
```

Z = abs(inputdata).^2;

```

Provide the output from the square-law operator and the index of the cell under test to the CFAR detector.
```

Z_detect = detector(Z,CUTidx);

```

The output, Z_detect, is a logical vector with 10,000 elements. Sum the elements in Z_detect and divide by the total number of trials to obtain the empirical false-alarm rate.
pfa \(=\) sum(Z_detect)/Ntrials
pfa \(=0.0013\)
The empirical false-alarm rate is 0.0013 , which corresponds closely to the desired false-alarm rate of 0.001 .

\section*{Extensions of Cell-Averaging CFAR Detector}

The cell-averaging algorithm for a CFAR detector works well in many situations, but not all. For example, when targets are closely located, cell averaging can cause a strong target to mask a weak target nearby. The phased. CFARDetector System object supports the following CFAR detection algorithms.
\begin{tabular}{|l|l|}
\hline Algorithm & Typical Usage \\
\hline Cell-averaging CFAR & Most situations \\
\hline Greatest-of cell-averaging CFAR & \begin{tabular}{l} 
When it is important to avoid false alarms at the edge of \\
clutter
\end{tabular} \\
\hline Smallest-of cell-averaging CFAR & When targets are closely located \\
\hline Order statistic CFAR & \begin{tabular}{l} 
Compromise between greatest-of and smallest-of cell \\
averaging
\end{tabular} \\
\hline
\end{tabular}

\section*{Detection Probability for CFAR Detector}

This example shows how to compare the probability of detection resulting from two CFAR algorithms. In this scenario, the order statistic algorithm detects a target that the cell-averaging algorithm does not.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call to the function with the equivalent step syntax. For example, replace my0bject (x) with step (myObject,x).

Create a CFAR detector that uses the cell-averaging CFAR algorithm.
```

Ntraining = 10;
Nguard = 2;
Pfa_goal = 0.01;
detector = phased.CFARDetector('Method','CA',...
'NumTrainingCells',Ntraining,'NumGuardCells',Nguard, ...
'ProbabilityFalseAlarm',Pfa_goal);

```

The detector has 2 guard cells, 10 training cells, and a false-alarm probability of 0.01 . This object assumes a square-law detector with no pulse integration.

Generate a vector of input data based on a complex-valued white Gaussian random variable.
```

Ncells = 23;
Ntrials = 100000;
inputdata = 1/sqrt(2)*(randn(Ncells,Ntrials) + ...
1i*randn(Ncells,Ntrials));

```

In the input data, replace rows 8 and 12 to simulate two targets for the CFAR detector to detect.
```

inputdata(8,:) = 3*exp(1i*2*pi*rand);
inputdata(12,:) = 9*exp(1i*2*pi*rand);

```

Because the example implements a square-law detector, take the squared magnitudes of the elements in the input data vector.
```

Z = abs(inputdata).^2;

```

Perform the detection on rows 8 through 12 .
Z_detect \(=\) detector(Z,8:12);
The Z_detect matrix has five rows. The first and last rows correspond to the simulated targets. The three middle rows correspond to noise.

Compute the probability of detection of the two targets. Also, estimate the probability of false alarm using the noise-only rows.
```

Pd_1 = sum(Z_detect(1,:))/Ntrials
Pd 1 = 0
Pd_2 = sum(Z_detect(end,:))/Ntrials
Pd_2 = 1
Pfa = max(sum(Z_detect(2:end-1,:),2)/Ntrials)
Pfa = 6.0000e-05

```

The 0 value of Pd_1 indicates that this detector does not detect the first target.
Change the CFAR detector so it uses the order statistic CFAR algorithm with a rank of 5.
```

release(detector);
detector.Method = 'OS';
detector.Rank = 5;
Repeat the detection and probability computations.
Z_detect = detector(Z,8:12);
Pd_1 = sum(Z_detect(1,:))/Ntrials
Pd_1 = 0.5820
Pd_2 = sum(Z_detect(end,:))/Ntrials
Pd 2 = 1
Pfa = max(sum(Z_detect(2:end-1,:),2)/Ntrials)
Pfa = 0.0066

```

Using the order statistic algorithm instead of the cell-averaging algorithm, the detector detects the first target in about 58\% of the trials.

\section*{Measure Intensity Levels Using the Intensity Scope}

This tutorial shows you how to measure the intensity of signals using the UI of the intensity scope. First, create an intensity scope. You can start with the example below, "RTI and DTI Displays in Full Radar Simulation" on page 8-42, or you can create your own scope. When this example launches, range-time-intensity (RTI) and Doppler-time-intensity (DTI) display windows open. This tutorial focuses on the RTI display so you can close the DTI window once the processing loop completes. This figure shows the RTI display after processing has completed. The display shows three tracks.


To examine the data, click the Cursor Measurement button in the Toolbar. You see two cursors, each of which is represented by pairs of cross-hairs. To distinguish cursors, one pair consists of solid lines and the second pair consists of dashed lines and are tagged with a \(\mathbf{1}\) or a 2.


Cursor 1 has solid cross-hairs and overlays the intersection of two signal lines. Cursor 2 has dashed cross-hairs and overlays a signal-free region. The Cursor Measurements pane shows the coordinates of the cursors in time and range (labelled \(\mathbf{X}\) ) and the intensities at these positions. Cursor 1 is located at a range of 2775 meters and a time of 3.6 seconds. The signal intensity at this point is \(1.989 \mathrm{e}-6\) watts. Cursor 2 is located at a range of 3725 meters and a time of 2.9 seconds. The signal intensity at this point is \(3.327 \mathrm{e}-7\) watts. You can move the cursors to any positions of interest and obtain the intensity values.

\section*{RTI and DTI Displays in Full Radar Simulation}

Use the phased. IntensityScope System object? to display the detection output of a complete radar system simulation. The radar scenario contains a stationary single-element monostatic radar and three moving targets.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call to the function with the equivalent step syntax. For example, replace my0bject (x) with step (my0bject,x).

\section*{Set Radar Operating Parameters}

Set the probability of detection, probability of false alarm, maximum range, range resolution, operating frequency, transmitter gain, and target radar cross-section.
```

pd = 0.9;
pfa = 1e-6;
max range = 5000;
range_res = 50;
fc = 10e9;
tx_gain = 20;
tgt_rcs = 1;

```

Choose the signal propagation speed to be the speed of light, and compute the signal wavelength corresponding to the operating frequency.
```

c = physconst('LightSpeed');
lambda = c/fc;

```

Compute the pulse bandwidth from the range resolution. Set the sampling rate, fs , to twice the pulse bandwidth. The noise bandwidth is also set to the pulse bandwidth. The radar integrates a number of pulses set by num_pulse_int. The duration of each pulse is the inverse of the pulse bandwidth.
```

pulse bw = c/(2*range res);
pulse_length = 1/pulse_bw;
fs = 2*pulse_bw;
noise_bw = pulse bw;
num_pulse_int = \overline{10;}

```

Set the pulse repetition frequency to match the maximum range of the radar.
```

prf = c/(2*max_range);

```

\section*{Compute Transmit Power}

Use the Albersheim equation to compute the SNR required to meet the desired probability of detection and probability of false alarm. Then, use the radar equation to compute the power needed to achieve the required SNR.
```

snr_min = albersheim(pd, pfa, num_pulse_int);
peak_power = radareqpow(lambda,max_range,snr_min,pulse_length,...
'RCS',tgt_rcs,'Gain',tx_gain);

```

\section*{Create System Objects for the Model}

Choose a rectangular waveform.
```

waveform = phased.RectangularWaveform('PulseWidth',pulse_length,...
'PRF',prf,'SampleRate',fs);

```

Set the receiver amplifier characteristics.
```

amplifier = phased.ReceiverPreamp('Gain',20,'NoiseFigure',0,...
'SampleRate',fs,'EnableInputPort',true,'SeedSource','Property',...
'Seed',2007);
transmitter = phased.Transmitter('Gain',tx_gain,'PeakPower',peak_power,...
'InUseOutputPort',true);

```

Specify the radar antenna as a single isotropic antenna.
```

antenna = phased.IsotropicAntennaElement('FrequencyRange',[5e9 15e9]);

```

Set up a monostatic radar platform.
```

radarplatform = phased.Platform('InitialPosition',[0; 0; 0],...
'Velocity',[0; 0; 0]);

```

Set up the three target platforms using a single System object.
```

targetplatforms = phased.Platform(...
'InitialPosition',[2000.66 3532.63 3845.04; 0 0 0; 0 0 0], ...
'Velocity',[150 -150 0; 0 0 0; 0 0 0]);

```

Create the radiator and collector System objects.
```

radiator = phased.Radiator('Sensor',antenna,'OperatingFrequency',fc);
collector = phased.Collector('Sensor',antenna,'OperatingFrequency',fc);

```

Set up the three target RCS properties.
```

targets = phased.RadarTarget('MeanRCS',[1.6 2.2 1.05],'OperatingFrequency',fc);

```

Create System object to model two-way freespace propagation.
```

channels= phased.FreeSpace('SampleRate',fs,'TwoWayPropagation',true,...
'OperatingFrequency',fc);

```

Define a matched filter.
```

MFcoef = getMatchedFilter(waveform);
filter = phased.MatchedFilter('Coefficients',MFcoef,'GainOutputPort',true);

```

\section*{Create Range and Doppler Bins}

Set up the fast-time grid. Fast time is the sampling time of the echoed pulse relative to the pulse transmission time. The range bins are the ranges corresponding to each bin of the fast time grid.
```

fast_time = unigrid(0,1/fs,1/prf,'[)');
range_bins = c*fast_time/2;

```

To compensate for range loss, create a time varying gain System Object?.
```

gain = phased.TimeVaryingGain('RangeLoss',2*fspl(range_bins,lambda),...
'ReferenceLoss',2*fspl(max_range,lambda));

```

Set up Doppler bins. Doppler bins are determined by the pulse repetition frequency. Create an FFT System object for Doppler processing.
```

DopplerFFTbins = 32;
DopplerRes = prf/DopplerFFTbins;
fft = dsp.FFT('FFTLengthSource','Property',...
'FFTLength',DopplerFFTbins);

```

\section*{Create Data Cube}

Set up a reduced data cube. Normally, a data cube has fast-time and slow-time dimensions and the number of sensors. Because the data cube has only one sensor, it is two-dimensional.
```

rx_pulses = zeros(numel(fast_time),num_pulse_int);

```

\section*{Create IntensityScope System Objects}

Create two IntensityScope System objects, one for Doppler-time-intensity and the other for range-time-intensity.
```

dtiscope = phased.IntensityScope('Name','Doppler-Time Display',...
'XLabel','Velocity (m/sec)', ...
'XResolution',dop2speed(DopplerRes,c/fc)/2, ...
'XOffset',dop2speed(-prf/2,c/fc)/2,...
'TimeResolution',0.05,'TimeSpan',5,'IntensityUnits','Mag');
rtiscope = phased.IntensityScope('Name','Range-Time Display',...
'XLabel','Range (m)', ...
'XResolution',c/(2*fs), ...
'TimeResolution',0.05,'TimeSpan',5,'IntensityUnits','Mag');

```

\section*{Run the Simulation Loop Over Multiple Radar Transmissions}

Transmit 2000 pulses. Coherently process groups of 10 pulses at a time.
For each pulse:
1 Update the radar position and velocity radarplatform
2 Update the target positions and velocities targetplatforms
3 Create the pulses of a single wave train to be transmitted transmitter
4 Compute the ranges and angles of the targets with respect to the radar
5 Radiate the signals to the targets radiator
6 Propagate the pulses to the target and back channels
7 Reflect the signals off the target targets
8 Receive the signal sCollector
9 Amplify the received signal amplifier
10 Form data cube
For each set of 10 pulses in the data cube:
1 Match filter each row (fast-time dimension) of the data cube.
2 Compute the Doppler shifts for each row (slow-time dimension) of the data cube.
```

pri = 1/prf;
nsteps = 200;
for k = 1:nsteps
for m = 1:num pulse int
[ant_pos,ant_ve\overline{l}] = radarplatform(pri);
[tgt_pos,tgt_vel] = targetplatforms(pri);
sig = waveform();
[s,tx_status] = transmitter(sig);
[~,tgt_ang] = rangeangle(tgt_pos,ant_pos);
tsig = radiator(s,tgt_ang);
tsig = channels(tsig,ant_pos,tgt_pos,ant_vel,tgt_vel);
rsig = targets(tsig);
rsig = collector(rsig,tgt_ang);
rx_pulses(:,m) = amplifier(rsig,~(tx_status>0));
end
rx_pulses = filter(rx_pulses);
MFdelay = size(MFcoef,1) - 1;
rx_pulses = buffer(rx_pulses((MFdelay + 1):end), size(rx_pulses,1));
rx_pulses = gain(rx_pulses);
range = pulsint(rx_pulses,'noncoherent');
rtiscope(range);
dshift = fft(rx_pulses.');
dshift = fftshift(abs(dshift),1);
dtiscope(mean(dshift,2));
radarplatform(.05);
targetplatforms(.05);
end

```



All of the targets lie on the x -axis. Two targets are moving along the x -axis and one is stationary. Because the radar is at the origin, you can read the target speed directly from the Doppler-Time Display window. The values agree with the specified velocities of \(-150,150\), and \(0 \mathrm{~m} / \mathrm{sec}\).

\section*{Environment and Target Models}
- "Free Space Path Loss" on page 9-2
- "Two-Ray Multipath Propagation" on page 9-10
- "Free-Space Propagation of Wideband Signals" on page 9-12
- "Radar Target" on page 9-14
- "Swerling 1 Target Models" on page 9-17
- "Swerling Target Models" on page 9-21
- "Swerling 3 Target Models" on page 9-26
- "Swerling 4 Target Models" on page 9-30
- "Clutter Modeling" on page 9-35
- "Barrage Jammer" on page 9-38

\section*{Free Space Path Loss}

\section*{In this section...}
"Support for Modeling Propagation in Free Space" on page 9-2
"Free Space Path Loss in dB" on page 9-2
"Propagate Linear FM Pulse Waveform to Target and Back" on page 9-3
"One-Way and Two-Way Propagation" on page 9-4
"Propagate Signal from Stationary Radar to Moving Target" on page 9-5

\section*{Support for Modeling Propagation in Free Space}

Propagation environments have significant effects on the amplitude, phase, and shape of propagating space-time wavefields. In some cases, you may want to simulate a system that propagates narrowband signals through free space. If so, you can use the phased. FreeSpace System object to model the range-dependent time delay, phase shift, Doppler shift, and gain effects.

Consider this object as a point-to-point propagation channel. By setting object properties, you can customize certain characteristics of the environment and the signals propagating through it, including:
- Propagation speed and sampling rate of the signal you are propagating
- Signal carrier frequency
- Whether the object models one-way or two-way propagation

Each time you call step on a phased. FreeSpace object, you specify not only the signal to propagate, but also the location and velocity of the signal origin and destination.

You can use fspl to determine the free space path loss, in decibels, for a given distance and wavelength.

\section*{Free Space Path Loss in dB}

Assume a transmitter is located at \((1000,250,10)\) in the global coordinate system. Assume a target is located at \((3000,750,20)\). The transmitter operates at 1 GHz . Determine the free space path loss in decibels for a narrowband signal propagating to and from the target.
```

[tgtrng,~] = rangeangle([3000; 750; 20],[1000; 250; 10]);

```

Multiply the range by two for two-way propagation.
tgtrng \(=2 *\) tgtrng;
Determine the wavelength for 1 GHz .
lambda = physconst('LightSpeed')/le9;
Solve for the loss using fspl.
```

L = fspl(tgtrng,lambda)
L = 104.7524

```

The free space path loss in decibels is approximately 105 dB .
Alternatively, you can compute the loss directly from
```

Loss = pow2db((4*pi*tgtrng/lambda)^2)
Loss = 104.7524

```

\section*{Propagate Linear FM Pulse Waveform to Target and Back}

Construct a linear FM pulse waveform of 50 ms duration with a bandwidth of 100 kHz . Model the range-dependent time delay and amplitude loss incurred during two-way propagation. The pulse propagates between the transmitter located at \((1000,250,10)\) and a target located at \((3000,750,20)\). The signals propagate at the speed of light.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call to the function with the equivalent step syntax. For example, replace myObject (x) with step(my0bject,x).
```

waveform = phased.LinearFMWaveform('SweepBandwidth',1e5,...
'PulseWidth',5e-5,'OutputFormat','Pulses',...
'NumPulses',1,'SampleRate',1e6,'PRF',1e4);
signal = waveform();
channel = phased.FreeSpace('SampleRate',1e6,...
'TwoWayPropagation',true,'OperatingFrequency',1e9);
y = channel(signal,[1000; 250; 10],[3000; 750; 20],[0;0;0],[0;0;0]);

```

Plot the magnitude of the transmitted and received pulse to show the amplitude loss and time delay.
```

t = unigrid(0,1/waveform.SampleRate,1/waveform.PRF,'[)');
subplot(2,1,1)
plot(t.*le6,abs(signal))
title('Magnitude of Transmitted Pulse')
xlabel('Time (microseconds)')
ylabel('Magnitude')
subplot(2,1,2)
plot(t.*1e6,abs(y))
title('Magnitude of Received Pulse')
xlabel('Time (microseconds)')
ylabel('Magnitude')

```


The delay in the received pulse is approximately \(14 \mu \mathrm{~s}\), the expected value for a distance of 4.123 km .

\section*{One-Way and Two-Way Propagation}

The TwoWayPropagation property of the phased.FreeSpace System object \({ }^{\text {TM }}\) lets you simulate either one- or two-way propagation. The following example demonstrates how to use this property for a single linear FM pulse propagating to a target and back. The sensor is a single isotropic radiating antenna operating at 1 GHz located at \((1000,250,10)\). The target is located at \((3000,750,20)\) and has a nonfluctuating RCS of 1 square meter.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call to the function with the equivalent step syntax. For example, replace my0bject(x) with step (myObject,x).

The following code constructs the required System objects and calculates the range and angle from the antenna to the target.
```

waveform = phased.LinearFMWaveform('SweepBandwidth',1e5,...
'PulseWidth',5e-5,'OutputFormat','Pulses',...
'NumPulses',1,'SampleRate',1e6);
antenna = phased.IsotropicAntennaElement('FrequencyRange',[500e6 1.5e9]);
transmitter = phased.Transmitter('PeakPower',1e3,'Gain',20);
radiator = phased.Radiator('Sensor',antenna,'OperatingFrequency',1e9);
channel = phased.FreeSpace('SampleRate',le6,...
'TwoWayPropagation',true,'OperatingFrequency',1e9);

```
```

target = phased.RadarTarget('MeanRCS',1,'Model','Nonfluctuating');
collector = phased.Collector('Sensor',antenna,'OperatingFrequency',1e9);
sensorpos = [3000;750;20];
tgtpos = [1000;250;10];
[tgtrng,tgtang] = rangeangle(sensorpos,tgtpos);

```

Because the TwoWayPropagation property is set to true, you compute the total propagation only once.

Compute the radiated signal.
```

pulse = waveform();
pulse = transmitter(pulse);
pulse = radiator(pulse,tgtang);

```

Propagate the pulse to the target and back.
```

pulse = channel(pulse,sensorpos,tgtpos,[0;0;0],[0;0;0]);
pulse = target(pulse);
sig = collector(pulse,tgtang);

```

Alternatively, you can break up the two-way propagation into two separate one-way propagation paths. You do so by setting the TwoWayPropagation property to false.
```

channel1 = phased.FreeSpace('SampleRate',1e9,...
'TwoWayPropagation',false,'OperatingFrequency',1e6);

```

Radiate the pulse.
```

pulse = waveform();
pulse = transmitter(pulse);
pulse = radiator(pulse,tgtang);

```

Propagate the pulse from the antenna to the target.
```

pulse = channel1(pulse,sensorpos,tgtpos,[0;0;0],[0;0;0]);
pulse = target(pulse);

```

Propagate the reflected pulse from the target to the antenna.
```

pulse = channel(pulse,tgtpos,sensorpos,[0;0;0],[0;0;0]);
sig = collector(pulse,tgtang);

```

\section*{Propagate Signal from Stationary Radar to Moving Target}

This example shows how to propagate a signal in free space from a stationary radar to a moving target.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call to the function with the equivalent step syntax. For example, replace my0bject (x) with step(my0bject,x).

Define the signal sample rate, propagation speed, and carrier frequency. Define the signal as a sinusoid of frequency 150 Hz . Set the sample rate to 1 kHz and the carrier frequency to 300 MHz . The propagation speed is the speed of light.
```

fs = 1.0e3;
c = physconst('Lightspeed');
fc = 300e3;
f = 150.0;
N = 1024;
t = (0:N-1)'/fs;
x = exp(1i*2*pi*f*t);

```

Assume the target is approaching the radar at \(300.0 \mathrm{~m} / \mathrm{s}\), and the radar is stationary. Find the Doppler shift that corresponds to this relative speed.
```

v = 1000.0;
dop = speed2dop(v,c/fc)
dop = 1.0007

```

From the formula, the one-way doppler shift is 1 Hz .
Create a phased. FreeSpace System object \({ }^{\mathrm{TM}}\), and use it to propagate the signal from the radar to the target. Assume the radar is at \((0,0,0)\) and the target is at \((100,0,0)\).
```

channel = phased.FreeSpace('SampleRate',fs,...
'PropagationSpeed',c,'OperatingFrequency',fc);
origin_pos = [0;0;0];
dest_pos = [100;0;0];
origin_vel = [0;0;0];
dest_vèl = [-v;0;0];
y = channel(x,origin_pos,dest_pos,origin_vel,dest_vel);

```

Plot the spectrum of the transmitted signal. The peak at 150 Hz reflects the frequency of the signal.
```

window = 64;
ovlp = 32;
[Pxx,F] = pwelch(x,window,ovlp,N,fs);
plot(F,10*log10(Pxx))
xlabel('Frequency (Hz)')
ylabel('Power/Frequency (dB/Hz)')
title('Transmitted Signal')

```

Transmitted Signal


Plot the spectrum of the propagated signal. The peak at 250 Hz reflects the frequency of the signal plus the Doppler shift of 100 Hz .
```

window = 64;
ovlp = 32;
[Pyy,F] = pwelch(y,window,ovlp,N,fs);
plot(F,10*log10(Pyy))
grid
xlabel('Frequency (Hz)')
ylabel('Power/Frequency (dB/Hz)')
title('Propagated Signal')

```

Propagated Signal


The doppler shift is too small to see. Overlay the two spectra in the region of 150 Hz .
```

figure
idx = find(F>=130 \& F<=170);
plot(F(idx),10*log10(Pxx(idx)),'b')
grid
hold on
plot(F(idx),10*log10(Pyy(idx)),'r')
hold off
xlabel('Frequency (Hz)')
ylabel('Power/Frequency (dB/Hz)')
title('Transmitted and Propagated Signals')
legend('Transmitted','Propagated')

```


The peak shift appears to be approximately 1 Hz .

\section*{Two-Ray Multipath Propagation}

A two-ray propagation channel is the next step up in complexity from a free-space channel and is the simplest case of a multipath propagation environment. The free-space channel models a straight-line line-of-sight path from point 1 to point 2 . In a two-ray channel, the medium is specified as a homogeneous, isotropic medium with a reflecting planar boundary. The boundary is always set at \(z=\) 0 . There are at most two rays propagating from point 1 to point 2 . The first ray path propagates along the same line-of-sight path as in the free-space channel (see the phased. FreeSpace System object). The line-of-sight path is often called the direct path. The second ray reflects off the boundary before propagating to point 2. According to the Law of Reflection, the angle of reflection equals the angle of incidence. In short-range simulations such as cellular communications systems and automotive radars, you can assume that the reflecting surface, the ground or ocean surface, is flat.

The phased.TwoRayChannel and phased.WidebandTwoRayChannel System objects model propagation time delay, phase shift, Doppler shift, and loss effects for both paths. For the reflected path, loss effects include reflection loss at the boundary.

The figure illustrates two propagation paths. From the source position, \(s_{s}\), and the receiver position, \(s_{r}\), you can compute the arrival angles of both paths, \(\theta_{l o s}^{\prime}\) and \(\theta_{r p}^{\prime}\). The arrival angles are the elevation and azimuth angles of the arriving radiation with respect to a local coordinate system. In this case, the local coordinate system coincides with the global coordinate system. You can also compute the transmitting angles, \(\theta_{\text {los }}\) and \(\theta_{r p}\). In the global coordinates, the angle of reflection at the boundary is the same as the angles \(\theta_{r p}\) and \(\theta_{r p}^{\prime}\). The reflection angle is important to know when you use angledependent reflection-loss data. You can determine the reflection angle by using the rangeangle function and setting the reference axes to the global coordinate system. The total path length for the line-of-sight path is shown in the figure by \(R_{\text {los }}\) which is equal to the geometric distance between source and receiver. The total path length for the reflected path is \(R_{r p}=R_{1}+R_{2}\). The quantity \(L\) is the ground range between source and receiver.


You can easily derive exact formulas for path lengths and angles in terms of the ground range and object heights in the global coordinate system.
\[
\begin{aligned}
& \vec{R}=\vec{x}_{s}-\vec{x}_{r} \\
& R_{l o s}=|\vec{R}|=\sqrt{\left(z_{r}-z_{s}\right)^{2}+L^{2}} \\
& R_{1}=\frac{z_{r}}{z_{r}+z_{z}} \sqrt{\left(z_{r}+z_{s}\right)^{2}+L^{2}} \\
& R_{2}=\frac{z_{s}}{z_{S}+z_{r}} \sqrt{\left(z_{r}+z_{s}\right)^{2}+L^{2}} \\
& R_{r p}=R_{1}+R_{2}=\sqrt{\left(z_{r}+z_{s}\right)^{2}+L^{2}} \\
& \tan \theta_{l o s}=\frac{\left(z_{S}-z_{r}\right)}{L} \\
& \tan \theta_{r p}=-\frac{\left(z_{S}+z_{r}\right)}{L} \\
& \theta_{l o s}^{\prime}=-\theta_{l o s} \\
& \theta_{r p}^{\prime}=\theta_{r p}
\end{aligned}
\]

\section*{Free-Space Propagation of Wideband Signals}

Propagate a wideband signal with three tones in an underwater acoustic with constant speed of propagation. You can model this environment as free space. The center frequency is 100 kHz and the frequencies of the three tones are \(75 \mathrm{kHz}, 100 \mathrm{kHz}\), and 125 kHz , respectively. Plot the spectrum of the original signal and the propagated signal to observe the Doppler effect. The sampling frequency is 100 kHz .

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call to the function with the equivalent step syntax. For example, replace my0bject(x) with step (my0bject,x).
```

c = 1500;
fc = 100e3;
fs = 100e3;
relfreqs = [-25000,0,25000];

```

Set up a stationary radar and moving target and compute the expected Doppler.
```

rpos = [0;0;0];
rvel = [0;0;0];
tpos = [30/fs*c; 0;0];
tvel = [45;0;0];
dop = -tvel(1)./(c./(relfreqs + fc));

```

Create a signal and propagate the signal to the moving target.
```

t = (0:199)/fs;
x = sum(exp(li*2*pi*t.'*relfreqs),2);
channel = phased.WidebandFreeSpace(...
'PropagationSpeed',c,...
'OperatingFrequency',fc,...
'SampleRate',fs);
y = channel(x,rpos,tpos,rvel,tvel);

```

Plot the spectra of the original signal and the Doppler-shifted signal.
```

periodogram([x y],rectwin(size(x,1)),1024,fs,'centered')
ylim([-150 0])
legend('original','propagated');

```


For this wideband signal, you can see that the magnitude of the Doppler shift increases with frequency. In contrast, for narrowband signals, the Doppler shift is assumed constant over the band.

\section*{Radar Target}

\section*{Radar Target Properties}

The phased. RadarTarget System object models a reflected signal from a target. The target may have a nonfluctuating or fluctuating radar cross section (RCS). This object has the following modifiable properties:
- MeanRCSSource - Source of the target's mean radar cross section
- MeanRCS - Target's mean RCS
- Model - Statistical model for the target's RCS
- PropagationSpeed - Signal propagation speed
- OperatingFrequency - Operating frequency
- SeedSource - Source of the seed for the random number generator to generate the target's random RCS values
- Seed - Seed for the random number generator

\section*{Gain for Nonfluctuating RCS Target}

Create a radar target with a nonfluctuating RCS of 1 square meter and an operating frequency of 1 GHz . Specify a wave propagation speed equal to the speed of light.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call to the function with the equivalent step syntax. For example, replace my0bject (x) with step (my0bject,x).
```

sigma = 1.0;

```
target \(=\) phased. RadarTarget('Model', 'nonfluctuating', 'MeanRCS', sigma, ...
    'PropagationSpeed ', physconst('LightSpeed '), 'OperatingFrequency',1e9);

For a nonfluctuation target, the reflected waveform equals the incident waveform scaled by the gain
\[
G=\sqrt{\frac{4 \Pi \sigma}{\lambda^{2}}}
\]

Here, \(\sigma\) represents the mean target RCS, and \(\lambda\) is the wavelength of the operating frequency.
Set the signal incident on the target to be a vector of ones to obtain the gain factor used by the phased. RadarTarget System object \({ }^{\mathrm{TM}}\).
```

x = ones(10,1);
y = target(x)
y = 10x1

```
    11.8245
    11.8245
    11.8245
    11.8245
    11.8245
    11.8245
    11.8245
11.8245
11.8245
11.8245

Compute the gain from the formula to verify that the output of the System object equals the theoretical value.
lambda = target. PropagationSpeed/target. OperatingFrequency;
G = sqrt(4*pi*sigma/lambda^2)
\(G=11.8245\)

\section*{Fluctuating RCS Targets}

The previous examples used nonfluctuating values for the target's RCS. This model is not valid in many scenarios. There are several cases where the RCS exhibits relatively small or large magnitude fluctuations. These fluctuations can occur rapidly on pulse-to-pulse, or more slowly, on scan-to-scan time scales:
- Several small randomly distributed reflectors with no dominant reflector - This target, at close range or when the radar uses pulse-to-pulse frequency agility, can exhibit large magnitude rapid (pulse-to-pulse) fluctuations in the RCS. That same complex reflector at long range with no frequency agility can exhibit large magnitude fluctuations in the RCS over a longer time scale (scan-to-scan).
- Dominant reflector along with several small reflectors - The reflectors in this target can exhibit small magnitude fluctuations on pulse-to-pulse or scan-to-scan time scales, subject to:
- How rapidly the aspect changes
- Whether the radar uses frequency agility

To account for significant fluctuations in the RCS, you need to use statistical models. The four Swerling models, described in the following table, are widely used to cover these kinds of fluctuatingRCS cases.
\begin{tabular}{|l|l|}
\hline Swerling Case Number & Description \\
\hline I & \begin{tabular}{l} 
Scan-to-scan decorrelation. Rayleigh/exponential \\
PDF - A number of randomly distributed \\
scatterers with no dominant scatterer.
\end{tabular} \\
\hline II & \begin{tabular}{l} 
Pulse-to-pulse decorrelation. Rayleigh/ \\
exponential PDF - A number of randomly \\
distributed scatterers with no dominant scatterer.
\end{tabular} \\
\hline III & \begin{tabular}{l} 
Scan-to-scan decorrelation - Chi-square PDF \\
with 4 degrees of freedom. A number of \\
scatterers with one scatterer dominant.
\end{tabular} \\
\hline IV & \begin{tabular}{l} 
Pulse-to-pulse decorrelation - Chi-square PDF \\
with 4 degrees of freedom. A number of \\
scatterers with one scatterer dominant.
\end{tabular} \\
\hline
\end{tabular}

You can simulate a Swerling target model by setting the Model property. Use the step method and set the UPDATERCS input argument to true or false. Setting UPDATERCS to true updates the RCS
value according to the specified probability model each time you call step. If you set UPDATERCS to false, the previous RCS value is used.

\section*{Model Pulse Reflection From Nonfluctuating Target}

This example creates and transmits a linear FM waveform with a 1 GHz carrier frequency. The waveform is transmitted and collected by an isotropic antenna with a back-baffled response. The waveform propagates to and from a target with a nonfluctuating RCS of 1 square meter. The target is located at a range of 1.414 km from the antenna at an azimuth angle of \(45^{\circ}\) and an elevation of \(0^{\circ}\).

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call to the function with the equivalent step syntax. For example, replace my0bject(x) with step (my0bject,x).

Set up the radar system.
```

antenna = phased.IsotropicAntennaElement('BackBaffled',true);
antennapos = phased.Platform('InitialPosition',[0;0;0]);
targetpos = phased.Platform('InitialPosition',[1000; 1000; 0]);
waveform = phased.LinearFMWaveform('PulseWidth',100e-6);
transmitter = phased.Transmitter('PeakPower',1e3,'Gain',40);
radiator = phased.Radiator('OperatingFrequency',1e9, ...
'Sensor',antenna);
channel = phased.FreeSpace('OperatingFrequency',1e9,...
'TwoWayPropagation',true);
target = phased.RadarTarget('MeanRCS',1,'OperatingFrequency',1e9);
collector = phased.Collector('OperatingFrequency',1e9,...
'Sensor',antenna);

```

Compute the transmitted and received waveforms
```

wav = waveform();
txwav = transmitter(wav);
radwav = radiator(txwav,[0 0]');
propwav = channel(radwav,antennapos.InitialPosition,...
targetpos.InitialPosition,[0;0;0],[0;0;0]);
reflwav = target(propwav);
collwav = collector(reflwav,[45 0]');

```

\section*{Swerling 1 Target Models}

The example presents a scenario consisting of a rotating monostatic radar and a target with a radar cross-section described by a Swerling 1 model. In this example, the radar and target are stationary.

\section*{Swerling 1 versus Swerling 2 Models}

For Swerling 1 and Swerling 2 target models, the total RCS arises from many independent small scatterers of approximately equal individual RCS. The total RCS may vary with every pulse in a scan (Swerling 2) or may be constant over a complete scan consisting of multiple pulses (Swerling 1). In either case, the statistics obey a chi-squared probability density function with two degrees of freedom.

\section*{Dwell Time and Radar Scan}

For simplicity, start with a rotating radar having a rotation time of 5 seconds corresponding to a rotation rate or scan rate of 72 degrees/sec.

Trot \(=5.0\);
rotrate \(=360 /\) Trot ;
The radar has a main half-power beam width (HPBW) of 3.0 degrees. During the time that a target is illuminated by the main beam, radar pulses strike the target and reflect back to the radar. The time period during which the target is illuminated is called the dwell time. This time period is also called a scan. The example will process 3 scans of the target.
```

HPBW = 3.0;
Tdwell = HPBW/rotrate;
Nscan = 3;

```

The number of pulses that arrive on target during the dwell time depends upon the pulse repetition frequency (PRF). PRF is the inverse of the pulse repetition interval (PRI). Assume 5000 pulses are transmitted per second.
```

prf = 5000.0;
pri = 1/prf;

```

The number of pulses in one dwell time is
Np = floor(Tdwell*prf);

\section*{Set up a Swerling 1 radar model}

You create a Swerling 1 target by properly employing the step method of the RadarTarget System object \(^{\mathrm{TM}}\). To effect a Swerling 1 model, set the Model property of the phased.RadarTarget System object \(^{\mathrm{TM}}\) to either 'Swerling1' or 'Swerling2'. Both are equivalent. Then, at the first call to the step method at the beginning of the scan, set the updatercs argument to true. Set updatercs to false for the remaining calls to step during the scan. This means that the radar cross section is only updated at the beginning of a scan and remains constant for the remainder of the scan.

Set the target model to 'Swerling1'.
tgtmodel = 'Swerling1';

\section*{Set up radar model System object \({ }^{\text {™ }}\) components}

Set up the radiating antenna. Assume the operating frequency of the antenna is 1 GHz .
```

fc = 1e9;
antenna = phased.IsotropicAntennaElement('BackBaffled',true);
radiator = phased.Radiator('OperatingFrequency',fc, ...
'Sensor',antenna);

```

Specify the location of the stationary antenna.
```

radarplatform = phased.Platform('InitialPosition',[0;0;0]);

```

Specify the location of a stationary target.
```

targetplatform = phased.Platform('InitialPosition',[2000; 0; 0]);

```

The transmitted signal is a linear FM waveform. Transmit one pulse per call to the step method.
```

waveform = phased.LinearFMWaveform('PulseWidth',50e-6,...
'OutputFormat','Pulses','NumPulses',1);

```

Set up the transmitting amplifier.
```

transmitter = phased.Transmitter('PeakPower',1000.0,'Gain',40);

```

Set up the propagation environment to be free space.
```

channel = phased.FreeSpace('OperatingFrequency',fc,'TwoWayPropagation',true);

```

Specify the radar target to have a mean RCS of 1 m 2 and be of the Swerling model type 1 or 2 . You can use Swerling 1 or 2 interchangeably.
```

target = phased.RadarTarget('MeanRCS',1,'OperatingFrequency',fc,...
'Model',tgtmodel);

```

Set up the radar collector.
```

collector = phased.Collector('OperatingFrequency',1e9,...
'Sensor', antenna);

```

Define a matched filter to process the incoming signal.
```

wav = step(waveform);
filter = phased.MatchedFilter('Coefficients',getMatchedFilter(waveform));

```

\section*{Processing loop for 3 scans of a Swerling 1 target}

1 Generate waveform with unit amplitude
2 Amplify the transmit waveform
3 Radiate the waveform in the desired direction to the target
4 Propagate the waveform to and from the target
5 Reflect waveform from radar target
6 Collect radiation to create received signal
7 Match filter received signal
Provide memory for radar return amplitudes
```

z = zeros(Nscan,Np);
tp = zeros(Nscan,Np);

```

Enter the loop. Set updatercs to true only for the first pulse of the scan.
```

for m = 1:Nscan
t0 = (m-1)*Trot;
t = t0;
for k = 1:Np
if k == 1
updatercs = true;
else
updatercs = false;
end
t = t + pri;
txwav = transmitter(wav);

```

Find the radar and target positions
```

[xradar,vradar] = radarplatform(t);
[xtgt,vtgt] = targetplatform(t);

```

Radiate waveform to target
```

[~,ang] = rangeangle(xtgt,xradar);
radwav = radiator(txwav,ang);

```

Propagate waveform to and from the target
propwav = channel(radwav,xradar,xtgt,vradar,vtgt);

Reflect waveform from target. Set the updatercs flag.
```

reflwav = target(propwav,updatercs);

```

Collect the received waveform
```

collwav = collector(reflwav,ang);

```

Apply matched filter to incoming signal
\[
y=\text { filter(collwav) }
\]
\(z(m, k)=\max (\operatorname{abs}(y))\);
\(\mathrm{tp}(\mathrm{m}, \mathrm{k})=\mathrm{t}\);
    end
end

\section*{Plot the pulse amplitudes}

Plot the amplitudes of the pulses for the scan as a function of time.
```

plot(tp(:),z(:),'.')
xlabel('Time (sec)')
ylabel('Pulse Amplitudes')

```


Notice that the pulse amplitudes are constant within a scan.

\section*{Swerling Target Models}

The example illustrates the use of Swerling target models to describe the fluctuations in radar crosssection. The scenario consists of a rotating monostatic radar and a target having a radar crosssection described by a Swerling 2 model. In this example, the radar and target are stationary.

\section*{Swerling 1 versus Swerling 2 Models}

In Swerling 1 and Swerling 2 target models, the total RCS arises from many independent small scatterers of approximately equal individual RCS. The total RCS may vary with every pulse in a scan (Swerling 2) or may be constant over a complete scan consisting of multiple pulses (Swerling 1). In either case, the statistics obey a chi-squared probability density function with two degrees of freedom.

\section*{Dwell Time and Radar Scan}

For simplicity, start with a rotating radar having a rotation time of 5 seconds corresponding to a rotation or scan rate of 72 degrees/sec.

Trot \(=5.0\);
scanrate \(=360 /\) Trot;
The radar has a main half-power beam width (HPBW) of 3.0 degrees. During the time that a target is illuminated by the main beam, radar pulses strike the target and reflect back to the radar. The time period during which the target is illuminated is called the dwell time. This time is also called a scan. The radar will process 3 scans of the target.
```

HPBW = 3.0;
Tdwell = HPBW/scanrate;
Nscan = 3;

```

The number of pulses that arrive on target during the dwell time depends upon the pulse repetition frequency (PRF). PRF is the inverse of the pulse repetition interval (PRI). Assume 5000 pulses are transmitted per second.
prf = 5000.0;
pri = 1/prf;
The number of pulses in one dwell time is
Np = floor(Tdwell*prf);

\section*{Set up a Swerling 2 model}

You create a Swerling 2 target by properly employing the step method of the RadarTarget System object \(^{\text {TM }}\). To effect a Swerling 2 model, set the Model property of the phased.RadarTarget System object \({ }^{\text {TM }}\) to either 'Swerling1' or 'Swerling2'. Both are equivalent. Then, at the every call to the step method, set the updatercs argument to true. This means that the radar cross-section is updated at every pulse.

Set the target model to 'Swerling1' .
tgtmodel = 'Swerling2';

\section*{Set up radar model System object \({ }^{\text {T" }}\) components}

Set up the radiating antenna. Assume the operating frequency of the antenna is 1 GHz .
```

fc = 1e9;
antenna = phased.IsotropicAntennaElement('BackBaffled',true);
radiator = phased.Radiator('OperatingFrequency',fc,'Sensor',antenna);

```

Specify the location of the stationary antenna.
```

radarplatform = phased.Platform('InitialPosition',[0;0;0]);

```

Specify the location of a stationary target.
```

targetplatform = phased.Platform('InitialPosition',[2000; 0; 0]);

```

The transmitted signal is a linear FM waveform. Transmit one pulse per call to the step method.
```

waveform = phased.LinearFMWaveform('PulseWidth',50e-6,...
'OutputFormat','Pulses','NumPulses',1);

```

Set up the transmitting amplifier.
```

transmitter = phased.Transmitter('PeakPower',1000.0,'Gain',40);

```

Set up the propagation environment to be free space.
```

channel = phased.FreeSpace('OperatingFrequency',fc,...
'TwoWayPropagation',true);

```

Specify the radar target to have a mean RCS of 1 m 2 and be of the Swerling model type 1 or 2 . You can use Swerling 1 or 2 interchangeably.
```

target = phased.RadarTarget('MeanRCS',1,'OperatingFrequency',fc,...
'Model',tgtmodel);

```

Set up the radar collector.
```

collector = phased.Collector('OperatingFrequency',1e9,...
'Sensor', antenna);

```

Define a matched filter to process the incoming signal.
```

wav = waveform();

```
filter = phased.MatchedFilter(...
    'Coefficients',getMatchedFilter(waveform));

\section*{Processing loop for \(\mathbf{3}\) scans of a Swerling 2 target}

1 Generate waveform with unit amplitude
2 Amplify the transmit waveform
3 Radiate the waveform in the desired direction to the target
4 Propagate the waveform to and from the radar target
5 Reflect waveform from radar target.
6 Collect radiation to create received signal
7 Match filter received signal
Provide memory for radar return amplitudes
```

z = zeros(Nscan,Np);
tp = zeros(Nscan,Np);

```

Enter the loop. Set updatercs to true only for the first pulse of the scan.
```

for m = 1:Nscan
t0 = (m-1)*Trot;
t = t0;
updatercs = true;
for k = 1:Np
t = t + pri;
txwav = transmitter(wav);

```

Find the radar and target positions
```

[xradar,vradar] = radarplatform(t);
[xtgt,vtgt] = targetplatform(t);

```

Radiate waveform to target
```

[~,ang] = rangeangle(xtgt,xradar);
radwav = radiator(txwav,ang);

```

Propagate waveform to and from the target
```

propwav = channel(radwav,radarplatform.InitialPosition,...
targetplatform.InitialPosition,[0;0;0],[0;0;0]);

```

Reflect waveform from target. Set the updatercs flag.
```

reflwav = target(propwav,updatercs);

```

Collect the received waveform
```

collwav = collector(reflwav,ang);

```

Apply matched filter to incoming signal
```

y = filter(collwav);
z(m,k) = max(abs(y));
tp(m,k) = t;

```
    end
end

Plot the pulse amplitudes
Plot the amplitudes of the pulses for the scan as a function of time.
plot(tp(:),z(:),'.')
xlabel('Time (sec)')
ylabel('Pulse Amplitude')


Notice that the pulse amplitudes vary within a scan.

\section*{Histogram the received pulse amplitudes}
figure;
hist(z(:),25)
xlabel('Pulse Amplitude')
ylabel('Count')


\section*{Swerling 3 Target Models}

The example presents a scenario of a rotating monostatic radar and a target having a radar crosssection described by a Swerling 3 model. In this example, the radar and target are stationary.

\section*{Swerling 3 versus Swerling 4 Models}

In Swerling 3 and Swerling 4 target models, the total RCS arises from a target consisting of one large scattering surface with several other small scattering surfaces. The total RCS may vary with every pulse in a scan (Swerling 4) or may be constant over a complete scan consisting of multiple pulses (Swerling 3). In either case, the statistics obey a chi-squared probability density function with four degrees of freedom.

\section*{Dwell Time and Radar Scan}

For simplicity, start with a rotating radar having a rotation time of 5 seconds corresponding to a rotation or scan rate of 72 degrees/sec.

Trot \(=5.0\);
scanrate \(=360 /\) Trot ;
The radar has a main half-power beam width (HPBW) of 3.0 degrees. During the time that a target is illuminated by the main beam, radar pulses strike the target and reflect back to the radar. The time period during which the target is illuminated is called the dwell time. This time is also called a scan. The radar will process 3 scans of the target.
```

HPBW = 3.0;
Tdwell = HPBW/scanrate;
Nscan = 3;

```

The number of pulses that arrive on target during the dwell time depends upon the pulse repetition frequency (PRF). PRF is the inverse of the pulse repetition interval (PRI). Assume 5000 pulses are transmitted per second.
prf \(=5000.0 ;\)
pri = 1/prf;
The number of pulses in one dwell time is
Np = floor(Tdwell*prf);

\section*{Set up Swerling 3 radar model}

You create a Swerling 3 target by properly employing the step method of the RadarTarget System object \(^{\mathrm{TM}}\). To effect a Swerling 3 model, set the Model property of the phased.RadarTarget System object \(^{\mathrm{TM}}\) to either 'Swerling3' or 'Swerling4'. Both are equivalent. Then, at the first call to the step method at the beginning of the scan, set the updatercs argument to true. Set updatercs to false for the remaining calls to step during the scan. This means that the radar cross section is only updated at the beginning of a scan and remains constant for the remainder of the scan.

Set the target model to 'Swerling3' .
tgtmodel = 'Swerling3';

\section*{Set up radar model System object \({ }^{\text {Tn }}\) components}

Set up the radiating antenna. Assume the operating frequency of the antenna is 1 GHz .
```

fc = 1e9;
antenna = phased.IsotropicAntennaElement('BackBaffled',true);
radiator = phased.Radiator('OperatingFrequency',fc,'Sensor',antenna);

```

Specify the location of the stationary antenna.
```

radarplatform = phased.Platform('InitialPosition',[0;0;0]);

```

Specify the location of a stationary target.
```

targetplatform = phased.Platform('InitialPosition',[2000; 0; 0]);

```

The transmitted signal is a linear FM waveform. Transmit one pulse per call to the step method.
```

waveform = phased.LinearFMWaveform('PulseWidth',50e-6,...
'OutputFormat','Pulses','NumPulses',1);

```

Set up the transmitting amplifier.
```

transmitter = phased.Transmitter('PeakPower',1000.0,'Gain',40);

```

Set up the propagation environment to be free space.
```

channel = phased.FreeSpace('OperatingFrequency',fc,...
'TwoWayPropagation',true);

```

Specify the radar target to have a mean RCS of 1 m 2 and be of the Swerling model type 3 or 4 . You can use Swerling 3 or 4 interchangeably.
```

target = phased.RadarTarget('MeanRCS',1,'OperatingFrequency',fc,...
'Model',tgtmodel);

```

Set up the radar collector.
```

collector = phased.Collector('OperatingFrequency',1e9,...
'Sensor',antenna);

```

Define a matched filter to process the incoming signal.
```

wav = step(waveform);
filter = phased.MatchedFilter('Coefficients',getMatchedFilter(waveform));

```

\section*{Processing loop for 3 scans of a Swerling 3 target}

1 Generate waveform with unit amplitude
2 Amplify the transmit waveform
3 Radiate the waveform in the desired direction to the target
4 Propagate the waveform to and from the radar target
5 Reflect waveform from radar target
6 Collect radiation to create received signal
7 Match filter received signal
Provide memory for radar return amplitudes
```

z = zeros(Nscan,Np);
tp = zeros(Nscan,Np);

```

Enter the loop. Set updatercs to true only for the first pulse of the scan.
```

for m = 1:Nscan
t0 = (m-1)*Trot;
t = t0;
for k = 1:Np
if k == 1
updatercs = true;
else
updatercs = false;
end
t = t + pri;
txwav = transmitter(wav);

```

Find the radar and target positions
```

[xradar,vradar] = radarplatform(pri);
[xtgt,vtgt] = targetplatform(pri);

```

Radiate waveform to target
```

[~,ang] = rangeangle(xtgt,xradar);
radwav = radiator(txwav,ang);

```

Propagate waveform to and from the target
propwav = channel(radwav,xradar,xtgt,vradar,vtgt);

Reflect waveform from target. Set the updatercs flag.
```

reflwav = target(propwav,updatercs);

```

Collect the received waveform
```

collwav = collector(reflwav,ang);

```

Apply matched filter to incoming signal
\[
y=\text { filter(collwav) }
\]
\(z(m, k)=\max (a b s(y))\);
\(\mathrm{tp}(\mathrm{m}, \mathrm{k})=\mathrm{t}\);
    end
end

\section*{Plot the pulse amplitudes}

Plot the amplitudes of the pulses for the scan as a function of time.
plot(tp(:),z(:),'.')
xlabel('Time (sec)')
ylabel('Pulse Amplitude')


Notice that the pulse amplitudes are constant within a scan.

\section*{Swerling 4 Target Models}

The example presents a scenario of a rotating monostatic radar and a target having a radar crosssection described by a Swerling 4 model. In this example, the radar and target are stationary.

\section*{Swerling 3 versus Swerling 4 Targets}

In Swerling 3 and Swerling 4 target models, the total RCS arises from a target consisting of one large scattering surface with several other small scattering surfaces. The total RCS may vary with every pulse in a scan (Swerling 4) or may be constant over a complete scan consisting of multiple pulses (Swerling 3). In either case, the statistics obey a chi-squared probability density function with four degrees of freedom.

\section*{Dwell Time and Radar Scan}

For simplicity, start with a rotating radar having a rotation time of 5 seconds corresponding to a rotation or scan rate of 72 degrees/sec.

Trot = 5.0;
scanrate = 360/Trot;
The radar has a main half-power beam width (HPBW) of 3.0 degrees. During the time that a target is illuminated by the main beam, radar pulses strike the target and reflect back to the radar. The time period during which the target is illuminated is called the dwell time. This time is also called a scan. The radar will process 3 scans of the target.
```

HPBW = 3.0;
Tdwell = HPBW/scanrate;
Nscan = 3;

```

The number of pulses that arrive on target during the dwell time depends upon the pulse repetition frequency (PRF). PRF is the inverse of the pulse repetition interval (PRI). Assume 5000 pulses are transmitted per second.
```

prf = 5000.0;
pri = 1/prf;

```

The number of pulses in one dwell time is
```

Np = floor(Tdwell*prf);

```

\section*{Set up a Swerling 4 model}

You create a Swerling 4 target by properly employing the step method of the RadarTarget System object \({ }^{\text {TM }}\). To effect a Swerling 4 model, set the Model property of the phased.RadarTarget System object \({ }^{\text {TM }}\) to either 'Swerling3' or 'Swerling4'. Both are equivalent. Then, at the every call to the step method, set the updatercs argument to true. This means that the radar cross section is updated for every pulse in the scan.

Set the target model to 'Swerling4' .
```

tgtmodel = 'Swerling4';

```

Set up radar model System object \({ }^{\text {™ }}\) components
Set up the radiating antenna. Assume the operating frequency of the antenna is 1 GHz .
```

fc = 1e9;
antenna = phased.IsotropicAntennaElement('BackBaffled',true);
radiator = phased.Radiator('OperatingFrequency',fc, ...
'Sensor',antenna);

```

Specify the location of the stationary antenna.
```

radarplatform = phased.Platform('InitialPosition',[0;0;0]);

```

Specify the location of a stationary target.
```

targetplatform = phased.Platform('InitialPosition',[2000; 0; 0]);

```

The transmitted signal is a linear FM waveform. Transmit one pulse per call to the step method.
```

waveform = phased.LinearFMWaveform('PulseWidth',50e-6, ...
'OutputFormat','Pulses','NumPulses',1);

```

Set up the transmitting amplifier.
```

transmitter = phased.Transmitter('PeakPower',1000.0,'Gain',40);

```

Set up the propagation environment to be free space.
```

channel = phased.FreeSpace('OperatingFrequency',fc, ...
'TwoWayPropagation',true);

```

Specify the radar target to have a mean RCS of 1 m 2 and be of the Swerling model type 1 or 2 . You can use Swerling 1 or 2 interchangeably.
```

target = phased.RadarTarget('MeanRCS',1,'OperatingFrequency',fc, ...
'Model',tgtmodel);

```

Set up the radar collector.
```

collector = phased.Collector('OperatingFrequency',1e9, ...
'Sensor',antenna);

```

Define a matched filter to process the incoming signal.
```

wav = waveform();
filter = phased.MatchedFilter('Coefficients',getMatchedFilter(waveform));

```

\section*{Processing loop for \(\mathbf{3}\) scans of a Swerling 4 target}

1 Generate waveform with unit amplitude
2 Amplify the transmit waveform
3 Radiate the waveform in the desired direction to the target
4 Propagate the waveform to and from the radar target
5 Reflect waveform from radar target.
6 Collect radiation to create received signal
7 Match filter received signal
Provide memory for radar return amplitudes
```

z = zeros(Nscan,Np);
tp = zeros(Nscan,Np);

```

Enter the loop. Set updatercs to true only for all pulses of the scan.
```

for m = 1:Nscan
t0 = (m-1)*Trot;
t = t0;
updatercs = true;
for k = 1:Np
t = t + pri;
txwav = transmitter(wav);

```

Find the radar and target positions
```

[xradar,vradar] = radarplatform(pri);
[xtgt,vtgt] = targetplatform(pri);

```

Radiate waveform to target
```

[~,ang] = rangeangle(xtgt,xradar);
radwav = radiator(txwav,ang);

```

Propagate waveform to and from the target
```

propwav = channel(radwav,xradar,xtgt,vradar,vtgt);

```

Reflect waveform from target. Set the updatercs flag.
```

reflwav = target(propwav,updatercs);

```

Collect the received waveform
```

collwav = collector(reflwav,ang);

```

Apply matched filter to incoming signal
```

y = step(filter,collwav);
z(m,k) = max(abs(y));
tp(m,k) = t;

```
    end
end

\section*{Plot the pulse amplitudes}

Plot the amplitudes of the pulses for the scan as a function of time.
plot(tp(:),z(:),'.')
xlabel('Time (sec)')
ylabel('Pulse Amplitude')


Notice that the pulse amplitudes vary within a scan.

\section*{Histogram the received pulse amplitudes}
hist(z(:),25)
xlabel('Pulse Amplitude')


\section*{Clutter Modeling}

\section*{In this section...}
"Surface Clutter Overview" on page 9-35
"Approaches for Clutter Simulation or Analysis" on page 9-35
"Considerations for Setting Up a Constant Gamma Clutter Simulation" on page 9-35
"Related Examples" on page 9-37

\section*{Surface Clutter Overview}

Surface clutter refers to reflections of a radar signal from land, sea, or the land-sea interface. When trying to detect or track targets moving on or above the surface, you must be able to distinguish between clutter and the targets of interest. For example, a ground moving target indicator (GMTI) radar application should detect targets on the ground while accounting for radar reflections from trees or houses.

If you are simulating a radar system, you might want to incorporate surface clutter into the simulation to ensure the system can overcome the effects of surface clutter. If you are analyzing the statistical performance of a radar system, you might want to incorporate clutter return distributions into the analysis.

\section*{Approaches for Clutter Simulation or Analysis}

Phased Array System Toolbox software offers these tools to help you incorporate surface clutter into your simulation or analysis:
- phased.ConstantGammaClutter, a System object that simulates clutter returns using the constant gamma model
- Utility functions to help you implement your own clutter models:
- billingsleyicm
- depressionang
- effearthradius
- grazingang
- horizonrange
- surfclutterrcs
- surfacegamma

\section*{Considerations for Setting Up a Constant Gamma Clutter Simulation}

When you use phased.ConstantGammaClutter, you must configure the object for the situation you are simulating, and confirm that the assumptions the software makes are valid for your system.

\section*{Physical Configuration Properties}

The ConstantGammaClutter object has properties that correspond to physical aspects of the situation you are modeling. These properties include:
- Propagation speed, sample rate, and pulse repetition frequency of the signal
- Operating frequency of the system
- Altitude, speed, and direction of the radar platform
- Depression angle of the broadside of the radar antenna array

\section*{Clutter-Related Properties}

The object has properties that correspond to the clutter characteristics, location, and modeling fidelity. These properties include:
- Gamma parameter that depends on the terrain type and system's operating frequency.
- Azimuth coverage and maximum range for the clutter simulation.
- Azimuth span of each clutter patch. The software internally divides the clutter ring into a series of adjacent, nonoverlapping clutter patches.
- Clutter coherence time. This value indicates how frequently the software changes the set of random numbers in the clutter simulation.

In the simulation, you can use identical random numbers over a time interval or uncorrelated random numbers. Simulation behavior slightly differs from reality, where a moving platform produces clutter returns that are correlated with each other over small time intervals.

\section*{Working with Samples or Pulses}

The ConstantGammaClutter object has properties that let you obtain results in a convenient format. Using the OutputFormat property, you can choose to have the step method produce a signal that represents:
- A fixed number of pulses. You indicate the number of pulses using the NumPulses property of the object.
- A fixed number of samples. You indicate the number of samples using the NumSamples property of the object. Typically, you use the number of samples in one pulse. In staggered PRF applications, you might find this option more convenient because the step output always has the same matrix size.

\section*{Assumptions}

The clutter simulation that ConstantGammaClutter provides is based on these assumptions:
- The radar system is monostatic.
- The propagation is in free space.
- The terrain is homogeneous.
- The clutter patch is stationary during the coherence time. Coherence time indicates how frequently the software changes the set of random numbers in the clutter simulation.
- Because the signal is narrowband, the spatial response and Doppler shift can be approximated by phase shifts.
- The radar system maintains a constant height during simulation.
- The radar system maintains a constant speed during simulation.

\section*{Related Examples}
- "Ground Clutter Mitigation with Moving Target Indication (MTI) Radar" on page 17-461
- "Introduction to Space-Time Adaptive Processing" on page 17-231
- "DPCA Pulse Canceller to Reject Clutter" on page 7-7
- "Adaptive DPCA Pulse Canceller To Reject Clutter and Interference" on page 7-12
- "Sample Matrix Inversion Beamformer" on page 7-18

\section*{Barrage Jammer}

\section*{In this section...}
"Support for Modeling Barrage Jammer" on page 9-38
"Model Barrage Jammer Output" on page 9-38
"Model Effect of Barrage Jammer on Target Echo" on page 9-40

\section*{Support for Modeling Barrage Jammer}

The phased. BarrageJammer object models a broadband jammer. The output of phased.BarrageJammer is a complex white Gaussian noise sequence. The modifiable properties of the barrage jammer are:
- ERP - Effective radiated power in watts
- SamplesPerFrameSource - Source of number of samples per frame
- SamplesPerFrame - Number of samples per frame
- SeedSource - Source of seed for random number generator
- Seed - Seed for random number generator

The real and imaginary parts of the complex white Gaussian noise sequence each have variance equal to \(1 / 2\) the effective radiated power in watts. Denote the effective radiated power in watts by \(P\). The barrage jammer output is:
\[
w[n]=\sqrt{\frac{P}{2}} x[n]+j \sqrt{\frac{P}{2}} y[n]
\]

In this equation, \(x[n]\) and \(y[n]\) are uncorrelated sequences of zero-mean Gaussian random variables with unit variance.

\section*{Model Barrage Jammer Output}

This example examines the statistical properties of the barrage jammer output and how they relate to the effective radiated power ( \(E R P\) ). Create a barrage jammer using an effective radiated power of 5000 watts. Generate output at 500 samples per frame. Then call the step function once to generate a single frame of complex data. Using the histogram function, show the distribution of barrage jammer output values. The BarrageJammer System object uses a random number generator. In this example, the random number generator seed is fixed for illustrative purposes and can be removed.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call to the function with the equivalent step syntax. For example, replace my0bject (x) with step (my0bject,x).
```

rng default
jammer = phased.BarrageJammer('ERP',5000,...
'SamplesPerFrame',500);
y = jammer();
subplot(2,1,1)
histogram(real(y))
title('Histogram of Real Part')
subplot(2,1,2)
histogram(imag(y))

```
```

title('Histogram of Imaginary Part')
xlabel('Watts')

```


The mean values of the real and imaginary parts are
mean (real(y))
ans \(=-1.0961\)
mean(imag(y))
ans \(=-2.1671\)
which are effectively zero. The standard deviations of the real and imaginary parts are
std(real(y))
ans \(=50.1950\)
std(imag(y))
ans \(=49.7448\)
which agree with the predicted value of \(\sqrt{E R P / 2}\).

\section*{Model Effect of Barrage Jammer on Target Echo}

This example demonstrates how to simulate the effect of a barrage jammer on a target echo. First, create the required objects. You need an array, a transmitter, a radiator, a target, a jammer, a collector, and a receiver. Additionally, you need to define two propagation paths: one from the array to the target and back, and the other path from the jammer to the array.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call to the function with the equivalent step syntax. For example, replace my0bject (x) with step(my0bject,x).
```

antenna = phased.ULA(4);
Fs = le6;
fc = 1e9;
rng('default')
waveform = phased.RectangularWaveform('PulseWidth',100e-6,...
'PRF',1e3,'NumPulses',5,'SampleRate',Fs);
transmitter = phased.Transmitter('PeakPower',1e4,'Gain',20,...
'InUseOutputPort',true);
radiator = phased.Radiator('Sensor',antenna,'OperatingFrequency',fc);
jammer = phased.BarrageJammer('ERP',1000,...
'SamplesPerFrame',waveform.NumPulses*waveform.SampleRate/waveform.PRF);
target = phased.RadarTarget('Model','Nonfluctuating',...
'MeanRCS',1,'OperatingFrequency',fc);
targetchannel = phased.FreeSpace('TwoWayPropagation',true,...
'SampleRate',Fs,'OperatingFrequency', fc);
jammerchannel = phased.FreeSpace('TwoWayPropagation',false,...
'SampleRate',Fs,'OperatingFrequency', fc);
collector = phased.Collector('Sensor',antenna,...
'OperatingFrequency',fc);
amplifier = phased.ReceiverPreamp('EnableInputPort',true);

```

Assume that the array, target, and jammer are stationary. The array is located at the global origin, \((0,0,0)\). The target is located at \((1000,500,0)\), and the jammer is located at \((2000,2000,100)\). Determine the directions from the array to the target and jammer.
```

targetloc = [1000 ; 500; 0];
jammerloc = [2000; 2000; 100];
[~,tgtang] = rangeangle(targetloc);
[~,jamang] = rangeangle(jammerloc);

```

Finally, transmit the rectangular pulse waveform to the target, reflect it off the target, and collect the echo at the array. Simultaneously, the jammer transmits a jamming signal toward the array. The jamming signal and echo are mixed at the receiver. Generate waveform
```

wav = waveform();
% Transmit waveform
[wav,txstatus] = transmitter(wav);
% Radiate pulse toward the target
wav = radiator(wav,tgtang);
% Propagate pulse toward the target
wav = targetchannel(wav,[0;0;0],targetloc,[0;0;0],[0;0;0]);
% Reflect it off the target
wav = target(wav);
% Collect the echo
wav = collector(wav,tgtang);

```

Generate the jamming signal
```

jamsig = jammer();
% Propagate the jamming signal to the array
jamsig = jammerchannel(jamsig,jammerloc,[0;0;0],[0;0;0],[0;0;0]);
% Collect the jamming signal
jamsig = collector(jamsig,jamang);
% Receive target echo alone and target echo + jamming signal
pulsewave = amplifier(wav,~txstatus);
pulsewave_jamsig = amplifier(wav + jamsig,~txstatus);

```

Plot the result, and compare it with received waveform with and without jamming.
```

subplot(2,1,1)
t = unigrid(0,1/Fs,size(pulsewave,1)*1/Fs,'[)');
plot(t*1000,abs(pulsewave(:,1)))
title('Magnitudes of Pulse Waveform Without Jamming--Element 1')
ylabel('Magnitude')
subplot(2,1,2)
plot(t*1000,abs(pulsewave_jamsig(:,1)))
title('Magnitudes of Pulse Waveform with Jamming--Element 1')
xlabel('millisec')
ylabel('Magnitude')

```



\section*{Coordinate Systems and Motion Modeling}
- "Rectangular Coordinates" on page 10-2
- "Spherical Coordinates" on page 10-10
- "Global and Local Coordinate Systems" on page 10-17
- "Global and Local Coordinate Systems Radar Example" on page 10-31
- "Motion Modeling in Phased Array Systems" on page 10-39
- "Model Motion of Circling Airplane" on page 10-43
- "Visualize Multiplatform Scenario" on page 10-45
- "Doppler Shift and Pulse-Doppler Processing" on page 10-48

\section*{Rectangular Coordinates}

\author{
In this section... \\ "Definitions of Coordinates" on page 10-2 \\ "Notation for Vectors and Points" on page 10-3 \\ "Orthogonal Basis and Euclidean Norm" on page 10-3 \\ "Orientation of Coordinate Axes" on page 10-3 \\ "Rotations and Rotation Matrices" on page 10-4
}

\section*{Definitions of Coordinates}

Construct a rectangular, or Cartesian, coordinate system for three-dimensional space by specifying three mutually orthogonal coordinate axes. The following figure shows one possible specification of the coordinate axes.


Rectangular coordinates specify a position in space in a given coordinate system as an ordered 3tuple of real numbers, \((x, y, z)\), with respect to the origin ( \(0,0,0\) ). Considerations for choosing the origin are discussed in "Global and Local Coordinate Systems" on page 10-17.

You can view the 3-tuple as a point in space, or equivalently as a vector in three-dimensional Euclidean space. Viewed as a vector space, the coordinate axes are basis vectors and the vector gives
the direction to a point in space from the origin. Every vector in space is uniquely determined by a linear combination of the basis vectors. The most common set of basis vectors for three-dimensional Euclidean space are the standard unit basis vectors:
\[
\left\{\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right]\right\}
\]

\section*{Notation for Vectors and Points}

In Phased Array System Toolbox software, you specify both coordinate axes and points as column vectors.

Note In this software, all coordinate vectors are column vectors. For convenience, the documentation represents column vectors in the format \([x y z]\) without transpose notation.

Both the vector notation \([x y z\) ] and point notation \((x, y, z)\) are used interchangeably. The interpretation of the column vector as a vector or point depends on the context. If the column vector specifies the axes of a coordinate system or direction, it is a vector. If the column vector specifies coordinates, it is a point.

\section*{Orthogonal Basis and Euclidean Norm}

Any three linearly independent vectors define a basis for three-dimensional space. However, this software assumes that the basis vectors you use are orthogonal.

The standard distance measure in space is the \(l^{2}\) norm, or Euclidean norm. The Euclidean norm of a vector \([x y z\) ] is defined by:
\[
\sqrt{x^{2}+y^{2}+z^{2}}
\]

The Euclidean norm gives the length of the vector measured from the origin as the hypotenuse of a right triangle. The distance between two vectors [ \(x_{0} y_{0} z_{0}\) ] and \(\left[x_{1} y_{1} z_{1}\right.\) ] is:
\[
\sqrt{\left(x_{0}-x_{1}\right)^{2}+\left(y_{0}-y_{1}\right)^{2}+\left(z_{0}-z_{1}\right)^{2}}
\]

\section*{Orientation of Coordinate Axes}

Given an orthonormal set of basis vectors representing the coordinate axes, there are multiple ways to orient the axes. The following figure illustrates one such orientation, called a right-handed coordinate system. The arrows on the coordinate axes indicate the positive directions.


If you take your right hand and point it along the positive \(x\)-axis with your palm facing the positive \(y\) axis and extend your thumb, your thumb indicates the positive direction of the \(z\)-axis.

\section*{Rotations and Rotation Matrices}

In transforming vectors in three-dimensional space, rotation matrices are often encountered. Rotation matrices are used in two senses: they can be used to rotate a vector into a new position or they can be used to rotate a coordinate basis (or coordinate system) into a new one. In this case, the vector is left alone but its components in the new basis will be different from those in the original basis. In Euclidean space, there are three basic rotations: one each around the \(\mathrm{x}, \mathrm{y}\) and z axes. Each rotation is specified by an angle of rotation. The rotation angle is defined to be positive for a rotation that is counterclockwise when viewed by an observer looking along the rotation axis towards the origin. Any arbitrary rotation can be composed of a combination of these three (Euler's rotation theorem). For example, you can rotate a vector in any direction using a sequence of three rotations:
\(\mathbf{v}^{\prime}=A \mathbf{v}=R_{z}(\gamma) R_{y}(\beta) R_{x}(\alpha) \mathbf{v}\).
The rotation matrices that rotate a vector around the \(\mathrm{x}, \mathrm{y}\), and z -axes are given by:
- Counterclockwise rotation around x -axis
\[
R_{\chi}(\alpha)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \alpha & -\sin \alpha \\
0 & \sin \alpha & \cos \alpha
\end{array}\right]
\]
- Counterclockwise rotation around y-axis
\[
R_{y}(\beta)=\left[\begin{array}{ccc}
\cos \beta & 0 & \sin \beta \\
0 & 1 & 0 \\
-\sin \beta & 0 & \cos \beta
\end{array}\right]
\]
- Counterclockwise rotation around z-axis
\[
R_{z}(\gamma)=\left[\begin{array}{ccc}
\cos \gamma & -\sin \gamma & 0 \\
\sin \gamma & \cos \gamma & 0 \\
0 & 0 & 1
\end{array}\right]
\]

The following three figures show what positive rotations look like for each rotation axis:



For any rotation, there is an inverse rotation satisfying \(A^{-1} A=1\). For example, the inverse of the x axis rotation matrix is obtained by changing the sign of the angle:
\[
R_{\chi}^{-1}(\alpha)=R_{\chi}(-\alpha)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \alpha & \sin \alpha \\
0 & -\sin \alpha & \cos \alpha
\end{array}\right]=R_{\chi}^{\prime}(\alpha)
\]

This example illustrates a basic property: the inverse rotation matrix is the transpose of the original. Rotation matrices satisfy \(A^{\prime} A=1\), and consequently \(\operatorname{det}(A)=1\). Under rotations, vector lengths are preserved as well as the angles between vectors.

We can think of rotations in another way. Consider the original set of basis vectors, \(\mathbf{i}, \mathbf{j}, \mathbf{k}\), and rotate them all using the rotation matrix \(A\). This produces a new set of basis vectors \(\mathbf{i}^{\prime}, \mathbf{j}, \mathbf{k} \mathbf{k}^{\prime}\) related to the original by:
\[
\begin{aligned}
\mathbf{i}^{\prime} & =A \mathbf{i} \\
\mathbf{j}^{\prime} & =A \mathbf{j} \\
\mathbf{k}^{\prime} & =A \mathbf{k}
\end{aligned}
\]

Using the transpose, you can write the new basis vectors as a linear combinations of the old basis vectors:
\[
\left[\begin{array}{l}
\mathbf{i}^{\prime} \\
\mathbf{j}^{\prime} \\
\mathbf{k}^{\prime}
\end{array}\right]=A^{\prime}\left[\begin{array}{l}
\mathbf{i} \\
\mathbf{j} \\
\mathbf{k}
\end{array}\right]
\]

Now any vector can be written as a linear combination of either set of basis vectors:
\[
\mathbf{v}=v_{x} \mathbf{i}+v_{y} \mathbf{j}+v_{z} \mathbf{k}=v_{x}^{\prime} \mathbf{i}^{\prime}+v_{y}^{\prime} \mathbf{j}^{\prime}+v_{z}^{\prime} \mathbf{k}^{\prime}
\]

Using algebraic manipulation, you can derive the transformation of components for a fixed vector when the basis (or coordinate system) rotates. This transformation uses the transpose of the rotation matrix.
\[
\left[\begin{array}{c}
v_{x}^{\prime} \\
v_{y}^{\prime} \\
v_{z}^{\prime}
\end{array}\right]=A^{-1}\left[\begin{array}{c}
v_{x} \\
v_{y} \\
v_{z}
\end{array}\right]=A^{\prime}\left[\begin{array}{c}
v_{x} \\
v_{y} \\
v_{z}
\end{array}\right]
\]

The next figure illustrates how a vector is transformed as the coordinate system rotates around the xaxis. The figure after shows how this transformation can be interpreted as a rotation of the vector in the opposite direction.


\section*{See Also}

\section*{More About}
- "Global and Local Coordinate Systems" on page 10-17

\section*{Spherical Coordinates}
```

In this section...
"Support for Spherical Coordinates" on page 10-10
"Azimuth and Elevation Angles" on page 10-10
"Phi and Theta Angles" on page 10-11
"U and V Coordinates" on page 10-12
"Conversion between Rectangular and Spherical Coordinates" on page 10-13
"Broadside Angles" on page 10-14
"Convert Between Broadside Angles and Azimuth and Elevation" on page 10-16

```

\section*{Support for Spherical Coordinates}

Spherical coordinates describe a vector or point in space with a distance and two angles. The distance, \(R\), is the usual Euclidean norm. There are multiple conventions regarding the specification of the two angles. They include:
- Azimuth and elevation angles
- Phi and theta angles
- \(u\) and \(v\) coordinates

Phased Array System Toolbox software natively supports the azimuth/elevation representation. The software also provides functions for converting between the azimuth/elevation representation and the other representations. See "Phi and Theta Angles" on page 10-11 and "U and V Coordinates" on page 10-12.

\section*{Azimuth and Elevation Angles}

In Phased Array System Toolbox software, the predominant convention for spherical coordinates is as follows:
- Use the azimuth angle, \(a z\), and the elevation angle, \(e l\), to define the location of a point on the unit sphere.
- Specify all angles in degrees.
- List coordinates in the sequence ( \(a z, e l, R\) ).

The azimuth angle of a vector is the angle between the \(x\)-axis and the orthogonal projection of the vector onto the \(x y\) plane. The angle is positive in going from the \(x\) axis toward the \(y\) axis. Azimuth angles lie between -180 and 180 degrees. The elevation angle is the angle between the vector and its orthogonal projection onto the \(x y\)-plane. The angle is positive when going toward the positive \(z\)-axis from the xy plane. By default, the boresight direction of an element or array is aligned with the positive \(x\)-axis. The boresight direction is the direction of the main lobe of an element or array.

Note The elevation angle is sometimes defined in the literature as the angle a vector makes with the positive \(z\)-axis. The MATLAB \({ }^{\circledR}\) and Phased Array System Toolbox products do not use this definition.

This figure illustrates the azimuth angle and elevation angle for a vector shown as a green solid line.


\section*{Phi and Theta Angles}

As an alternative to azimuth and elevation angles, you can use angles denoted by \(\varphi\) and \(\theta\) to express the location of a point on the unit sphere. To convert the \(\varphi / \theta\) representation to and from the corresponding azimuth/elevation representation, use coordinate conversion functions, phitheta2azel and azel2phitheta.

The phi angle \((\varphi)\) is the angle from the positive \(y\)-axis to the vector's orthogonal projection onto the \(y z\) plane. The angle is positive toward the positive \(z\)-axis. The phi angle is between 0 and 360 degrees. The theta angle \((\theta)\) is the angle from the \(x\)-axis to the vector itself. The angle is positive toward the \(y z\) plane. The theta angle is between 0 and 180 degrees.

The figure illustrates phi and theta for a vector that appears as a green solid line.


The coordinate transformations between \(\varphi / \theta\) and \(a z / e l\) are described by the following equations
\[
\begin{aligned}
& \operatorname{sinel}=\sin \phi \sin \theta \\
& \tan a z=\cos \phi \tan \theta \\
& \cos \theta=\operatorname{cosel} \cos a z \\
& \tan \phi=\tan e l / \sin a z
\end{aligned}
\]

\section*{U and V Coordinates}

In radar applications, it is often useful to parameterize the hemisphere \(\mathrm{x} \geq 0\) using coordinates denoted by \(u\) and \(v\).
- To convert the \(\varphi / \theta\) representation to and from the corresponding \(u / v\) representation, use coordinate conversion functions phitheta2uv and uv2phitheta.
- To convert the azimuth/elevation representation to and from the corresponding \(u / v\) representation, use coordinate conversion functions azel2uv and uv2azel.

You can define \(u\) and \(v\) in terms of \(\varphi\) and \(\theta\) :
\[
\begin{aligned}
& u=\sin \theta \cos \phi \\
& v=\sin \theta \sin \phi
\end{aligned}
\]

In these expressions, \(\varphi\) and \(\theta\) are the phi and theta angles, respectively.
In terms of azimuth and elevation, the \(u\) and \(v\) coordinates are
\[
\begin{aligned}
& u=\text { coselsinaz } \\
& v=\text { sinel }
\end{aligned}
\]

The values of \(u\) and \(v\) satisfy the inequalities
\[
\begin{aligned}
& -1 \leq u \leq 1 \\
& -1 \leq v \leq 1 \\
& u^{2}+v^{2} \leq 1
\end{aligned}
\]

Conversely, the phi and theta angles can be written in terms of \(u\) and \(v\) using
\[
\begin{aligned}
\tan \phi & =u / v \\
\sin \theta & =\sqrt{u^{2}+v^{2}}
\end{aligned}
\]

The azimuth and elevation angles can also be written in terms of \(u\) and \(v\)
\[
\begin{aligned}
& \text { sinel }=v \\
& \tan a z=\frac{u}{\sqrt{1-u^{2}-v^{2}}}
\end{aligned}
\]

\section*{Conversion between Rectangular and Spherical Coordinates}

The following equations define the relationships between rectangular coordinates and the (az,el,R) representation used in Phased Array System Toolbox software.

To convert rectangular coordinates to (az,el, \(R\) ):
\[
\begin{aligned}
& R=\sqrt{x^{2}+y^{2}+z^{2}} \\
& a z=\tan ^{-1}(y / x) \\
& e l=\tan ^{-1}\left(z / \sqrt{x^{2}+y^{2}}\right)
\end{aligned}
\]

To convert ( \(a z, e l, R\) ) to rectangular coordinates:
\[
\begin{aligned}
& x=R \cos (e l) \cos (a z) \\
& y=R \cos (e l) \sin (a z) \\
& z=R \sin (e l)
\end{aligned}
\]

When specifying a target's location with respect to a phased array, it is common to refer to its distance and direction from the array. The distance from the array corresponds to \(R\) in spherical coordinates. The direction corresponds to the azimuth and elevation angles.

Tip To convert between rectangular coordinates and ( \(a z, e l, R\) ), use the MATLAB functions cart2sph and sph2cart. These functions specify angles in radians. To convert between degrees and radians, use deg2 rad and rad2deg.

\section*{Broadside Angles}

Broadside angles are useful when describing the response of a uniform linear array (ULA). The array response depends directly on the broadside angle and not on the azimuth and elevation angles. Start with a ULA and draw a plane orthogonal to the ULA axis as shown in blue in the figure. The broadside angle, \(\beta\), is the angle between the plane and the signal direction. To compute the broadside angle, construct a line from any point on the signal path to the plane, orthogonal to the plane. The angle between these two lines is the broadside angle and lies in the interval \(\left[-90^{\circ}, 90^{\circ}\right]\). The broadside angle is positive when measured toward the positive direction of the array axis. Zero degrees indicates a signal path orthogonal to the array axis. \(\pm 90^{\circ}\) indicates paths along the array axis. All signal paths having the same broadside angle form a cone around the ULA axis.


The conversion from azimuth angle, \(a z\), and elevation angle, \(e l\), to broadside angle, \(\beta\), is
\[
\beta=\sin ^{-1}(\sin (a z) \cos (e l))
\]

This equation shows that
- For an elevation angle of zero, the broadside angle equals the azimuth angle.
- Elevation angles equally above and below the \(x y\) plane result in identical broadside angles.

You can convert from broadside angle to azimuth angle but you must specify the elevation angle
\[
a z=\sin ^{-1}\left(\frac{\sin \beta}{\cos (e l)}\right)
\]

Because the signals paths for a given broadside angle, \(\beta\), form a cone around the array axis, you cannot specify the elevation angle arbitrarily. The elevation angle and broadside angle must satisfy
\[
|e l|+|\beta| \leq 90
\]

The following figure depicts a ULA with elements spaced \(d\) meters apart along the \(y\)-axis. The ULA is irradiated by a plane wave emitted from a point source in the far field. For convenience, the elevation angle is zero degrees. In this case, the signal direction lies in the \(x y\)-plane. Then, the broadside angle reduces to the azimuth angle.


Because of the angle of arrival, the array elements are not simultaneously illuminated by the plane wave. The additional distance the incident wave travels between array elements is \(d \sin \beta\) where \(d\) is the distance between array elements. The constant time delay, \(\tau\), between array elements is
\[
\tau=\frac{d \sin \beta}{c}
\]
where \(c\) is the speed of the wave.
For broadside angles of \(\pm 90^{\circ}\), the signal is incident on the array parallel to the array axis and the time delay between sensors equals \(\pm d / c\). For a broadside angle of zero, the plane wave illuminates all elements of the ULA simultaneously and the time delay between elements is zero.

Phased Array System Toolbox software provides functions az2broadside and broadside2az for converting between azimuth and broadside angles.

\section*{Convert Between Broadside Angles and Azimuth and Elevation}

The following examples show how to use the az2broadside and broadside2az functions.
A target is located at an azimuth angle of \(45^{\circ}\) and at an elevation angle of \(60^{\circ}\) relative to a ULA. Determine the corresponding broadside angle.
bsang = az2broadside(45,60)
bsang = 20.7048
Calculate the azimuth for an incident signal arriving at a broadside angle of \(45^{\circ}\) and an elevation of \(20^{\circ}\).
\(\mathrm{az}=\) broadside2az \((45,20)\)
\(a z=48.8063\)

\title{
Global and Local Coordinate Systems
}

\section*{In this section...}
"Global Coordinate System" on page 10-17
"Local Coordinate Systems" on page 10-17
"Converting Between Global and Local Coordinate Systems" on page 10-29
"Convert Local Spherical Coordinates to Global Rectangular Coordinates" on page 10-29
"Convert Global Rectangular Coordinates to Local Spherical Coordinates" on page 10-30

\section*{Global Coordinate System}

The global coordinate system describes the arena in which your radar or sonar simulation takes place. Within this arena, you can place radar or sonar transmitters and receivers, and targets. These objects can be either stationary or moving. You specify the location and motion of these objects in global coordinates.

You can model the motion of all objects using the phased. Platform System object. This System object computes the position and speed of objects using constant-velocity or constant-acceleration models.

You can model the signals that propagate between objects in your scenario. The ray paths that connect transmitters, targets, and receivers are specified in global coordinates. You can propagate signals using these System objects: phased. FreeSpace, phased. WidebandFreeSpace, phased. LOSChannel, or phased. WidebandLOSChannel. If you model two-ray multipath propagation using the phased. TwoRayChannel System object, the boundary plane is set at \(z=0\) in the global coordinate system.

\section*{Local Coordinate Systems}

When signals interact with sensors or targets, the interaction is almost always specified as a function of the sensor or target local coordinates. Local coordinate systems are fixed to the antennas and microphones, phased arrays, and targets. They move and rotate with the object. Local coordinates are commonly adapted to the shape and symmetry of the object.

Because signals propagate in the global coordinate system, you need to be able to convert local coordinates to the global coordinates. You do this by constructing a 3-by-3 orthonormal matrix of coordinate axes. The matrix columns represent the three orthogonal direction vectors of the local coordinates expressed in the global coordinate system. The coordinate axes of a local coordinate system must be orthonormal, but they need not be parallel to the global coordinate axes.

When you need to compute the range and arrival angles of a signal, you can use the rangeangle function. When you call this function with the source and receiver position expressed in global coordinates, the function returns the range and arrival angles, azimuth and elevation, with respect to the axes of the global system. However, when you pass the orientation matrix as an additional argument, the azimuth and elevation are now defined with respect to the local coordinate system.

You use local coordinates to specify
- the location and orientation of antenna or microphone elements of an array. The beam pattern of an antenna array depends upon the angle of arrival or emission of radiation with respect to the array local coordinates.
- the reflected energy from a target is a function of the incident and reflection angles with respect to the target local coordinate axes.

Two examples of local coordinate systems are
- an airplane may have a local coordinate system with the \(x\)-axis aligned along the fuselage axis of the body and the \(y\)-axis pointing along the port wing. Choose the \(z\)-axis to form a right-handed coordinate system.
- a vehicle-mounted planar phased array may have a local coordinate system adapted to the array. The \(x\)-axis of the coordinate system may point along the array normal vector.

The following figure illustrates the relationship of local and global coordinate systems in a bistatic radar scenario. The thick solid lines represent the coordinate axes of the global coordinate system. There are two phased arrays: a 5-by-5 transmitting uniform rectangular array (URA) and 5-by-5 receiving URA. Each of the phased arrays carries its own local coordinate system. The target, indicated by the red arrow, also carries a local coordinate system.


The next few sections review the local coordinate systems used by arrays.

\section*{Local Coordinate Systems of Arrays}

The positions of the elements of any Phased Array System Toolbox array are always defined in a local coordinate system. When you use any of the System objects that create uniform arrays, the array element positions are defined automatically with respect to a predefined local coordinate system. The arrays for which this property holds are the phased.ULA, phased.URA, phased.UCA, phased.HeterogeneousULA, and phased.HeterogeneousURA System objects. For these System objects, the arrays are described using a few parameters such as element spacing and number of elements. The positions of the elements are then defined with respect to the array origin located at \((0,0,0)\) which is the geometric center of the array. The geometric center is a good approximation to the array phase center. The phase center of an array is the point from which the radiating waves appear to emanate when observed in the far field. For example, for a ULA with an odd number of elements, the elements are located at distances \((-2 d,-d, 0, d, 2 d)\) along the array axis.

There are array System objects for which you must explicitly specify the element coordinates. You can use these objects for creating arbitrary array shapes. These objects are the phased.ConformalArray and phased. HeterogeneousConformalArray System objects. For these arrays, the phase center of the array need not coincide with the array origin or geometric center.

\section*{Element Boresight Directions}

In addition to element positions, you need to specify the element orientations, that is, the directions in which the elements point. Some elements are highly directional - most of their radiated energy flows in one direction, called the main response axis (MRA). Others are omnidirectional. Element orientation is the pointing direction of the MRA. You specify element orientation using azimuth and elevation in the array local coordinate system. The direction that an antenna or microphone MRA faces when transmitting or receiving a signal is also called the boresight or look direction. For the uniform arrays, all boresight directions of all elements are determined by array parameters. For conformal arrays, you specify the boresight direction of each element independently.

\section*{Local Coordinate System of Uniform Linear Array}

\section*{Array Origin and Phase Center}

A uniform linear array (ULA) is an array of antenna or microphone elements that are equidistantly spaced along a straight line. In the Phased Array System Toolbox, the phased. ULA System object creates a ULA array. The geometry of the ULA orientation of its elements is determined by three parameters: the number of elements, the distance between elements, and the ArrayAxis property. For the ULA, the local coordinate system is adapted to the array - the elements are automatically assigned positions in the local coordinate system.

The positions of elements in the array are determined by the ArrayAxis property which can take the values ' \(x\) ', ' \(y\) ' or ' \(z\) '. The array axis property determines the axis on which all elements are defined. For example, when the ArrayAxis property is set to ' \(x\) ', the array elements lie along the \(x\) axis. The elements are positioned symmetrically with respect to the origin. Therefore, the geometric center of the array lies at the origin of the coordinate system.

This figure shows a four-element ULA with directional elements in a local right-handed coordinate system. The elements lie on the \(y\)-axis with their boresight axes pointing in the \(x\)-direction. In this case, the ArrayAxis property is set to ' \(y\).


\section*{ULA Element Boresight Direction}

In a ULA, the boresight directions of every element point in the same direction. The direction is orthogonal to the array axis. This direction depends upon the choice of ArrayAxis property.
\begin{tabular}{|l|l|}
\hline ArrayAxis Property Value & Element Positions and Boresight Directions \\
\hline ' \(x\) ' & \begin{tabular}{l} 
Array elements lie on the \(x\)-axis. Element \\
boresight vectors point along the \(y\)-axis.
\end{tabular} \\
\hline ' \(y\) ' & \begin{tabular}{l} 
Array elements lie on the \(y\)-axis. Element \\
boresight vectors point along the \(x\)-axis.
\end{tabular} \\
\hline ' \(z^{\prime}\) & \begin{tabular}{l} 
Array elements lie on the \(z\)-axis. Element \\
boresight vectors point along the \(x\)-axis.
\end{tabular} \\
\hline
\end{tabular}

\section*{Local Coordinates Adapted to Uniform Linear Array}

Construct two examples of a uniform linear array and display the coordinates of the elements with respect to the local coordinate systems defined by the arrays.

First, construct a 4-element ULA with one-half meter element spacing.
```

sULA = phased.ULA('NumElements',4,'ElementSpacing',0.5);
ElementLocs = getElementPosition(sULA)
ElementLocs = 3\times4

```
\[
\begin{array}{rrrr}
0 & 0 & 0 & 0 \\
-0.7500 & -0.2500 & 0.2500 & 0.7500
\end{array}
\]

0
0
0
0
viewArray(sULA)

Array Geometry

> Aperture Size:
> \(Y\) axis \(=2 \mathrm{~m}\) Element Spacing:
> \(\Delta y=500 \mathrm{~mm}\) Array Axis: \(Y\) axis

The origin of the array-centric local coordinate system is set to the phase center of the array. The phase center is the average value of the array element positions.
```

disp(mean(ElementLocs'))
0 0 0

```

Because the array has an even number of elements, no element of the array actually lies at the phase center ( \(0,0,0\) ).

Next construct a 5-element ULA with thirty-centimeter element spacing.
```

sULA1 = phased.ULA('NumElements',5,'ElementSpacing',0.3);
ElementLocs = getElementPosition(sULA1)
ElementLocs = 3×5

0	0	0	0	0
-0.6000	-0.3000	0	0.3000	0.6000
0	0	0	0	0

```
viewArray(sULA1)

\section*{Array Geometry}


Aperture Size:
Y axis \(=1.5 \mathrm{~m}\)
Element Spacing:
\(\Delta y=300 \mathrm{~mm}\)
Array Axis: \(Y\) axis

Because the array has an odd number of elements in each row and column, the center element of the array lies at the phase center.

\section*{Local Coordinate System of Uniform Rectangular Array}

\section*{Array Origin and Phase Center}

A uniform rectangular array (URA) is an array of antenna or microphone elements placed on a regular two-dimensional grid. The geometry of a URA and the location and orientation of its elements are determined by several parameters: the dimensions of the array, the distance between elements, and the ArrayNormal property. For the URA, the local coordinate system is adapted to the array the elements are automatically assigned positions in the local coordinate system. The origin of the local coordinate system is the geometric center of the array. The phase center of the array coincides with the geometric center. The elements are automatically assigned positions in this local coordinate system. The positions are determined by the ArrayNormal property which can take the values ' x ', ' \(y\) ' or ' \(z\) '. All elements lie in a plane passing through the origin and orthogonal to the axis specified in this property. For example, when the ArrayNormal property is set to ' \(x\) ', the array elements lie in the \(y z\)-plane as shown in the figure. The figure shows a 2 -by- 4 element URA with elements spaced \(d\) meters apart in both the \(y\) and \(z\) directions.


\section*{Element Boresight Direction}

In a URA, like the ULA, the boresight directions of every element point in the same direction. You control this direction using the ArrayNormal property. For the URA shown in the preceding figure, the ArrayNormal property is set to ' \(x\) '. Then, element boresights point along the \(x\)-axis.
\begin{tabular}{|l|l|}
\hline ArrayNormal Property Value & Element Positions and Boresight Directions \\
\hline\(' x\) ' & \begin{tabular}{l} 
Array elements lie on the \(y z\)-plane. Element \\
boresight vectors point along the \(x\)-axis.
\end{tabular} \\
\hline ' \(y\) ' & \begin{tabular}{l} 
Array elements lie on the \(z x\)-plane. Element \\
boresight vectors point along the \(y\)-axis.
\end{tabular} \\
\hline ' \(z\) ' & \begin{tabular}{l} 
Array elements lie on the \(x y\)-plane. Element \\
boresight vectors point along the \(z\)-axis.
\end{tabular} \\
\hline
\end{tabular}

\section*{Local Coordinates Adapted to Uniform Rectangular Array}

Construct two examples of uniform rectangular arrays and display the coordinates of the elements with respect to the local coordinate systems defined by the arrays.

First, construct a 2-by-4 URA with one-half meter element spacing.
```

sURA = phased.URA('Size',[2 4],'ElementSpacing',[0.5 0.5]);
ElementLocs = getElementPosition(sURA)
ElementLocs = 3\times8

0	0	0	0	0	0	0	0
-0.7500	-0.7500	-0.2500	-0.2500	0.2500	0.2500	0.7500	0.7500
0.2500	-0.2500	0.2500	-0.2500	0.2500	-0.2500	0.2500	-0.2500

```
viewArray (sURA)

\section*{Array Geometry}


Aperture Size:
Y axis \(=2 \mathrm{~m}\)
Z axis \(=1 \mathrm{~m}\)
Element Spacing:
\(\Delta y=500 \mathrm{~mm}\)
\(\Delta z=500 \mathrm{~mm}\)

The phase center of the array is the mean value of the array element positions. The origin of the array local coordinate system is set to the phase center of the array.
```

disp(mean(ElementLocs'))
0 0 0

```

Because the array has an even number of elements in each row and column, no element of the array actually lies at the phase center \((0,0,0)\).

Next construct a 5-by-3 URA with thirty-centimeter element spacing.
```

sURA1 = phased.URA([5 3],'ElementSpacing',[0.3 0.3]);
ElementLocs = getElementPosition(sURA1)
ElementLocs = 3×15

```
\begin{tabular}{rrrrrrrr}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-0.3000 & -0.3000 & -0.3000 & -0.3000 & -0.3000 & 0 & 0 & 0 \\
0.6000 & 0.3000 & 0 & -0.3000 & -0.6000 & 0.6000 & 0.3000 & 0 \\
\hline .0 .3000
\end{tabular}
viewArray(sURA1)

\section*{Array Geometry}


Because the array has an odd number of elements in each row and column, the center element of the array lies at the phase center.

A signal arrives at the array from a point 1000 meters from along the \(+x\)-axis of the global coordinate system. The local URA array is rotated 30 degrees clockwise around the \(y\)-axis. Compute the angle of arrival of the signal in the local array axes.
```

laxes = roty(30);
[rng,ang] = rangeangle([1000,0,0]',[0,0,0]',laxes)
rng = 1.0000e+03
ang = 2×1
0
30.0000

```

\section*{Local Coordinate System of Uniform Circular Array}

\section*{Array Origin and Phase Center}

A uniform circular array (UCA) is an array of antenna or microphone elements spaced at equal angles around a circle. The phased. UCA System object creates a special case of a UCA. In this case, element boresight directions point away from the array origin like spokes of a wheel. The origin of the local coordinate system is the geometric center of the array. The geometry of the UCA and the location and orientation of its elements is determined by three parameters: the radius of the array, the number of elements, and the ArrayNormal property. The elements are automatically assigned positions in the local coordinate system. The positions are determined by the ArrayNormal property which can take the values ' \(x\) ', ' \(y\) ' or ' \(z\) '. All elements lie in a plane passing through the origin and orthogonal to the axis specified in this property. The phase center of the array coincides with the geometric center. For example, when the ArrayNormal property is set to ' \(x\) ', the array elements lie in the \(y z\)-plane as shown in the figure. You can create a more general UCA with arbitrary boresight directions using the phased. ConformalArray System object.

This figure shows an 8 -element UCA with elements lying in the \(y z\) plane.


\section*{Element Boresight Directions}

In a UCA defined by a phased. UCA System object, element boresight directions point radially outward from the array origin. In the UCA shown in the preceding figure, because the ArrayNormal property is set to ' x ', the element boresight directions point radially outward in the \(y z\)-plane.
\begin{tabular}{|l|l|}
\hline ArrayNormal Property Value & Element Positions and Boresight Directions \\
\hline ' \(x\) ' & \begin{tabular}{l} 
Array elements lie on the \(y z\)-plane. All element \\
boresight vectors lie in the \(y z\)-plane and point \\
radially-outward from the origin.
\end{tabular} \\
\hline ' y ' & \begin{tabular}{l} 
Array elements lie on the \(z x\)-plane. All element \\
boresight vectors lie in the \(z x\)-plane and point \\
radially-outward from the origin.
\end{tabular} \\
\hline ' \(z\) ' & \begin{tabular}{l} 
Array elements lie on the \(x y\)-plane. All element \\
boresight vectors lie in the \(x y\)-plane and point \\
radially-outward from the origin.
\end{tabular} \\
\hline
\end{tabular}

\section*{Local Coordinate System of Conformal Arrays}

\section*{Array Origin and Phase Center}

You can use phased. ConformalArray to create arrays of arbitrary shape. Unlike the case of uniform arrays, you must specify the element positions explicitly. An \(N\)-element array requires the specification of \(N 3\)-D coordinates in the array local coordinate system. The origin of a conformal array can be located at any arbitrary point. The boresight directions of the elements of a conformal array need not be parallel. The azimuth and elevation angles defining the boresight directions are with respect to the local coordinate system. The phase center of the array does not need to coincide with the geometric center. The same properties apply to the phased.HeterogeneousConformalArray array.

This illustration shows the positions and orientations of a 4 -element conformal array.


\section*{4-Element Conformal Array}

Construct a 4 -element array using the ConformalArray System object. Assume the operating frequency is 900 MHz . Display the array geometry and normal vectors.
fc = 900e6;
c = physconst('LightSpeed');
lam = c/fc;
\(x=[1.0,-.5,0, .8] *\) lam/2;
\(y=[-.4,-1, .5,1.5] *\) lam \(/ 2\);
\(z=[-.3, .3,0.4,0] * l a m / 2\);
sIso = phased.CosineAntennaElement(...
'FrequencyRange', [0,1e9]);
nv \(=[-140,-140,90,90 ; 80,80,80,80]\);
sConformArray = phased.ConformalArray('Element',sIso,...
'ElementPosition',[x;y;z],...
'ElementNormal', nv);
pos \(=\) getElementPosition(sConformArray)
pos \(=3 \times 4\)
\begin{tabular}{rrrr}
0.1666 & -0.0833 & 0 & 0.1332 \\
-0.0666 & -0.1666 & 0.0833 & 0.2498 \\
-0.0500 & 0.0500 & 0.0666 & 0
\end{tabular}
normvec \(=\) getElementNormal(sConformArray)
```

normvec = 2×4
-140 -140 90 90
80 80 80 80
viewArray(sConformArray,'ShowIndex','All','ShowNormal',true)

```

Array Geometry


Array Span:
\(X\) axis \(=249.827 \mathrm{~mm}\)
Y axis \(=416.378 \mathrm{~mm}\)
\(Z\) axis \(=116.586 \mathrm{~mm}\)

\section*{Converting Between Global and Local Coordinate Systems}

In many array processing applications, it is necessary to convert between global and local coordinates. Two utility functions, global2localcoord and local2globalcoord, perform these conversions.

\section*{Convert Local Spherical Coordinates to Global Rectangular Coordinates}

Determine the position of a target in rectangular coordinates in the global coordinate system. First, specify the local spherical coordinates of a target with respect to a URA. The center of the URA defines the origin of the local coordinate system. The target location in local spherical coordinates is \(30^{\circ}\) azimuth, \(45^{\circ}\) elevation, and 1000 m range. To convert to global rectangular coordinates, specify the position of the local coordinate system origin in global coordinates. The origin of the local coordinate system is \((1000,500,100) \mathrm{m}\) from the global origin.

Convert the coordinates of the point to global rectangular coordinates. To convert from local spherical coordinates to global rectangular coordinates, use the ' \(s r\) ' option in the call to the local2globalcoord function.
```

gCoord = local2globalcoord([30; 45; 1000],'sr',[1000; 500; 100])
gCoord = 3\times1
103 x
1.6124
0.8536
0.8071

```

The target is located at \((1612,854,807) \mathrm{m}\) in the global coordinate system.
Copyright 2018 The MathWorks, Inc."

\section*{Convert Global Rectangular Coordinates to Local Spherical Coordinates}

Determine the position of a target in local spherical coordinates centered at the phase center of a URA array. The center of the URA defines the origin of the local coordinate system and has the global rectangular coordinates ( \(5000,3000,50\) ). The local coordinate axes of the URA are ( \(0,1,0\) ), ( \(1,0,0\) ), and \((0,0,-1)\). Specify the global rectangular coordinates of the target at \((1000,500,10)\).

Convert the coordinates of the target to local spherical rectangular coordinates. To convert from global rectangular coordinates to local spherical coordinates, use the 'rs' option in the call to the global2localcoord function.
```

lCoord = global2localcoord([5000; 3000; 50],'rs',[1000; 500; 100], ...
[0 1 0; 1 0 0; 0 0 -1])
lCoord = 3x1
10}\mp@subsup{}{}{3}
0.0580
0.0006
4.7173

```

The output has the form (az,el,rng). The target is located in local spherical coordinates at \(58^{\circ}\) azimuth, \(0.6^{\circ}\) elevation and 4717 m .

\section*{Global and Local Coordinate Systems Radar Example}

This example shows how several different coordinate systems come into play when modeling a typical radar scenario. The scenario considered here is a bistatic radar system consisting of a transmitting radar array, a target, and a receiving radar array. The transmitting radar antenna emits radar signals that propagate to the target, reflect off the target, and then propagate to the receiving radar.

Choose a signal frequency of 1 GHz .
```

fc = 1e9;
c = physconst('LightSpeed');
lam = c/fc;

```

\section*{Create All Radar System Components}

First, set up the transmitting radar array. The transmitting array is a 5 -by- 5 uniform rectangular array (URA) composed of isotropic antenna elements. The array is stationary and is located at the position \((50,50,50)\) meters in the global coordinate system. Although you position arrays in the global system, array element positions are always defined in the array local coordinate system. The transmitted signal strength in any direction is a function of the transmitting angle in the local array coordinate system. Specify the orientation of the array. Without any orientation, local array axes are aligned with the global coordinate system. Choose an array orientation so that the array normal vector points approximately in the direction of the target. Do this by rotating the array \(90^{\circ}\) around the \(z\)-axis. Then, rotate the array slightly by \(2^{\circ}\) around the \(y\)-axis and \(1^{\circ}\) around the \(z\)-axis again.
```

antenna = phased.IsotropicAntennaElement('BackBaffled',false);
txarray = phased.URA('Element',antenna','Size',[5,5],'ElementSpacing',0.4*lam*[1,1]);
txradarAx = rotz(1)*roty(2)*rotz(90);
txplatform = phased.Platform('InitialPosition',[50;50;50],...
'Velocity',[0;0;0],'InitialOrientationAxes',txradarAx,...
'OrientationAxesOutputPort',true);
radiator = phased.Radiator('Sensor',txarray,'PropagationSpeed',c,...
'WeightsInputPort',true,'OperatingFrequency',fc);
steervec = phased.SteeringVector('SensorArray',txarray,'PropagationSpeed', c, ...
'IncludeElementResponse',true);

```

Next, position a target approximately 5 km from the transmitter along the global coordinate system \(y\) axis and moving in the \(x\)-direction. Typically, you specify radar cross-section values as functions of the incident and reflected ray angles with respect to the local target axes. Choose any target orientation with respect to the global coordinate system.

Simulate a non-fluctuating target, but allow the RCS to change at each call to the target method. Set up a simple inline function, rcsval, to compute fictitious but reasonable values for RCS at different ray angles.
```

tgtAx = rotz(10)*roty(15)*rotx(20);
tgtplatform = phased.Platform('InitialPosition',[100; 10000; 100],...
'MotionModel','Acceleration','InitialVelocity',[-50;0;0],'Acceleration', [.015;.015;0],...
'InitialOrientationAxes',tgtAx,'OrientationAxesOutputPort',true);
target = phased.RadarTarget('OperatingFrequency',fc,...
'Model','Nonfluctuating','MeanRCSSource','Input port');
rcsval = @(az1,el1,az2,el2) 2*abs(cosd((az1+az2)/2 - 90)*cosd((el1+el2)/2));

```

Finally, set up the receiving radar array. The receiving array is also a 5-by-5 URA composed of isotropic antenna elements. The array is stationary and is located 150 meters in the \(z\)-direction from the transmitting array. The received signal strength in any direction is a function of the incident angle
of the signal in the local array coordinate system. Specify an orientation of the array. Choose an orientation so that this array also points approximately in the \(y\)-direction towards the target but not quite aligned with the first array. Do this by rotating the array \(92^{\circ}\) around the \(z\)-axis and then \(5^{\circ}\) around the \(x\)-axis.
```

rxradarAx = rotx(5)*rotz(92);
rxradarAx = rotx(-.2)*rotz(92);
rxplatform = phased.Platform('InitialPosition',[50;50;200],...
'Velocity',[0;0;0],'Initial0rientationAxes',rxradarAx,...
'OrientationAxesOutputPort',true);
rxarray = phased.URA('Element',antenna','Size',[5,5],'ElementSpacing',0.4*lam*[1,1]);

```

In summary, four different coordinate systems are needed to describe the radar scenario. These are
1 The global coordinate system.
2 A local radar coordinate system defined by the transmitting radar axes.
3 A local coordinate system defined by the target axes.
4 A second local radar coordinate system defined by the receiving radar axes.
The figure here illustrates the four coordinate systems. It is not to scale and does not accurately represent the scenario in the example code.


\section*{Specify Transmitted Waveform and Transmitter Amplification}

Use a linear FM waveform as the transmitted signal. Assume a sampling frequency of 1 MHz , a pulse repetition frequency of 5 kHz , and a pulse length of 100 microseconds. Set the transmitter peak output power to 1000 W and the gain to 40.0.
```

tau = 100e-6;
prf = 5000;
fs = 1e6;
waveform = phased.LinearFMWaveform('PulseWidth',tau,...
'OutputFormat','Pulses','NumPulses',1,'PRF',prf,'SampleRate',fs);
transmitter = phased.Transmitter('PeakPower',1000.0,'Gain',40);

```

Create a matched filter from the transmitted waveform.
```

filter = phased.MatchedFilter('Coefficients',getMatchedFilter(waveform));

```

\section*{Specify Propagation Channels}

Use free-space models for the propagation of the signal from the transmitting radar to the target and back to the receiving radar.
```

channel1 = phased.FreeSpace('OperatingFrequency',fc,...
'TwoWayPropagation',false);
channel2 = phased.FreeSpace('OperatingFrequency',fc,...
'TwoWayPropagation',false);

```

\section*{Specify Phaseshift Beamformer}

Create a phase-shift beamformer. Point the mainlobe of the beamformer in a specific direction with respect to the local receiver coordinate system. This direction is chosen to be one through which the target passes at some time in its motion. This choice lets us demonstrate how the beamformer response changes as the target passes through the mainlobe.
```

rxangsteer = [22.2244;-5.0615];
rxangsteer = [10;-.07];
beamformer = phased.PhaseShiftBeamformer('SensorArray',rxarray,...
'DirectionSource','Property','Direction',rxangsteer,...
'PropagationSpeed',c,'OperatingFrequency',fc);

```

\section*{Simulation loop}

Each iteration of the processing loop performs these operations:
1 Updates positions of the radars and target.
2 Generates the LFM waveform.
3 Amplifies the waveform.
4 Radiates the signal from the transmitting antenna array.
5 Propagates the signal to the target.
6 Reflects the signal from the target.
7 Propagates the signal from the target to the receiving antenna array.
8 Collects the received signal at the receiving antenna.
9 Beamforms the arriving signal at the receiving antenna.

10 Match-filters the beamformed signal and find its peak value.
Transmit 100 pulses of the waveform. Transmit one pulse every 100 milliseconds.
```

t = 0;
Npulse = 100;
dt = 1;

```

Create storage for later plotting.
```

azes1 = zeros(Npulse,1);
elevs1 = zeros(Npulse,1);
azes2 = zeros(Npulse,1);
elevs2 = zeros(Npulse,1);
rxsig = zeros(Npulse,1);

```

Enter the simulation loop and generate the transmitted waveform.
```

for k = 1:Npulse
t = t + dt;
wav = waveform();

```

Update the positions of the radars and targets. All positions and velocities are defined with respect to the global coordinate system. Because the OrientationAxesOutputPort property of the target System object \({ }^{\mathrm{TM}}\) is set to true, you can obtain the instantaneous local target axes, tgtAx1, from the target method. These axes are needed to compute the target RCS. The array local axes are fixed so you do not need to update them.
```

[txradarPos,txradarVel] = txplatform(dt);
[rxradarPos,rxradarVel] = rxplatform(dt);
[tgtPos,tgtVel,tgtAx1] = tgtplatform(dt);

```

Compute the instantaneous range and direction of the target from the transmitting radar. The strength of the transmitted wave depends upon the array gain pattern. This pattern is a function of direction angles with respect to the local radar axes. You can compute the direction of the target with respect to the transmitter local axes using the rangeangle function with an optional argument that specifies the local radar axes, txradarAx. (Without this additional argument, rangeangle returns the azimuth and elevation angles with respect to the global coordinate system).
\[
\left[\sim, t g t a n g \_t l c s\right]=\text { rangeangle(tgtPos,txradarPos,txradarAx); }
\]

An alternative way to compute the direction angles is to first compute them in the global coordinate system and then convert them using the global2localcoord function.

Create the transmitted waveform. The transmitted waveform is an amplified version of the generated waveform.
```

txwaveform = transmitter(wav);

```

Radiate the signal in the instantaneous target direction. Recall that the radiator is not steered in this direction but in an angle defined by the steering vector, txangsteer. The steering angle is chosen because the target passes through this direction during its motion. A plot will let us see the improvement in the response as the target moves into the main lobe of the radar.
```

txangsteer = [23.1203;-0.5357];

```
txangsteer \(=\) [10;-.07];
```

sv1 = steervec(fc,txangsteer);
wavrad = radiator(txwaveform,tgtang_tlcs,conj(sv1));

```

Propagate the signal from the transmitting radar to the target. Propagation coordinates are in the global coordinate system.
```

wavprop1 = channel1(wavrad,txradarPos,tgtPos,txradarVel,tgtVel);

```

Reflect the waveform from target back to the receiving radar array. Use the simple angle-dependent RCS model defined previously. Inputs to the rcs-model are azimuth and elevation of the incoming and reflected rays with respect to the local target coordinate system.
```

[~,txang_tgtlcs] = rangeangle(txradarPos,tgtPos,tgtAx1);
[~,rxang_tgtlcs] = rangeangle(rxradarPos,tgtPos,tgtAxl);
rcs = rcsval(txang_tgtlcs(1),txang_tgtlcs(2),rxang_tgtlcs(1),rxang_tgtlcs(2));
wavreflect = targe\overline{t}(wavprop1,rcs);
ns = size(wavreflect,1);
tm = [0:ns-1]/fs*1e6;

```

Propagate the signal from the target to the receiving radar. As before, all coordinates for signal propagation are expressed in the global coordinate system.
```

wavprop2 = channel2(wavreflect,tgtPos,rxradarPos,tgtVel,rxradarVel);

```

Compute the response of the receiving antenna array in the direction from which the radiation is coming. First, use the rangeangle function to compute the direction of the target with respect to the receiving array local axes, by specifying the receiver local coordinate system, rxradarAx.
```

[tgtrange_rlcs,tgtang_rlcs] = rangeangle(tgtPos,rxradarPos,rxradarAx);

```

Store the ranges and direction angles for later plotting.
```

azesl(k) = tgtang_tlcs(1);
elevsl(k) = tgtang_tlcs(2);
azes2(k) = tgtang rlcs(1);
elevs2(k) = tgtang_rlcs(2);

```

Simulate an incoming plane wave at each element from the current direction of the target calculated in the receiver local coordinate system.
```

wavcoll = collectPlaneWave(rxarray,wavprop2,tgtang_rlcs,fc);

```

Beamform the arriving wave. In this scenario, the receiver beamformer points in the direction, rxangsteer, specified by the Direction property of the phased. PhaseShiftBeamformer System object. When the target actually lies in that direction, the response of the array maximized.
```

wavbf = beamformer(wavcoll);

```

Perform match filtering of the beamformed received wave and then find and store the maximum value of each pulse for display. This value will be plotted after the simulation loop ends.
```

y = filter(wavbf);
rxsig(k) = max(abs(y));

```
end
Plot the target track in azimuth and elevation with respect to the transmitter local coordinates. The red circle denotes the direction toward which the transmitter array points.
```

plot(azes1,elevs1,'.b')
grid
xlabel('Azimuth (degrees)')
ylabel('Elevation (degrees)')
title('Target Track in Transmitter Local Coordinates')
hold on
plot(txangsteer(1),txangsteer(2),'or')
hold off

```


Plot the target track in azimuth and elevation with respect to the receiver local coordinates. The red circle denotes the direction toward which the beamformer points.
```

plot(azes2,elevs2,'.b')
axis([-5.0,25.0,-5.0,5])
grid
xlabel('Azimuth (degrees)')
ylabel('Elevation (degrees)')
title('Target Track in Receiver Local Coordinates')
hold on
plot(rxangsteer(1),rxangsteer(2),'or')
hold off

```


Plot the returned signal amplitude vs azimuth in the receiver local coordinates. The value of the amplitude depends on several factors.
plot(azes2,rxsig,'.')
grid
xlabel('Azimuth (degrees)')
ylabel('Amplitude')
title('Amplitude vs Azimuth in Receiver Local Coordinates')


\section*{Motion Modeling in Phased Array Systems}
```

In this section...
"Support for Motion Modeling" on page 10-39
"Platform Motion with Constant Velocity" on page 10-40
"Platform Motion with Changing Velocity" on page 10-40
"Track Range and Angle Changes Between Platforms" on page 10-41

```

\section*{Support for Motion Modeling}

A critical component in phased array system applications is the ability to model motion in space. Such modeling includes the motion of arrays, targets, and sources of interference. For convenience, you can ignore the distinction between these objects and collectively model the motion of a platform.

Extended bodies can undergo both translational and rotational motion in space. Phased Array System Toolbox software supports modeling of translational motion.

Modeling translational platform motion requires the specification of a position and velocity vector. Specification of a position vector implies a coordinate system. In the Phased Array System Toolbox, platform position and velocity are specified in a "Global Coordinate System" on page 10-17. You can think of the platform position as the displacement vector from the global origin or as the coordinates of a point with respect to the global origin.

Let \(r_{0}\) denote the position vector at time 0 and \(v\) denote the velocity vector. The position vector of a platform as a function of time, \(r(t)\), is:
\[
r(t)=r_{0}+v t
\]

The following figure depicts the vector interpretation of translational motion.


When the platform represents a sensor element or array, it is important to know the orientation of the element or array local coordinate axes. For example, the orientation of the local coordinate axes is necessary to extract angle information from incident waveforms. See "Global and Local Coordinate

Systems" on page 10-17 for a description of global and local coordinate systems in the software. Finally, for platforms with varying velocity, you must be able to update the velocity vector over time.

You can model platform position, velocity, and local axes orientation with the phased.Platform object.

\section*{Platform Motion with Constant Velocity}

Beginning with a simple example, model the motion of a platform over ten time steps. To determine the time step, assume that you have a pulse transmitter with a pulse repetition frequency (PRF) of 1 kilohertz. Accordingly, the time interval between each pulse is 1 millisecond. Set the time step equal to pulse repetition interval.
```

PRF = 1e3;
Tstep = 1/PRF;
Nsteps = 10;

```

Next, construct a platform object specifying the platform initial position and velocity. Assume that the initial position of the platform is 100 meters from the origin at ( \(60,80,0\) ). Assume the speed is approximately 30 meters per second ( \(\mathrm{m} / \mathrm{s}\) ) with the constant velocity vector given by \((15,25.98,0)\).
```

platform = phased.Platform('InitialPosition',[60;80;0],'Velocity',[15;25.98;0]);

```

The orientation of the local coordinate axes of the platform is the value of the InitialOrientationAxes property. You can view the value of this property by entering hplat. InitialOrientationAxes at the MATLAB \({ }^{\text {TM }}\) command prompt. Because the InitialOrientationAxes property is not specified in the construction of the phased.Platform System object \({ }^{\mathrm{TM}}\), the property is assigned its default value of [100;0 1 0;0 01 ]. Use the step method to simulate the translational motion of the platform.
```

initialPos = platform.InitialPosition;
for k = 1:Nsteps
pos = platform(Tstep);
end
finalPos = pos + platform.Velocity*Tstep;
distTravel = norm(finalPos - initialPos)
distTravel = 0.3000

```

The step method returns the current position of the platform and then updates the platform position based on the time step and velocity. Equivalently, the first time you invoke the step method, the output is the position of the platform at \(t=0\).

Recall that the platform is moving with a constant velocity of approximately \(30 \mathrm{~m} / \mathrm{s}\). The total time elapsed is 0.01 seconds. Invoking the step method returns the current position of the platform and then updates that position. Accordingly, you expect the final position to differ from the initial position by 0.30 meters. Confirm this difference by examining the value of distTravel.

\section*{Platform Motion with Changing Velocity}

Most platforms in phased array applications do not move with constant velocity. If the time interval described by the number of time steps is small with respect to the platform speed, you can often approximate the velocity as constant. However, there are situations where you must update the
platform velocity over time. You can do so with the phased.Platform System Object \({ }^{T \mathrm{TM}}\) because the Velocity property is tunable.

This example models a target initially at rest. The initial velocity vector is \((0,0,0)\). Assume the time step is 1 millisecond. After 500 milliseconds, the platform begins to move with a speed of approximately \(10 \mathrm{~m} / \mathrm{s}\). The velocity vector is (7.07,7.07,0). The platform continues at this velocity for an additional 500 milliseconds.
```

Tstep = 1e-3;
Nsteps = 1/Tstep;
platform = phased.Platform('InitialPosition',[100;100;0]);
for k = 1:Nsteps/2
[tgtpos,tgtvel] = platform(Tstep);
end
platform.Velocity = [7.07; 7.07; 0];
for k = Nsteps/2+1:Nsteps
[tgtpos,tgtvel] = platform(Tstep);
end

```

\section*{Track Range and Angle Changes Between Platforms}

This example uses the phased. Platform System object \({ }^{\text {TM }}\) to model the change in range between a stationary radar and a moving target. The radar is located at \((1000,1000,0)\) and has a velocity of \((0,0,0)\). The target has an initial position of ( \(5000,8000,0\) ) and moves with a constant velocity of (? \(30, ? 45,0\) ). The pulse repetition frequency (PRF) is 1 kHz . Assume that the radar emits ten pulses.
```

PRF = 1e3;
Tstep = 1/PRF;
radar = phased.Platform('InitialPosition',[1000;1000;0]);
target = phased.Platform('InitialPosition',[5000;8000;0],...
'Velocity',[-30;-45;0]);

```

Calculate initial target range and angle.
```

[initRng, initAng] = rangeangle(target.InitialPosition,radar.InitialPosition);

```

Calculate relative radial speed.
```

v = radialspeed(target.InitialPosition,target.Velocity,...
radar.InitialPosition);

```

Simulate target motion.
```

Npulses = 10;
for num = 1:Npulses
tgtpos = target(Tstep);
end
Compute last target position.

```
```

tgtpos = tgtpos + target.Velocity*Tstep;

```

Calculate final target range and angle.
```

[finalRng,finalAng] = rangeangle(tgtpos,radar.InitialPosition);
deltaRng = finalRng - initRng

```
deltaRng \(=-0.5396\)
The constant velocity of the target is approximately \(54 \mathrm{~m} / \mathrm{s}\). The total time elapsed is 0.01 seconds. The range between the target and the radar should decrease by approximately 54 centimeters. Compare the initial range of the target, initRng, to the final range, finalRng, to confirm that this decrease occurs.

\section*{See Also}

\section*{Related Examples}
- "Introduction to Space-Time Adaptive Processing" on page 17-231

\section*{Model Motion of Circling Airplane}

Start with an airplane moving at 150 kmph in a circle of radius 10 km and descending at the same time at a rate of \(20 \mathrm{~m} / \mathrm{sec}\). Compute the motion of the airplane from its instantaneous acceleration as an argument to the step method. Set the initial orientation of the platform to the identity, coinciding with the global coordinate system.

\section*{Set up the scenario}

Specify the initial position and velocity of the airplane. The airplane has a ground range of 10 km and an altitude of 20 km .
```

range = 10000;
alt = 20000;
initPos = [cosd(60)*range;sind(60)*range;alt];
originPos = [1000,1000,0]';
originVel = [0,0,0]';
vs = 150.0;
phi = atan2d(initPos(2)-originPos(2),initPos(1)-originPos(1));
phil = phi + 90;
vx = vs*cosd(phil);
vy = vs*sind(phil);
initVel = [vx,vy,-20]';
platform = phased.Platform('MotionModel','Acceleration',...
'AccelerationSource','Input port','InitialPosition',initPos,...
'InitialVelocity',initVel,'OrientationAxesOutputPort',true,...
'InitialOrientationAxes',eye(3));
relPos = initPos - originPos;
relVel = initVel - originVel;
rel2Pos = [relPos(1),relPos(2),0]';
rel2Vel = [relVel(1),relVel(2),0]';
r= sqrt(rel2Pos'*rel2Pos);
accelmag = vs^2/r;
unitvec = rel2Pos/r;
accel = -accelmag*unitvec;
T = 0.5;
N = 1000;

```

\section*{Compute the trajectory}

Specify the acceleration of an object moving in a circle in the \(x-y\) plane. The acceleration is \(v^{\wedge} 2 / r\) towards the origin.
```

posmat = zeros(3,N);
rl = zeros(N);
v = zeros(N);
for n = 1:N
[pos,vel,oax] = platform(T,accel);
posmat(:,n) = pos;
vel2 = vel(1)^2 + vel(2)^2;
v(n) = sqrt(vel2);
relPos = pos - originPos;
rel2Pos = [relPos(1),relPos(2),0]';
r = sqrt(rel2Pos'*rel2Pos);
rl(n) = r;
accelmag = vel2/r;
accelmag = vs^2/r;

```
```

 unitvec = rel2Pos/r;
 accel = -accelmag*unitvec;
 end

```

Display the final orientation of the local coordinate system.
```

disp(oax)

-0.3658	-0.9307	-0.0001
0.9307	-0.3658	-0.0010
0.0009	-0.0005	1.0000

```

Plot the trajectory and the origin position
```

posmat = posmat/1000;

```
figure(1)
plot3(posmat(1,:), posmat(2,:), posmat(3,:),'b.')
hold on
plot3(originPos(1)/1000,originPos(2)/1000,originPos(3)/1000, 'ro')
xlabel('X (km)')
ylabel('Y (km)')
zlabel('Z (km)')
grid
hold off


\section*{Visualize Multiplatform Scenario}

This example shows how to create and display a multiplatform scenario containing a ground-based stationary radar, a turning airplane, a constant-velocity airplane, and a moving ground vehicle. The turning airplane follows a parabolic flight path while descending at a rate of \(20 \mathrm{~m} / \mathrm{s}\).

Specify the scenario refresh rate at 0.5 Hz . For 150 steps, the time duration of the scenario is 300 s .
```

updateRate = 0.5;
N = 150;

```

Set up the turning airplane using the Acceleration model of the phased.Platform System object \({ }^{\mathrm{TM}}\). Specify the initial position of the airplane by range and azimuth from the ground-based radar and its elevation. The airplane is 10 km from the radar at \(60^{\circ}\) azimuth and has an altitude of 6 km . The airplane is accelerating at \(10 \mathrm{~m} / \mathrm{s}^{2}\) in the negative \(x\)-direction.
```

airplane1range = 10.0e3;
airplanelAzimuth = 60.0;
airplanelalt = 6.0e3;
airplane1Pos0 = [cosd(airplane1Azimuth)*airplane1range;...
sind(airplanelAzimuth)*airplanelrange;airplanelalt];
airplane1Vel0 = [400.0;-100.0;-20];
airplane1Accel = [-10.0;0.0;0.0];
airplanelplatform = phased.Platform('MotionModel','Acceleration',...
'AccelerationSource','Input port','InitialPosition',airplane1Pos0,...
'InitialVelocity',airplane1Vel0,'OrientationAxesOutputPort',true,...
'InitialOrientationAxes',eye(3));

```

Set up the stationary ground radar at the origin of the global coordinate system. To simulate a rotating radar, change the ground radar beam steering angle in the processing loop.
```

groundRadarPos = [0,0,0]';
groundRadarVel = [0,0,0]';
groundradarplatform = phased.Platform('MotionModel','Velocity',...
'InitialPosition',groundRadarPos,'Velocity',groundRadarVel,...
'InitialOrientationAxes',eye(3));

```

Set up the ground vehicle to move at a constant velocity.
```

groundVehiclePos = [5e3,2e3,0]';
groundVehicleVel = [50,50,0]';
groundvehicleplatform = phased.Platform('MotionModel','Velocity',...
'InitialPosition',groundVehiclePos,'Velocity',groundVehicleVel,...
'InitialOrientationAxes',eye(3));

```

Set up the second airplane to also move at constant velocity.
```

airplane2Pos = [8.5e3,1e3,6000]';
airplane2Vel = [-300,100,20]';
airplane2platform = phased.Platform('MotionModel','Velocity',...
'InitialPosition',airplane2Pos,'Velocity',airplane2Vel,...
'InitialOrientationAxes',eye(3));

```

Set up the scenario viewer. Specify the radar as having a beam range of 8 km , a vertical beam width of \(30^{\circ}\), and a horizontal beam width of \(2^{\circ}\). Annotate the tracks with position, speed, altitude, and range.

BeamSteering \(=[0 ; 50]\);
viewer = phased.ScenarioViewer('BeamRange', 8.0e3,'BeamWidth',[2;30],'UpdateRate', updateRate,... 'PlatformNames', \{'Ground Radar','Turning Airplane','Vehicle','Airplane 2'\},'ShowPosition',tr 'ShowSpeed',true,'ShowAltitude',true,'ShowLegend',true,'ShowRange',true,...
'Title','Multiplatform Scenario','BeamSteering', BeamSteering);
Step through the display processing loop, updating radar and target positions. Rotate the groundbased radar steering angle by four degrees at each step.
```

for n = 1:N
[groundRadarPos,groundRadarVel] = groundradarplatform(updateRate);
[airplanelPos,airplanelVel,airplanelAxes] = airplanelplatform(updateRate,airplanelAccel);
[vehiclePos,vehicleVel] = groundvehicleplatform(updateRate);
[airplane2Pos,airplane2Vel] = airplane2platform(updateRate);
viewer(groundRadarPos,groundRadarVel,[airplane1Pos,vehiclePos,airplane2Pos],...
[airplanelVel,vehicleVel,airplane2Vel]);
BeamSteering = viewer.BeamSteering(1);
BeamSteering = mod(BeamSteering + 4,360.0);
if BeamSteering > 180.0
BeamSteering = BeamSteering - 360.0;
end
viewer.BeamSteering(1) = BeamSteering;
pause(0.2);
end

```


\section*{Doppler Shift and Pulse-Doppler Processing}

\section*{In this section...}
"Support for Pulse-Doppler Processing" on page 10-48
"Convert Speed to Doppler Shift" on page 10-48
"Convert Doppler Shift to Speed" on page 10-48
"Pulse-Doppler Processing of Slow-Time Data" on page 10-49
"Range and Speed using Pulse-Doppler Processing" on page 10-49

\section*{Support for Pulse-Doppler Processing}

Relative motion between a signal source and a receiver produces shifts in the frequency of the received waveform. Measuring this Doppler shift provides an estimate of the relative radial velocity of a moving target.

For a narrowband signal propagating at the speed of light, the one-way Doppler shift in hertz is:
\[
\Delta f= \pm \frac{v}{\lambda}
\]
where \(v\) is the relative radial speed of the target with respect to the transmitter. For a target approaching the receiver, the Doppler shift is positive. For a target receding from the transmitter, the Doppler shift is negative.

You can use speed2dop to convert the relative radial speed to the Doppler shift in hertz. You can use dop2speed to determine the radial speed of a target relative to a receiver based on the observed Doppler shift.

\section*{Convert Speed to Doppler Shift}

Assume a target approaches a stationary receiver with a radial speed of \(23.0 \mathrm{~m} / \mathrm{s}\). The target reflects a narrowband electromagnetic wave with a frequency of 1 GHz . Estimate the one-way Doppler shift.
```

freq = 1e9;
v = 23.0;
lambda = physconst('LightSpeed')/freq;
dopplershift = speed2dop(v,lambda)
dopplershift = 76.7197

```

The one-way Doppler shift is approximately 76.72 Hz . Because the target approaches the receiver, the Doppler shift is positive.

\section*{Convert Doppler Shift to Speed}

Assume you observe a Doppler shift of 400.0 Hz for a waveform with a frequency of 9 GHz . Determine the radial velocity of the target.
```

freq = 9e9;
df = 400.0;

```
```

lambda = physconst('LightSpeed')/freq;
speed = dop2speed(df,lambda)
speed = 13.3241

```

The target speed is approximately \(13.32 \mathrm{~m} / \mathrm{s}\).

\section*{Pulse-Doppler Processing of Slow-Time Data}

A common technique for estimating the radial velocity of a moving target is pulse-Doppler processing. In pulse-Doppler processing, you take the discrete Fourier transform (DFT) of the slow-time data from a range bin containing a target. If the pulse repetition frequency is sufficiently high with respect to the speed of the target, the target is located in the same range bin for a number of pulses.
Accordingly, the slow-time data corresponding to that range bin contain information about the Doppler shift induced by the moving target, which you can use to estimate the target's radial velocity.

The slow-time data are sampled at the pulse repetition frequency (PRF) and therefore the DFT of the slow-time data for a given range bin yields an estimate of the Doppler spectrum from [-PRF/2, PRF/2] Hz. Because the slow-time data are complex-valued, the DFT magnitudes are not necessarily an even function of the Doppler frequency. This removes the ambiguity between a Doppler shift corresponding to an approaching (positive Doppler shift), or receding (negative Doppler shift) target. The resolution in the Doppler domain is PRF/N where N is the number of slow-time samples. You can pad the spectral estimate of the slow-time data with zeros to interpolate the DFT frequency grid and improve peak detection, but this does not improve the Doppler resolution.

The typical workflow in pulse-Doppler processing involves:
- Detecting a target in the range dimension (fast-time samples). This gives the range bin to analyze in the slow-time dimension.
- Computing the DFT of the slow-time samples corresponding to the specified range bin. Identify significant peaks in the magnitude spectrum and convert the corresponding Doppler frequencies to speeds.

\section*{Range and Speed using Pulse-Doppler Processing}

This example illustrate pulse-Doppler processing using Phased Array System Toolbox \({ }^{\mathrm{TM}}\). Assume that you have a stationary monostatic radar located at the global origin, ( \(0,0,0\) ). The radar consists of a single isotropic antenna element. There is a target with a nonfluctuating radar cross section (RCS) of 1 square meter initially located at (1000,1000,0) m and moving at a constant velocity of ( \(-100,-100,0\) ) \(\mathrm{m} / \mathrm{s}\). The antenna operates at a frequency of 1 GHz and illuminates the target with 10 rectangular pulses at a PRF of 10 kHz .

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call to the function with the equivalent step syntax. For example, replace my0bject ( \(x\) ) with step (my0bject,x).

Define the System objects needed for this example and set their properties. Seed the random number generator for the phased. ReceiverPreamp System object \({ }^{\mathrm{TM}}\) to produce repeatable results.
waveform = phased.RectangularWaveform('SampleRate',5e6,...
'PulseWidth',6e-7,'OutputFormat','Pulses',...
'NumPulses',1,'PRF',1e4);
```

target = phased.RadarTarget('Model','Nonfluctuating',...
'MeanRCS',1,'OperatingFrequency',1e9);
targetpos = phased.Platform('InitialPosition',[1000; 1000; 0],...
'Velocity',[-100; -100; 0]);
antenna = phased.IsotropicAntennaElement(...
'FrequencyRange',[5e8 5e9]);
transmitter = phased.Transmitter('PeakPower',5e3,'Gain',20,...
'InUseOutputPort',true);
transpos = phased.Platform('InitialPosition',[0;0;0],...
'Velocity',[0;0;0]);
radiator = phased.Radiator('OperatingFrequency',1e9,'Sensor',antenna);
collector = phased.Collector('OperatingFrequency',le9,'Sensor',antenna);
channel = phased.FreeSpace('SampleRate',waveform.SampleRate,...
'OperatingFrequency',1e9,'TwoWayPropagation',false);
receiver = phased.ReceiverPreamp('Gain',0,'LossFactor',0,...
'SampleRate',5e6,'NoiseFigure',5,...
'EnableInputPort',true,'SeedSource','Property','Seed',1e3);

```

This loop transmits ten successive rectangular pulses toward the target, reflects the pulses off the target, collects the reflected pulses at the receiver, and updates the target position with the specified constant velocity.
```

NumPulses = 10;
sig = waveform(); % get waveform
transpos = transpos.InitialPosition; % get transmitter position
rxsig = zeros(length(sig),NumPulses);
% transmit and receive ten pulses
for n = 1:NumPulses
% update target position
[tgtpos,tgtvel] = targetpos(1/waveform.PRF);
[tgtrng,tgtang] = rangeangle(tgtpos,transpos);
tpos(n) = tgtrng;
[txsig,txstatus] = transmitter(sig); % transmit waveform
txsig = radiator(txsig,tgtang); % radiate waveform toward target
txsig = channel(txsig,transpos,tgtpos,[0;0;0],tgtvel); % propagate waveform to target
txsig = target(txsig); % reflect the signal
% propagate waveform from the target to the transmiter
txsig = channel(txsig,tgtpos,transpos,tgtvel,[0;0;0]);
txsig = collector(txsig,tgtang); % collect signal
rxsig(:,n) = receiver(txsig,~txstatus); % receive the signal
end

```

The matrix rxsig contains the echo data in a 500-by-10 matrix where the row dimension contains the fast-time samples and the column dimension contains the slow-time samples. In other words, each row in the matrix contains the slow-time samples from a specific range bin.

Construct a linearly-spaced grid corresponding to the range bins from the fast-time samples. The range bins extend from 0 meters to the maximum unambiguous range.
```

prf = waveform.PRF;
fs = waveform.SampleRate;
fasttime = unigrid(0,1/fs,1/prf,'[)');
rangebins = (physconst('LightSpeed')*fasttime)/2;

```

Next, detect the range bins which contain targets. In this simple scenario, no matched filtering or time-varying gain compensation is utilized.

In this example, set the false-alarm probability to \(10^{-9}\). Use noncoherent integration of the ten rectangular pulses and determine the corresponding threshold for detection in white Gaussian noise. Because this scenario contains only one target, take the largest peak above the threshold. Display the estimated target range.
```

probfa = 1e-9;
NoiseBandwidth = 5e6/2;
npower = noisepow(NoiseBandwidth,...
receiver.NoiseFigure,receiver.ReferenceTemperature);
thresh = npwgnthresh(probfa,NumPulses,'noncoherent');
thresh = sqrt(npower*db2pow(thresh));
[pks,range_detect] = findpeaks(pulsint(rxsig,'noncoherent'),...
'MinPeakHeight',thresh,'SortStr','descend');
range_estimate = rangebins(range_detect(1));

```

Extract the slow-time samples corresponding to the range bin containing the detected target. Compute the power spectral density estimate of the slow-time samples using periodogram function and find the peak frequency. Convert the peak Doppler frequency to speed using the dop2speed function. A positive Doppler shift indicates that the target is approaching the transmitter. A negative Doppler shift indicates that the target is moving away from the transmitter.
```

ts = rxsig(range_detect(1),:).';
[Pxx,F] = periodogram(ts,[],256,prf,'centered');
plot(F,10*log10(Pxx))
grid
xlabel('Frequency (kHz)')
ylabel('Power (dB)')
title('Periodogram Spectrum Estimate')

```


The true radial speed of the target is detected within the Doppler resolution and the range of the target is detected within the range resolution of the radar.

\section*{See Also}

\section*{Related Examples}
- "Doppler Estimation" on page 17-295
- "Scan Radar Using a Uniform Rectangular Array" on page 17-468

Using Polarization

\section*{Polarized Fields}

\author{
In this section... \\ "Introduction to Polarization" on page 11-2 \\ "Linear and Circular Polarization" on page 11-3 \\ "Elliptic Polarization" on page 11-6 \\ "Linear and Circular Polarization Bases" on page 11-9 \\ "Sources of Polarized Fields" on page 11-12 \\ "Scattering Cross-Section Matrix" on page 11-18 \\ "Polarization Loss Due to Field and Receiver Mismatch" on page 11-22 \\ "Model Radar Transmitting Polarized Radiation" on page 11-24
}

\section*{Introduction to Polarization}

You can use the Phased Array System Toolbox software to simulate radar systems that transmit, propagate, reflect, and receive polarized electromagnetic fields. By including this capability, the toolbox can realistically model the interaction of radar waves with targets and the environment.

It is a basic property of plane waves in free-space that the directions of the electric and magnetic field vectors are orthogonal to their direction of propagation. The direction of propagation of an electromagnetic wave is determined by the Poynting vector
\[
\mathbf{S}=\mathbf{E} \times \mathbf{H}
\]

In this equation, \(\boldsymbol{E}\) represents the electric field and \(\boldsymbol{H}\) represents the magnetic field. The quantity, \(\boldsymbol{S}\), represents the magnitude and direction of the wave's energy flux. Maxwell's equations, when applied to plane waves, produce the result that the electric and magnetic fields are related by
\[
\begin{aligned}
& \mathbf{E}=-Z \mathbf{s} \times \mathbf{H} \\
& \mathbf{H}=\frac{1}{Z} \mathbf{s} \times \mathbf{E}
\end{aligned}
\]

The vector \(\boldsymbol{s}\), the unit vector in the \(\boldsymbol{S}\) direction, represents the direction of propagation of the wave. The quantity, \(Z\), is the wave impedanceand is a function of the electric permittivity and the magnetic permeability of medium in which the wave travels.

After manipulating the two equations, you can see that the electric and magnetic fields are orthogonal to the direction of propagation
\[
\mathbf{E} \cdot \mathbf{s}=\mathbf{H} \cdot \mathbf{s}=0
\]

This last result proves that there are really only two independent components of the electric field, labeled \(E_{x}\) and \(E_{y}\). Similarly, the magnetic field can be expressed in terms of two independent components. Because of the orthogonality of the fields, the electric field can be represented in terms of two unit vectors orthogonal to the direction of propagation.
\[
\mathbf{E}=E_{x} \widehat{\mathbf{e}}_{x}+E_{y} \widehat{\mathbf{e}}_{y}
\]

The unit vectors together with the unit vector in direction of propagation
\[
\left\{\widehat{\mathbf{e}}_{x}, \widehat{\mathbf{e}}_{y}, \mathbf{s}\right\}
\]
form a right-handed orthonormal triad. Later, these vectors and the coordinates they define will be related to the coordinates of a specific radar system. In radar systems, it is common to use the subscripts, \(H\) and \(V\), denoting the horizontal and vertical components, instead of \(x\) and \(y\). Because the electric and magnetic fields are determined by each other, only the properties of the electric field need be consider.

For a radar system, the electric and magnetic field are actually spherical waves, rather than plane waves. However, in practice, these fields are usually measured in the far field region or radiation zone of the radar source and are approximately plane waves. In the far field, the waves are called quasi-plane waves. A point lies in the far field if its distance, \(R\), from the source satisfies \(R \gg D^{2} / \lambda\) where \(D\) is a typical dimension of the source, whether it is a single antenna or an array of antennas.

Polarization applies to purely sinusoidal signals. The most general expression for a sinusoidal planewave has the form
\[
\mathbf{E}=E_{x 0} \cos \left(\omega t-\mathbf{k} \cdot \mathbf{x}+\phi_{x}\right) \widehat{\mathbf{e}}_{x}+E_{y 0} \cos \left(\omega t-\mathbf{k} \cdot \mathbf{x}+\phi_{y}\right) \widehat{\mathbf{e}}_{y}=E_{x} \widehat{\mathbf{e}}_{x}+E_{y} \widehat{\mathbf{e}}_{y}
\]

The quantities \(E_{x 0}\) and \(E_{y 0}\) are the real-valued, non-negative, amplitudes of the components of the electric field and \(\phi_{x}\) and \(\phi_{y}\) are field's phases. This expression is the most general one used for a polarized wave. An electromagnetic wave is polarized if the ratio of the amplitudes of its components and phase difference between it components do not change with time. The definition of polarization can be broadened to include narrowband signals, for which the bandwidth is small compared to the center or carrier frequency of the signal. The amplitude ratio and phases difference vary slowly with time when compared to the period of the wave and may be thought of as constant over many oscillations.

You can usually suppress the spatial dependence of the field and write the electric field vector as
\[
\mathbf{E}=E_{x 0} \cos \left(\omega t+\phi_{x}\right) \widehat{\mathbf{e}}_{x}+E_{y 0} \cos \left(\omega t+\phi_{y}\right) \widehat{\mathbf{e}}_{y}=E_{x} \widehat{\mathbf{e}}_{x}+E_{y} \widehat{\mathbf{e}}_{y}
\]

\section*{Linear and Circular Polarization}

The preceding equation for a polarized plane wave shows that the tip of the two-dimensional electric field vector moves along a path which lies in a plane orthogonal to field's direction of propagation. The shape of the path depends upon the magnitudes and phases of the components. For example, if \(\phi_{x}\) \(=\phi_{y}\), you can remove the time dependence and write
\[
E_{y}=\frac{E_{y 0}}{E_{x 0}} E_{x}
\]

This equation represents a straight line through the origin with positive slope. Conversely, suppose \(\phi_{x}\) \(=\phi_{y}+\pi\). Then, the tip of the electric field vector follows a straight line through the origin with negative slope
\[
E_{y}=-\frac{E_{y 0}}{E_{x 0}} E_{x}
\]

These two polarization cases are named linear polarized because the field always oscillates along a straight line in the orthogonal plane. If \(E_{x 0}=0\), the field is vertically polarized, and if \(E_{y 0}=0\) the field is horizontally polarized.

A different case occurs when the amplitudes are the same, \(E_{x}=E_{y}\), but the phases differ by \(\pm \Pi / 2\)
\[
\begin{aligned}
& E_{x}=E_{0} \cos (\omega t+\phi) \\
& E_{y}=E_{0} \cos (\omega t+\phi \pm \Pi / 2)=\mp E_{0} \sin (\omega t+\phi)
\end{aligned}
\]

By squaring both sides, you can show that the tip of the electric field vector obeys the equation of a circle
\[
E_{x}^{2}+E_{y}^{2}=E_{0}^{2}
\]

While this equation gives the path the vector takes, it does not tell you in what direction the electric field vector travels around the circle. Does it rotate clockwise or counterclockwise? The rotation direction depends upon the sign of \(\pi / 2\) in the phase. You can see this dependency by examining the motion of the tip of the vector field. Assume the common phase angle, \(\phi=0\). This assumption is permissible because the common phase only determines starting position of the vector and does not change the shape of its path. First, look at the \(+\Pi / 2\) case for a wave travelling along the \(s\)-direction (out of the page). At \(t=0\), the vector points along the \(x\)-axis. One quarter period later, the vector points along the negative \(y\)-axis. After another quarter period, it points along the negative \(x\)-axis.


Left hand circular polarization. The direction of the electric vector at \(0,1 / 4,1 / 2\), and \(3 / 4\) periods, \(T\). The z-axis points out of the page.

MATLAB uses the IEEE convention to assign the names right-handed or left-handed polarization to the direction of rotation of the electric vector, rather than clockwise or counterclockwise. When using this convention, left or right handedness is determined by pointing your left or right thumb along the direction of propagation of the wave. Then, align the curve of your fingers to the direction of rotation of the field at a given point in space. If the rotation follows the curve of your left hand, then the wave is left-handed polarized. If the rotation follows the curve of your right hand, then the wave is righthanded polarized. In the preceding scenario, the field is left-handed circularly polarized (LHCP). The phase difference \(-\Pi / 2\) corresponds to right-handed circularly polarized wave (RHCP). The following
figure provides a three-dimensional view of what a LHCP electromagnetic wave looks like as it moves in the \(s\)-direction.

When the terms clockwise or counterclockwise are used they depend upon how you look at the wave. If you look along the direction of propagation, then the clockwise direction corresponds to righthanded polarization and counterclockwise corresponds to left-handed polarization. If you look toward where the wave is coming from, then clockwise corresponds to left-handed polarization and counterclockwise corresponds to right-handed polarization.


\section*{Left-Handed Circular Polarization}

The figure below shows the appearance of linear and circularly polarized fields as they move towards you along the \(s\)-direction.


Linear polarization with positive slope


Right hand circular polarization


Linear polarization with negative slope


Left hand circular polarization

\section*{Linear and Circular Polarization}

\section*{Elliptic Polarization}

Besides the linear and circular states of polarization, a third type of polarization is elliptic polarization. Elliptic polarization includes linear and circular polarization as special cases.

As with linear or circular polarization, you can remove the time dependence to obtain the locus of points that the tip of the electric field vector travels
\[
\left(\frac{E_{x}}{E_{\chi 0}}\right)^{2}+\left(\frac{E_{y}}{E_{y 0}}\right)^{2}-2\left(\frac{E_{x}}{E_{\chi 0}}\right)\left(\frac{E_{y}}{E_{y 0}}\right) \cos \phi=\sin ^{2} \phi
\]

In this case, \(\varphi=\varphi_{y}-\varphi_{x}\). This equation represents a tilted two-dimensional ellipse. Its size and shape are determined by the component amplitudes and phase difference. The presence of the cross term
indicates that the ellipse is tilted. The equation does not, just as in the circularly polarized case, provide any information about the rotation direction. For example, the following figure shows the instantaneous state of the electric field but does not indicate the direction in which the field is rotating.

The size and shape of a two-dimensional ellipse can be defined by three parameters. These parameters are the lengths of its two axes, the semi-major axis, \(a\), and semi-minor axis, \(b\), and a tilt angle, \(\tau\). The following figure illustrates the three parameters of a tilted ellipse. You can derive them from the two electric field amplitudes and phase difference.


\section*{Polarization Ellipse}

Polarization can best be understood in terms of complex signals. The complex representation of a polarized wave has the form

Define the complex polarization ratio as the ratio of the complex amplitudes
\[
\rho=\frac{E_{y 0}}{E_{x 0}} e^{i\left(\phi_{y}-\phi_{x}\right)}=\frac{E_{y 0}}{E_{x 0}} e^{i \phi}
\]
where \(\phi=\phi_{y}-\phi_{x}\).
It is useful to introduce the polarization vector. For the complex polarized electric field above, the polarization vector, \(\boldsymbol{P}\), is obtained by normalizing the electric field
\[
\mathbf{P}=\frac{E_{x 0}}{E_{m}} \widehat{\mathbf{e}}_{x}+\frac{E_{y 0}}{E_{m}} e^{i\left(\phi_{y}-\phi_{x}\right)} \widehat{\mathbf{e}}_{y}=\frac{E_{x 0}}{E_{m}} \widehat{\mathbf{e}}_{x}+\frac{E_{y 0}}{E_{m}} e^{i \phi} \widehat{\mathbf{e}}_{y}
\]
where \(E_{m}{ }^{2}=E_{x 0}{ }^{2}+E_{y 0}{ }^{2}\) is the magnitude of the wave.
The overall size of the polarization ellipse is not important because that can vary as the wave travels through space, especially through geometric attenuation. What is important is the shape of the ellipse. Thus, the significant ellipse parameters are the ratio of its axis dimensions, \(a / b\), called the axial ratio, and the tilt angle, \(\tau\). Both of these quantities can be determined from the ratio of the component amplitudes and the phase difference, or, equivalently, from the polarization ratio. Another quantity, equivalent to the axial ratio, is the ellipticity angle, \(\varepsilon\).

In the Phased Array System Toolbox software, you can use the polratio function to convert the complex amplitudes \(f v=[E y ; E x]\) to the polarization ratio.
```

p = polratio(fv)

```

\section*{Tilt Angle}

The tilt angle is defined as the positive (counterclockwise) rotation angle from the \(x\)-axis to the semimajor axis of the ellipse. Because of the symmetry properties of the ellipse, the tilt angle, \(\tau\), need only be defined in the range \(-\Pi / 2 \leq \tau \leq \pi / 2\). You can find the tilt angle by determining the rotated coordinate system in which the semi-major and semi-minor axes align with the rotated coordinate axes. Then, the ellipse equation has no cross-terms. The solution takes the form
\[
\tan 2 \tau=\frac{2 E_{x 0} E_{y 0}}{E_{x 0}^{2}-E_{y 0}^{2}} \cos \phi
\]
where \(\varphi=\varphi_{y}-\varphi_{x}\). Notice that you can rewrite this equation strictly in terms of the amplitude ratio and the phase difference.

\section*{Axial Ratio and Ellipticity Angle}

After solving for the tilt angle, you can determine the semi-major and semi-minor axis lengths. Conceptually, you rotate the ellipse clockwise by the tilt angle and measure the lengths of the intersections of the ellipse with the \(x\) - and \(y\)-axes. The point of intersection with the larger value is the semi-major axis, \(a\), and the one with the smaller value is the semi-minor axis, \(b\).

The axial ratio is defined as \(A R=a / b\) and, by construction, is always greater than or equal to one. The ellipticity angle is defined by
\[
\tan \varepsilon=\mp \frac{b}{a}
\]
and always lies in the range \(-\Pi / 4 \leq \tau \leq \pi / 4\).
If you define the auxiliary angle, \(\alpha\), by
\[
\tan \alpha=\frac{E_{y 0}}{E_{\chi 0}}
\]
then, the ellipticity angle is given by
\[
\sin 2 \varepsilon=\sin 2 \alpha \sin \phi
\]

Both the axial ratio and ellipticity angle are defined from the amplitude ratio and phase difference and are independent of the overall magnitude of the field.

\section*{Rotation Sense}

For elliptic polarization, just as with circular polarization, you need another parameter to completely describe the ellipse. This parameter must provide the rotation sense or the direction that the tip of the electric (or magnetic vector) moves in time. The rate of change of the angle that the field vector makes with the \(x\)-axis is proportion to \(-\sin \varphi\) where \(\varphi\) is the phase difference. If \(\sin \varphi\) is positive, the rate of change is negative, indicating that the field has left-handed polarization. If \(\sin \varphi\) is negative, the rate of change is positive or right-handed polarization.

The function polellip lets you find the values of the parameters of the polarization ellipse from either the field component vector \(\mathrm{fv}=[\mathrm{Ey}\); Ex\(]\) or the polarization ratio, p .
fv=[Ey;Ex];
[tau,epsilon,ar,rs] = polellip(fv);
p = polratio(fv);
[tau,epsilon,ar,rs] = polellip(p);
The variables tau, epsilon, ar and rs represent the tilt angle, ellipticity angle, axial ratio and rotation sense, respectively. Both syntaxes give the same result.

\section*{Polarization Value Summary}

This table summaries several different common polarization states and the values of the amplitudes, phases, and polarization ratio that produce them:
\begin{tabular}{|l|l|l|l|}
\hline Polarization & Amplitudes & Phases & Polarization Ratio \\
\hline Linear positive slope & \begin{tabular}{l} 
Any non-negative real \\
values for \(E_{x}, E_{y}\).
\end{tabular} & \(\varphi_{y}=\varphi_{x}\) & \begin{tabular}{l} 
Any non-negative real \\
number
\end{tabular} \\
\hline Linear negative slope & \begin{tabular}{l} 
Any non-negative real \\
values for \(E_{x}, E_{y}\)
\end{tabular} & \(\varphi_{y}=\varphi_{x}+\Pi\) & \begin{tabular}{l} 
Any negative real \\
number
\end{tabular} \\
\hline Right-Handed Circular & \(E_{x}=E_{y}\) & \(\varphi_{y}=\varphi_{x}-\Pi / 2\) & \(-i\) \\
\hline Left-Handed Circular & \(E_{x}=E_{y}\) & \(\varphi_{y}=\varphi_{x}+\Pi / 2\) & \(i\) \\
\hline Right-Handed Elliptical & \begin{tabular}{l} 
Any non-negative real \\
values for \(E_{x}, E_{y}\)
\end{tabular} & \(\sin \left(\varphi_{y}-\varphi_{x}\right)<0\) & \(\sin (\arg \rho)<0\) \\
\hline Left-Handed Elliptical & \begin{tabular}{l} 
Any non-negative real \\
values for \(E_{x}, E_{y}\)
\end{tabular} & \(\sin \left(\varphi_{y}-\varphi_{x}\right)>0\) & \(\sin (\arg \rho)>0\) \\
\hline
\end{tabular}

\section*{Linear and Circular Polarization Bases}

As shown earlier, you can express a polarized electric field as a linear combination of basis vectors along the \(x\) and \(y\) directions. For example, the complex electric field vectors for the right-handed circularly polarized (RHCP) wave and the left-handed circularly polarized (LHCP) wave, take the form:
\[
\mathbf{E}=\operatorname{Re}\left[E_{0}\left(\mathbf{e}_{\chi} \mp i \mathbf{e}_{y}\right) e^{i(\omega t+\phi)}\right]
\]

In this equation, the positive sign is for the LHCP field and the negative sign is for the RHCP field. These two special combinations can be given a new name. Define a new basis vector set, called the circular basis set
\[
\begin{aligned}
& \mathbf{e}_{r}=\frac{1}{\sqrt{2}}\left(\mathbf{e}_{x}-i \mathbf{e}_{y}\right) \\
& \mathbf{e}_{l}=\frac{1}{\sqrt{2}}\left(\mathbf{e}_{x}+i \mathbf{e}_{y}\right)
\end{aligned}
\]

You can express any polarized field in terms of the circular basis set instead of the linear basis set. Conversely, you can also write the linear polarization basis in terms of the circular polarization basis
\[
\begin{aligned}
& \mathbf{e}_{x}=\frac{1}{\sqrt{2}}\left(\mathbf{e}_{r}+\mathbf{e}_{l}\right) \\
& \mathbf{e}_{y}=\frac{1}{\sqrt{2} i}\left(\mathbf{e}_{r}-\mathbf{e}_{l}\right)
\end{aligned}
\]

Any general elliptic field can be written as a combination of circular basis vectors
\[
\mathbf{E}=E_{l} \mathbf{e}_{l}+E_{r} \mathbf{e}_{r}
\]

\section*{Jones Vector}

The polarized field is orthogonal to the wave's direction of propagation. Thus, the field can be completely specified by the two complex components of the electric field vector in the plane of polarization. The formulation of a polarized wave in terms of two-component vectors is called the Jones vector formulation. The Jones vector formulation can be expressed in either a linear basis or a circular basis or any basis. This table shows the representation of common polarizations in a linear basis and circular basis.
\begin{tabular}{|l|l|l|}
\hline Common Polarizations & Jones Vector in Linear Basis & Jones Vector in Circular Basis \\
\hline Vertical & {\([0 ; 1]\)} & \(1 / \operatorname{sqrt}(2)^{*}[-1 ; 1]\) \\
\hline Horizontal & {\([1 ; 0]\)} & \(1 / \operatorname{sqrt}(2)^{*}[1 ; 1]\) \\
\hline \(45^{\circ}\) Linear & \(1 / \operatorname{sqrt}(2)^{*}[1 ; 1]\) & \(1 / \operatorname{sqrt}(2)^{*}[1-1 i ; 1+1 i]\) \\
\hline \(135^{\circ}\) Linear & \(1 / \operatorname{sqrt}(2)^{*}[1 ;-1]\) & \(1 / \operatorname{sqrt}(2)^{*}[1+1 i ; 1-1 i]\) \\
\hline Right Circular & \(1 / \operatorname{sqrt}(2)^{*}[1 ;-1 i]\) & {\([0 ; 1]\)} \\
\hline Left Circular & \(1 / \operatorname{sqrt}(2)^{*}[1 ; 1 i]\) & {\([1 ; 0]\)} \\
\hline
\end{tabular}

\section*{Stokes Parameters and the Poincaré Sphere}

The polarization ellipse is an instantaneous representation of a polarized wave. However, its parameters, the tilt angle and the ellipticity angle, are often not directly measurable, particularly at very high frequencies such as light frequencies. However, you can determine the polarization from measurable intensities of the polarized field.

The measurable intensities are the Stokes parameters, \(S_{0}, S_{1}, S_{2}\), and \(S_{3}\). The first Stokes parameter, \(S_{0}\), describes the total intensity of the field. The second parameter, \(S_{1}\), describes the preponderance of linear horizontally polarized intensity over linear vertically polarized intensity. The third parameter, \(S_{2}\), describes the preponderance of linearly \(+45^{\circ}\) polarized intensity over linearly \(135^{\circ}\) polarized intensity. Finally, \(S_{3}\) describes the preponderance of right circularly polarized intensity over left circularly polarized intensity. The Stokes parameters are defined as
\[
\begin{aligned}
& S_{0}=E_{\chi 0}^{2}+E_{y 0}^{2} \\
& S_{1}=E_{\chi 0}^{2}-E_{y 0}^{2} \\
& S_{2}=2 E_{x 0} E_{y 0} \cos \phi \\
& S_{3}=2 E_{x 0} E_{y 0} \sin \phi
\end{aligned}
\]

For completely polarized fields, you can show by time averaging the polarization ellipse equation that \(S_{0}^{2}=S_{1}^{2}+S_{2}^{2}+S_{3}^{2}\)

Thus, there are only three independent Stokes' parameters.
For partially polarized fields, in contrast, the Stokes parameters satisfy the inequality
\[
S_{0}^{2}<S_{1}^{2}+S_{3}^{2}+S_{3}^{2}
\]

The Stokes parameters are related to the tilt and ellipticity angles, \(\tau\) and \(\varepsilon\)
\[
\begin{aligned}
& S_{1}=S_{0} \cos 2 \tau \cos 2 \varepsilon \\
& S_{2}=S_{0} \sin 2 \tau \cos 2 \varepsilon \\
& S_{3}=S_{0} \sin 2 \varepsilon
\end{aligned}
\]
and inversely by
\[
\begin{aligned}
& \tan 2 \tau=\frac{S_{2}}{S_{1}} \\
& \sin 2 \varepsilon=\frac{S_{3}}{S_{0}}
\end{aligned}
\]

After you measure the Stokes' parameters, the shape of the ellipse is completely determined by the preceding equations.

The two-dimensional Poincaré sphere can help you visualize the state of a polarized wave. Any point on or in the sphere represents a state of polarization determined by the four Stokes parameters, \(S_{0}\), \(S_{1}, S_{2}\), and \(S_{3}\). On the Poincaré sphere, the angle from the \(S_{1}-S_{2}\) plane to a point on the sphere is twice the ellipticity angle, \(\varepsilon\). The angle from the \(S_{1}\) - axis to the projection of the point into the \(S_{1}-S_{2}\) plane is twice the tilt angle, \(\tau\).


As an example, solve for the Stokes parameters of a RHCP field, \(f v=[1,-i]\), using the stokes function.

S = stokes(fv)
S =
\[
\begin{array}{r}
2 \\
0 \\
0 \\
-2
\end{array}
\]

\section*{Sources of Polarized Fields}

Antennas couple propagating electromagnetic radiation to electrical currents in wires, electromagnetic fields in waveguides or aperture fields. This coupling is a phenomenon common to both transmitting and receiving antennas. For some transmitting antennas, source currents in a wire produce electromagnetic waves that carrying power in all directions. Sometimes an antenna provides a means for a guided electromagnetic wave on a transmission line to transition to free-space waves such as a waveguide feeding a dish antennas. For receiving antennas, electromagnetic fields can induce currents in wires to generate signals to be then amplified and passed on to a detector.

For transmitting antennas, the shape of the antenna is chosen to enhance the power projected into a given direction. For receiving antennas, you choose the shape of the antenna to enhance the power
received from a particular direction. Often, many transmitting antennas or receiving antennas are formed into an array. Arrays increase the transmitted power for a transmitting system or the sensitivity for a receiving system. They improve directivity over a single antenna.

An antenna can be assigned a polarization. The polarization of a transmitting antenna is the polarization of its radiated wave in the far field. The polarization of a receiving antenna is actually the polarization of a plane wave, from a given direction, resulting in maximum power at the antenna terminals. By the reciprocity theorem, all transmitting antennas can serve as receiving antennas and vice versa.

Each antenna or array has an associated local Cartesian coordinate system ( \(x, y, z\) ) as shown in the following figure. See "Global and Local Coordinate Systems" on page 10-17 for more information. The local coordinate system can also be represented by a spherical coordinate system using azimuth, elevation and range coordinates, \(a z\), el, \(r\), or alternately written, \((\varphi, \theta, r)\), as shown. At each point in the far field, you can create a set of unit spherical basis vectors, \(\left\{\widehat{\mathbf{e}}_{H}, \widehat{\mathbf{e}}_{V}, \widehat{\mathbf{r}}\right\}\). The basis vectors are aligned with the ( \(\varphi, \theta, r\) ) directions, respectively. In the far field, the electric field is orthogonal to the unit vector \(\widehat{\mathbf{r}}\). The components of a polarized field with respect to this basis, \(\left(E_{H}, E_{V}\right)\), are called the horizontal and vertical components of the polarized field. In radar, it is common to use ( \(H, V\) ) instead of \((x, y)\) to denote the components of a polarized field. In the far field, the polarized electric field takes the form
\[
\mathbf{E}=\mathbf{F}(\phi, \theta) \frac{e^{i k r}}{r}=\left(F_{H}(\phi, \theta) \widehat{\mathbf{e}}_{H}+F_{V}(\phi, \theta) \widehat{\mathbf{e}}_{V}\right) \frac{e^{i k r}}{r}
\]

In this equation, the quantity \(\boldsymbol{F}(\varphi, \theta)\) is called the vector radiation pattern of the source and contains the angular dependence of the field in the far-field region.


\section*{Short Dipole Antenna Element}

The simplest polarized antenna is the dipole antenna which consist of a split length of wire coupled at the middle to a coaxial cable. The simplest dipole, from a mathematical perspective, is the Hertzian dipole, in which the length of wire is much shorter than a wavelength. A diagram of the short dipole antenna of length \(L\) appears in the next figure. This antenna is fed by a coaxial feed which splits into two equal length wires of length \(L / 2\). The current, \(I\), moves along the \(z\)-axis and is assumed to be the same at all points in the wire.


The electric field in the far field has the form
\[
\begin{aligned}
& E_{r}=0 \\
& E_{H}=0 \\
& E_{V}=-\frac{i Z_{0} I L}{2 \lambda} \operatorname{cosel} \frac{e^{-i k r}}{r}
\end{aligned}
\]

The next example computes the vertical and horizontal polarization components of the field. The vertical component is a function of elevation angle and is axially symmetric. The horizontal component vanishes everywhere.

The toolbox lets you model a short dipole antenna using the phased. ShortDipoleAntennaElement System object.

\section*{Short-Dipole Polarization Components}

Compute the vertical and horizontal polarization components of the field created by a short-dipole antenna pointed along the \(z\)-direction. Plot the components as a function of elevation angle from \(0^{\circ}\) to \(360^{\circ}\).

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call to the function with the equivalent step syntax. For example, replace my0bject(x) with step(my0bject,x).

Create the phased.ShortDipoleAntennaElement System object \({ }^{\mathrm{TM}}\).
```

antenna = phased.ShortDipoleAntennaElement(...
'FrequencyRange',[1,2]*1e9,'AxisDirection','Z');

```

Compute the antenna response. Because the elevation angle argument to antenna is restricted to \(\pm 90^{\circ}\), compute the responses for \(0^{\circ}\) azimuth and then for \(180^{\circ}\) azimuth. Combine the two responses in the plot. The operating frequency of the antenna is 1.5 GHz .
```

el = [-90:90];
az = zeros(size(el));
fc = 1.5e9;
resp = antenna(fc,[az;el]);
az = 180.0*ones(size(el));
respl = antenna(fc,[az;el]);

```

Overlay the responses in the same figure.
```

figure(1)
subplot(121)
polar(el*pi/180.0,abs(resp.V.'),'b')
hold on
polar((el+180)*pi/180.0,abs(resp1.V.'),'b')
str = sprintf('%s\n%s','Vertical Polarization','vs Elevation Angle');
title(str)
hold off
subplot(122)
polar(el*pi/180.0,abs(resp.H.'),'b')
hold on
polar((el+180)*pi/180.0,abs(resp1.H.'),'b')
str = sprintf('%s\n%s','Horizontal Polarization','vs Elevation Angle');
title(str)
hold off

```


The plot shows that the horizontal component vanishes, as expected.

\section*{Crossed Dipole Antenna Element}

You can use a cross-dipole antenna to generate circularly-polarized radiation. The crossed-dipole antenna consists of two identical but orthogonal short-dipole antennas that are phased \(90^{\circ}\) apart. A diagram of the crossed dipole antenna appears in the following figure. The electric field created by a crossed-dipole antenna constructed from a \(y\)-directed short dipole and a \(z\)-directed short dipole has the form
\[
\begin{aligned}
& E_{r}=0 \\
& E_{H}=-\frac{i Z_{0} I L}{2 \lambda} \operatorname{cosaz} \frac{e^{-i k r}}{r} \\
& E_{V}=\frac{i Z_{0} I L}{2 \lambda}(\text { sinelsinaz }+i \operatorname{cosel}) \frac{e^{-i k r}}{r}
\end{aligned}
\]

The polarization ratio \(E_{V} / E_{H}\), when evaluated along the \(x\)-axis, is just \(-i\) which means that the polarization is exactly RHCP along the \(x\)-axis. It is predominantly RHCP when the observation point is close to the \(x\)-axis. Moving away from the \(x\)-axis, the field becomes a mixture of LHCP and RHCP polarizations. Along the \(-x\)-axis, the field is LHCP polarized. The figure illustrates, for a point near the \(x\), that the field is primarily RHCP.


The toolbox lets you model a crossed-dipole antenna using the phased.CrossedDipoleAntennaElement System object.

\section*{LHCP and RHCP Polarization Components}

This example plots the right-hand and left-hand circular polarization components of fields generated by a crossed-dipole antenna at 1.5 GHz . You can see how the circular polarization changes from pure RHCP at 0 degrees azimuth angle to pure LHCP at 180 degrees azimuth angle, both at 0 degrees elevation angle.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call to the function with the equivalent step syntax. For example, replace my0bject(x) with step (my0bject,x).

Create the phased.CrossedDipoleAntennaElement object.
```

fc = 1.5e9;
antenna = phased.CrossedDipoleAntennaElement('FrequencyRange',[1,2]*1e9);

```

Compute the left-handed and right-handed circular polarization components from the antenna response.
```

az = [-180:180];
el = zeros(size(az));
resp = antenna(fc,[az;el]);
cfv = pol2circpol([resp.H.';resp.V.']);

```
```

clhp = cfv(1,:);
crhp = cfv(2,:);

```

Plot both circular polarization components at 0 degrees elevation.
```

polar(az*pi/180.0,abs(clhp))
hold on
polar(az*pi/180.0,abs(crhp))
title('LHCP and RHCP vs Azithmuth Angle')
legend('LHCP','RHCP')
hold off

```


\section*{Arrays Supporting Polarization}

You can create polarized fields from arrays by using polarized antenna elements as a value of the Elements property of an array System object. All Phased Array System Toolbox arrays support polarization.

\section*{Scattering Cross-Section Matrix}

After a polarized field is created by an antenna system, the field radiates to the far-field region. When the field propagates into free space, the polarization properties remain unchanged until the field interacts with a material substance which scatters the field into many directions. In such situations, the amplitude and polarization of the scattered wave can differ from the incident wave polarization. The scattered wave polarization may depend upon the direction in which the scattered wave is
observed. The exact way that the polarization changes depends upon the properties of the scattering object. The quantity describing the response of an object to the incident field is called the radar scattering cross-section matrix (RSCM), S. You can measure the scattering matrix as follows. When a unit amplitude horizontally polarized wave is scattered, both a horizontal and a vertical scattered component are produced. Call these two components \(S_{H H}\) and \(S_{V H}\). These components are complex numbers containing the amplitude and phase changes from the incident wave. Similarly, when a unit amplitude vertically polarized wave is scattered, the horizontal and vertical scattered component produced are \(S_{H V}\) and \(S_{V V}\). Because, any incident field can be decomposed into horizontal and vertical components, you can arrange these quantities into a matrix and write the scattered field in terms of the incident field
\[
\left[\begin{array}{l}
E_{H}^{(s c a t)} \\
E_{V}^{(s c a t)}
\end{array}\right]=\sqrt{\frac{4 \pi}{\lambda^{2}}}\left[\begin{array}{ll}
S_{H H} & S_{V H} \\
S_{H V} & S_{V V}
\end{array}\right]\left[\begin{array}{l}
E_{H}^{(\text {inc })} \\
E_{V}^{(i n c)}
\end{array}\right]=\sqrt{\frac{4 \pi}{\lambda^{2}}}[S]\left[\begin{array}{l}
E_{H}^{(\text {inc })} \\
E_{V}^{(i n c)}
\end{array}\right]
\]

In general, the scattering cross-section matrix depends upon the angles that the incident and scattered fields make with the object. When the incident field is scattered back to the transmitting antenna or, backscattered, the scattering matrix is symmetric.

\section*{Polarization Signature}

To understand how the scattered wave depends upon the polarization of the incident wave, you need to examine all possible scattered field polarizations for each incident polarization. Because this amount of data is difficult to visualize, consider two cases:
- For the copolarization case, the scattered polarization has the same polarization as the incident field.
- For the cross-polarization case, the scattered polarization has an orthogonal polarization to the incident field.

You can represent the incident polarizations in terms of the tilt angle-ellipticity angle pair \((\tau, \varepsilon)\). Every unit incident polarization vector can be expressed as
\[
\left[\begin{array}{l}
E_{H}^{(i n c)} \\
E_{V}^{(i n c)}
\end{array}\right]=\left[\begin{array}{cc}
\cos \tau & -\sin \tau \\
\sin \tau & \cos \tau
\end{array}\right]\left[\begin{array}{c}
\cos \varepsilon \\
j \sin \varepsilon
\end{array}\right]
\]
while the orthogonal polarization vector is
\[
\left[\begin{array}{l}
E_{H}^{(i n c) \perp} \\
E_{V}^{(i n c)} \perp
\end{array}\right]=\left[\begin{array}{cc}
-\sin \tau & -\cos \tau \\
\cos \tau & -\sin \tau
\end{array}\right]\left[\begin{array}{c}
\cos \varepsilon \\
-j \sin \varepsilon
\end{array}\right]
\]

When you have an RSCM matrix, \(S\), form the copolarization signature by computing
\[
P^{(c o)}=\left[E_{H}^{(i n c)} E_{V}^{(i n c)}\right] * S\left[\begin{array}{l}
E_{H}^{(\text {inc })} \\
E_{V}^{(i n c)}
\end{array}\right]
\]
where [ ]* denotes complex conjugation. To obtain the cross-polarization signature, compute
\[
P^{(\text {cross })}=\left[\begin{array}{ll}
E_{H}^{(\text {inc }) \perp} & E_{V}^{(\text {inc }) \perp}
\end{array}\right] * S\left[\begin{array}{l}
E_{H}^{(\text {inc })} \\
E_{V}^{(i n c)}
\end{array}\right]
\]

You can compute both the copolarization and cross polarization signatures using the polsignature function. This function returns the absolute value of the scattered power (normalized by its maximum value). The next example shows how to plot the polarization signatures for the RSCM matrix
\[
S=\left[\begin{array}{ll}
2 i & \frac{1}{2} \\
\frac{1}{2} & i
\end{array}\right]
\]
for all possible incident polarizations. The range of values of the ellipticity angle and tilt span the entire possible range of polarizations.

\section*{Plot Polarization Signatures}

Plot the copolarization and cross-polarization signatures of the scattering matrix
\[
\left[\begin{array}{cc}
2 i & 0.5 \\
0.5 & -i
\end{array}\right]
\]

Specify the scattering matrix. and specify the range of ellipticity angles and orientation (tilt) angles that define the polarization states. These angles cover all possible incident polarization states.
```

rscmat = [1i*2,0.5;0.5,-1i];
el = [-45:45];
tilt = [-90:90];

```

Plot the copolarization signatures for all incident polarizations.
```

polsignature(rscmat,'c',el,tilt)

```


Plot the cross-polarizations signatures for all incident polarizations.
polsignature(rscmat,'x',el,tilt)

Cross Pol Response


\section*{Polarization Loss Due to Field and Receiver Mismatch}

An antenna that is used to receive polarized electromagnetic waves achieves its maximum output power when the antenna polarization is matched to the polarization of the incident electromagnetic field. Otherwise, there is polarization loss:
- The polarization loss is computed from the projection (or dot product) of the transmitted field's electric field vector onto the receiver polarization vector.
- Loss occurs when there is a mismatch in direction of the two vectors, not in their magnitudes.
- The polarization loss factor describes the fraction of incident power that has the correct polarization for reception.

Using the transmitter's spherical basis at the receiver's position, you can represent the incident electric field, ( \(E_{i H}, E_{i V}\) ), by
\[
\mathbf{E}=E_{i H} \widehat{\mathbf{e}}_{H}+E_{i V} \widehat{\mathbf{e}}_{V}=E_{m} \mathbf{P}_{i}
\]

You can represent the receiver's polarization vector, \(\left(P_{H}, P_{V}\right)\), in the receiver's local spherical basis by:
\[
\mathbf{P}=P_{H} \widehat{\mathbf{e}}_{H}^{\prime}+P_{V} \widehat{\mathbf{e}}_{V}^{\prime}
\]

The next figure shows the construction of the transmitter and receiver spherical basis vectors.


The polarization loss is defined by:
\[
\rho=\frac{\left|\mathbf{E}_{i} \cdot \mathbf{P}\right|^{2}}{\left|\mathbf{E}_{i}\right|^{2}|\mathbf{P}|^{2}}
\]
and varies between 0 and 1 . Because the vectors are defined with respect to different coordinate systems, they must be converted to the global coordinate system to form the projection. The toolbox function polloss computes the polarization mismatch between an incident field and a polarized antenna.

To achieve maximum output power from a receiving antenna, the matched antenna polarization vector must be the complex conjugate of the incoming field's polarization vector. As an example, if the incoming field is RHCP, with polarization vector given by \(\mathbf{e}_{r}=\frac{1}{\sqrt{2}}\left(\mathbf{e}_{x}-i \mathbf{e}_{y}\right)\), the optimum receiver antenna polarization is LHCP. The introduction of the complex conjugate is needed because field polarizations are described with respect to its direction of propagation, whereas the polarization of a receive antenna is usually specified in terms of the direction of propagation towards the antenna. The complex conjugate corrects for the opposite sense of polarization when receiving.

As an example, if the transmitting antenna transmits an RHCP field, the polarization loss factors for various received antenna polarizations are
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l} 
Receive Antenna \\
Polarization
\end{tabular} & \begin{tabular}{l} 
Receive Antenna \\
Polarization Vector
\end{tabular} & \begin{tabular}{l} 
Polarization Loss \\
Factor
\end{tabular} & \begin{tabular}{l} 
Polarization Loss \\
Factor (dB)
\end{tabular} \\
\hline Horizontal linear & \(\boldsymbol{e}_{H}\) & \(1 / 2\) & 3 dB \\
\hline Vertical linear & \(\boldsymbol{e}_{V}\) & \(1 / 2\) & 3 \\
\hline RHCP & \(\mathbf{e}_{r}=\frac{1}{\sqrt{2}}\left(\mathbf{e}_{\chi}-i \mathbf{e}_{y}\right)\) & 0 & \(\infty\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l} 
Receive Antenna \\
Polarization
\end{tabular} & \begin{tabular}{l} 
Receive Antenna \\
Polarization Vector
\end{tabular} & \begin{tabular}{l} 
Polarization Loss \\
Factor
\end{tabular} & \begin{tabular}{l} 
Polarization Loss \\
Factor (dB)
\end{tabular} \\
\hline LHCP & \(\mathbf{e}_{l}=\frac{1}{\sqrt{2}}\left(\mathbf{e}_{x}+\mathbf{e}_{y}\right)\) & 1 & 0 \\
\hline
\end{tabular}

\section*{Model Radar Transmitting Polarized Radiation}

This example models a tracking radar based on a 31-by-31 (961-element) uniform rectangular array (URA). The radar is designed to follow a moving target. At each time instant, the radar points in the known direction of the target. The basic radar requirements are the probability of detection, pd, the probability of false alarm, pfa, the maximum unambiguous range, max_range, and the range resolution, range_res, (all distance units are in meters). The range_gate parameter limits the region of interest to a range smaller than the maximum range. The operating frequency is set in fc . The simulation lasts for numpulses pulses.

\section*{Radar Definition}

Set up the radar operating parameters. The existing radar design meets the following specifications.
```

pd = 0.9; % Probability of detection
pfa = le-6; % Probability of false alarm
max_range = 1500*1000; % Maximum unambiguous range
range_res = 50.0; % Range resolution
rangegate = 5*1000; % Assume all objects are in this range
numpulses = 200; % Number of pulses to integrate
fc = 8e9; % Center frequency of pulse
c = physconst('LightSpeed');
tmax = 2*rangegate/c; % Time of echo from object at rangegate

```

\section*{Pulse Repetition Interval}

Set the pulse repetition interval, PRI, and pulse repetition frequency, PRF, based on the maximum unambiguous range.
```

PRI = 2*max_range/c;
PRF = 1/PRI;

```

\section*{Transmitted Signal}

Set up the transmitted rectangular waveform using the phased. RectangularWaveform System object(TM). The waveform pulse width, pulse_width, and pulse bandwidth, pulse_bw, are determined by the range resolution, range_res, that you select. Specify the sampling rate, fs, to be twice the pulse bandwidth. The sampling rate must be an integer multiple of the PRF. Therefore, modify the sampling rate to satisfy the requirement.
```

pulse_bw = c/(2*range_res); % Pulse bandwidth
pulse-width = 1/pulse_bw; % Pulse width
fs = \overline{2}*\mathrm{ pulse_bw; %Sampling rate}
n = ceil(fs/\overline{PRF);}
fs = n*PRF;
waveform = phased.RectangularWaveform('PulseWidth',pulse_width,'PRF',PRF,...
'SampleRate',fs);

```

\section*{Antennas and URA Array}

The array consists of short-dipole antenna elements. Use the phased. ShortDipoleAntennaElement System object to create a short-dipole antenna oriented along the \(z\)-axis.
```

antenna = phased.ShortDipoleAntennaElement(...
'FrequencyRange',[5e9,10e9],'AxisDirection','Z');

```

Define a 31-by-31 Taylor tapered uniform rectangular array using the phased. URA System object. Set the size of the array using the number of rows, numRows, and the number of columns, numCols. The distance between elements, d , is slightly smaller than one-half the wavelength, lambda. Compute the array taper, tw, using separate Taylor windows for the row and column directions. Obtain the Taylor weights using the taylorwin function. Plot the 3-D array response using the array pattern method.
```

numCols = 31;
numRows = 31;
lambda = c/fc;
d = 0.9*lambda/2; % Nominal spacing
wc = taylorwin(numCols);
wr = taylorwin(numRows);
tw = wr*wc';
array = phased.URA('Element',antenna,'Size',[numCols,numRows],...
'ElementSpacing',[d,d],'Taper',tw);
pattern(array,fc,[-180:180],[-90:90],'CoordinateSystem','polar','Type','powerdb',...
'Polarization','V');

```


\section*{Radar Platform Motion}

Next, set the position and motion of the radar platform in the phased. Platform System object. The radar is assumed to be stationary and positioned at the origin. Set the Velocity property to [ \(0,0,0\) ] and the InitialPosition property to \([0,0,0]\). Set the InitialOrientationAxes property to the identity matrix to align the radar platform coordinate axes with the global coordinate system.
```

radarPlatformAxes = [1 0 0;0 1 0;0 0 1];
radarplatform = phased.Platform('InitialPosition',[0;0;0],...
'Velocity',[0;0;0],'OrientationAxes',radarPlatformAxes);

```

\section*{Transmitters and Receivers}

In radar, the signal propagates in the form of an electromagnetic wave. The signal is radiated and collected by the antennas used in the radar system. Associate the array with a radiator System object, phased.Radiator, and two collector System objects, phased.Collector. Set the WeightsInputPort property of the radiator to true to enable dynamic steering of the transmitted signal at each execution of the radiator. Creating the two collectors allows for collection of both horizontal and vertical polarization components.
```

radiator = phased.Radiator('Sensor',array,'OperatingFrequency',fc,...
'PropagationSpeed',c,'CombineRadiatedSignals',true,...
'Polarization','Combined','WeightsInputPort',true);
collector1 = phased.Collector('Sensor',array,'OperatingFrequency',fc,...
'PropagationSpeed',c,'Wavefront','Plane','Polarization','Combined',...
'WeightsInputPort',false);
collector2 = phased.Collector('Sensor',array,'OperatingFrequency',fc,...
'PropagationSpeed',c,'Wavefront','Plane','Polarization','Combined',...
'WeightsInputPort',false);

```

Estimate the peak power needed in the phased.Transmitter System object to calculate the desired radiated power levels. The transmitted peak power is the power required to achieve a minimum-detection SNR, snr_min. You can determine the minimum SNR from the probability of detection,|pd|, and the probability of false alarm, pfa, using the albersheim function. Then, compute the peak power from the radar equation using the radareqpow function. Among the inputs to this function are the overall signal gain, which is the sum of the transmitting element gain, TransmitterGain and the array gain, AG. Another input is the maximum detection range, rangegate. Finally, you need to supply a target cross-section value, tgt_rcs. A scalar radar cross section is used in this code section as an approximation even though the full polarization computation later uses a 2 -by- 2 radar cross section scattering matrix.

Estimate the total transmitted power to achieve a required detection SNR using all the pulses.
The SNR has contributions from the transmitting element gain as well as the array gain. Compute first an estimate of the array gain, then add the array gain to the transmitter gain to get the peak power which achieves the desired SNR.
- Use an approximate target cross section of 1.0 for the radar equation even though the analysis calls for the full scattering matrix.
- Set the maximum range to be equal to the value of 'rangegate' since targets outside that range are of no interest.
- Compute the array gain as \(10 * \log 10\) (number of elements)
- Assume each element has a gain of 20 dB .
```

snr_min = albersheim(pd, pfa, numpulses);
AG = 10*log10(numCols*numRows);
tgt rcs = 1;
TransmitterGain = 20;
peak_power = radareqpow(lambda,rangegate,snr_min,waveform.PulseWidth,...
'RCS',tgt_rcs,'Gain',TransmitterGain + AG);
transmitter = phased.Transmitter('PeakPower',peak_power,'Gain',TransmitterGain,...
'LossFactor',0,'InUseOutputPort',true,'Coherent0nTransmit',true);

```

\section*{Define Target}

We want to simulate the pulse returns from a target that is rotating so that the scattering crosssection matrix changes from pulse to pulse. Create a rotating target object and a moving target platform. The rotating target is represented later as an angle-dependent scattering matrix. Rotation is in degrees per second.
```

targetSpeed = 1000;
targetVec = [-1;1;0]/sqrt(2);
target = phased.RadarTarget('EnablePolarization',true,...
'Mode','Monostatic','ScatteringMatrixSource','Input port',...
'OperatingFrequency',fc);
targetPlatformAxes = [1 0 0;0 1 0;0 0 1];
targetRotRate = 45;
targetplatform = phased.Platform('InitialPosition',[3500.0; 0; 0],...
'Velocity', targetSpeed*targetVec);

```

\section*{Other System objects}
- Steering vector defined by phased.SteeringVector System object.
- Beamformer defined by phased.PhaseShiftBeamformer System object. The DirectionSource property is set to 'Input Port' to enable the beamformer to always points towards the known target direction at each execution.
- Free-space propagator using the phased. FreeSpace System object.
- Receiver preamp model using the phased.ReceiverPreamp system object.

\section*{Signal propagation}

Because the reflected signals are received by an array, use a beamformer pointing to the steering direction to obtain the combined signal.
```

steeringvector = phased.SteeringVector('SensorArray',array,'PropagationSpeed',c,...
'IncludeElementResponse',false);
beamformer = phased.PhaseShiftBeamformer('SensorArray',array,...
'OperatingFrequency',fc,'PropagationSpeed',c,...
'DirectionSource','Input port');
channel = phased.FreeSpace('SampleRate',fs,...
'TwoWayPropagation',true,'OperatingFrequency',fc);
% Define a receiver with receiver noise
amplifier = phased.ReceiverPreamp('Gain',20,'LossFactor',0,'NoiseFigure',1,···...
'ReferenceTemperature',290,'SampleRate',fs,'EnableInputPort',true,...
'PhaseNoiseInputPort',false,'SeedSource','Auto');

```

For such a large PRI and sampling rate, there will be too many samples per element. This will cause problems with the collector which has 961 channels. To keep the number of samples manageable, set a maximum range of 5 km . We know that the target is within this range.

This set of axes specifies the direction of the local coordinate axes with respect to the global coordinate system. This is the orientation of the target.

\section*{Processing Loop}

Pre-allocate arrays for collecting data to be plotted.
```

sig_max_V = zeros(1,numpulses);
sig_max_H = zeros(1,numpulses);
tm_\overline{V}=\overline{zeros(1,numpulses);}
tm_H = zeros(1,numpulses);

```

After all the System objects are created, loop over the number of pulses to create the reflected signals.
```

maxsamp = ceil(tmax*fs);
fast_time_grid = [0:(maxsamp-1)]/fs;
rotañgle = 0.0;
for m = 1:numpulses
x = waveform(); % Generate pulse
% Capture only samples within range gated
x = x(1:maxsamp);
[s, tx_status] = transmitter(x); % Create transmitted pulse
% Move the radar platform and target platform.
[radarPos,radarVel] = radarplatform(1/PRF);
[targetPos,targetVel] = targetplatform(1/PRF);
% Compute the known target angle
[targetRng,targetAng] = rangeangle(targetPos,...
radarPos,...
radarPlatformAxes);
% Compute the radar angle with respect to the target axes.
[radarRng,radarAng] = rangeangle(radarPos,...
targetPos,...
targetPlatformAxes);
% Calculate the steering vector designed to track the target
sv = steeringvector(fc,targetAng);
% Radiate the polarized signal toward the targat
tsig1 = radiator(s,targetAng,radarPlatformAxes,conj(sv));
% Compute the two-way propagation loss (4*pi*R/lambda)^2
tsig2 = channel(tsig1,radarPos,targetPos,radarVel,targetVel);
% Create a very simple model of a changing scattering matrix
scatteringMatrix = [cosd(rotangle),0.5*sind(rotangle);...
0.5*sind(rotangle),cosd(rotangle)];
rsig1 = target(tsig2,radarAng,targetPlatformAxes,scatteringMatrix); % Reflect off target
% Collect the vertical component of the radiation.
rsig3V = collectorl(rsig1,targetAng,radarPlatformAxes);
% Collect the horizontal component of the radiation. This
% second collector is rotated around the x-axis to be more
% sensitive to horizontal polarization
rsig3H = collector2(rsigl,targetAng,rotx(90)*radarPlatformAxes);
% Add receiver noise to both sets of signals
rsig4V = amplifier(rsig3V,~(tx_status>0)); % Receive signal
rsig4H = amplifier(rsig3H,~(tx_status>0)); % Receive signal
% Beamform the signal
rsigV = beamformer(rsig4V,targetAng); % Beamforming
rsigH = beamformer(rsig4H,targetAng); % Beamforming
% Find the maximum returns for each pulse and store them in
% a vector. Store the pulse received time as well.

```
```

[sigmaxV,imaxV] = max(abs(rsigV));
[sigmaxH,imaxH] = max(abs(rsigH));
sig max V(m) = sigmaxV;
sig_max_H(m) = sigmaxH;
tm_V (m) = fast_time_grid(imaxV) + (m-1)*PRI;
tm_H(m) = fast_time_grid(imaxH) + (m-1)*PRI;

```
\% Update the orientation of the target platform axes
targetPlatformAxes = ...
    rotx(PRI*targetRotRate)*targetPlatformAxes;
    rotangle = rotangle + PRI*targetRotRate;
end
\% Plot the vertical and horizontal polarization for each pulse as a
\% function of time.
plot(tm_V,sig_max_V,'.')
hold on
plot(tm_H,sig_max_H,'r.')
hold of \(\bar{f}\)
xlabel('Time (sec)')
ylabel('Amplitude')
title('Vertical and Horizontal Polarization Components')
legend('Vertical','Horizontal')
grid on


\section*{Antenna and Array Definitions}
- "Element and Array Radiation and Response Patterns" on page 12-2
- "Grating Lobe Diagram for Microphone URA" on page 12-8

\title{
Element and Array Radiation and Response Patterns
}

\author{
In this section... \\ "Element Response and Radiation Patterns" on page 12-2 \\ "Array Response and Radiation Patterns" on page 12-5
}

\section*{Element Response and Radiation Patterns}

Antennas and acoustic transducers create radiated fields which propagate outwards into space or into the air and water for acoustics. Conversely, antennas and transducers react to impinging fields to produce output voltages. Transducers are called microphones or speakers in speech acoustics or projectors or hydrophones in ocean acoustics. The electromagnetic fields created by an antenna, or the acoustic field created by a transducer, depend upon the distance and direction from the radiator. The terms response pattern and radiation pattern are often used interchangeably but the term radiation pattern is mostly used to describe the field radiated by an element and the term response pattern is mostly used to describe the output of the antenna with respect to impinging wave field as a function of wave direction. By the principle of reciprocity, these two patterns are identical. When discussing the generation of the patterns, it is conceptually easier to think in terms of radiation patterns.

In radar and sonar applications, the interactions between fields and targets take place in the far-field region, often called the Fraunhofer region. The far-field region is defined as the region for which
\(r \gg L^{2} / \lambda\)
where \(L\) represents the largest dimension of the source. In the far-field region, the fields take a special form: they can be written as the product of a function of direction (such as azimuth and elevation angles) and a geometric fall-off function, \(1 / r\). It is the angular function that is called the radiation pattern, response pattern, or simply pattern.

Radiation patterns can be viewed as field patterns or as power patterns. The terms "field" or "power" are often added to be more specific: contrast element field pattern versus element power pattern. The radiation power pattern describes the radiant intensity of a field, \(U\), as a function of direction. Radiant intensity units are watts/steradian. Sometimes, radiant intensity is confused with power density. Power density, \(I\), is the energy passing through a unit area in a unit time. Units for power density are Watts/square meter. Unfortunately, in some disciplines, power density is sometimes called intensity. This document always uses radiant intensity instead of intensity to avoid confusion. For a point source, the radiant intensity is the power density multiplied by the square of the distance from the source, \(U=r^{2} I\).

\section*{Element Field Patterns}

The element field response or element field pattern represents the angular distribution of the electromagnetic field create by an antenna, \(E(\theta, \varphi)\), or the scalar acoustic field, \(p(\theta, \varphi)\), generated by an acoustic transducer such as a speaker or hydrophone. Because the far field electromagnetic field consists of horizontal and vertical components orthogonal, \(\left(E_{H}(\theta, \varphi), E_{V}(\theta, \varphi)\right)\) there can be different patterns for each component. Acoustic fields are scalar fields so there is only one pattern. The general form of any field or field component is
\[
A f(\theta, \phi) \frac{e^{-i k r}}{r}
\]
where \(A\) is a nominal field amplitude and \(f(\theta, \varphi)\) is the normalized field pattern (normalized to unity). Because the field patterns are evaluated at some reference distance from the source, the fields returned by the element step method are represented simply as \(A f(\theta, \varphi)\). You can display the nominal element field pattern by invoking the element pattern method and then choosing the 'Type' parameter value as 'efield' and setting the 'Normalize' parameter to false.
pattern(elem,'Normalize',false,'Type','efield');
You can view the normalized field pattern by setting the 'Normalize' parameter value to true. For example, if \(E_{H}(\theta, \varphi)\) is the horizontal component of the complex electromagnetic field, the normalized field pattern has the form \(\left|E_{H}(\theta, \varphi) / E_{H, \text { max }}\right|\).
pattern(elem,'Polarization','H','Normalize',true,'Type','efield');

\section*{Element Power Patterns}

The element power response (or element power radiation pattern) is defined as the angular distribution of the radiant intensity in the far field, \(U_{r a d}(\theta, \varphi)\). When the elements are used for reception, the patterns are interpreted as the sensitivity of the element to radiation arriving from direction \((\theta, \varphi)\) and the power pattern represents the output voltage power of the element as a function of wave arrival direction.

Physically, the radiant intensity for the electromagnetic field produced by an antenna element is
\[
U_{r a d}(\theta, \phi)=\frac{r^{2}}{2 Z_{0}}\left(\left|E_{H}\right|^{2}+\left|E_{V}\right|^{2}\right)
\]
where \(Z_{0}\) is the characteristic impedance of free space. The radiant intensity of an acoustic field is
\[
U_{\text {rad }}(\theta, \phi)=\frac{r^{2}}{2 Z}|p|^{2}
\]
where \(Z\) is the characteristic impedance of the acoustic medium. For the fields produced by the Phased Array System Toolbox element System objects, the radial dependence, the impedances, and the field magnitudes are all collected in the nominal field amplitudes defined above. Then the radiant intensity can generally be written
\[
U_{\text {rad }}(\theta, \phi)=|A f(\theta, \phi)|^{2}
\]

The radiant intensity pattern is the quantity returned by the element pattern method when the 'Normalize' parameter is set to false and the 'Type' parameter is set to 'power' (or ' powerdb' for decibels).
```

pattern(elem,'Normalize',false,'Type','power');

```

The normalized power pattern is defined as the radiant intensity divided by its maximum value
\[
U_{\text {norm }}(\theta, \phi)=\frac{U_{\text {rad }}(\theta, \phi)}{U_{\text {rad }, \max }}=|f(\theta, \phi)|^{2}
\]

The pattern method returns a normalized power pattern when the 'Normalize' parameter is set to true and the 'Type' parameter is set to 'power' (or 'powerdb' for decibels).
pattern(elem,'Normalize',true, 'Type',' power');

\section*{Element Directivity}

Element directivity measures the capability of an antenna or acoustic transducer to radiate or receive power preferentially in a particular direction. Sometimes it is referred to as directive gain. Directivity is measured by comparing the transmitted radiant intensity in a given direction to the transmitted radiant intensity of an isotropic radiator having the same total transmitted power. An isotropic radiator radiates equal power in all directions. The radiant intensity of an isotropic radiator is just the total transmitted power divided by the solid angle of a sphere, \(4 \Pi\),
\[
U_{r a d}^{i s o}(\theta, \phi)=\frac{P_{\text {total }}}{4 \Pi}
\]

The element directivity is defined to be
\[
D(\theta, \phi)=\frac{U_{\text {rad }}(\theta, \phi)}{U_{\text {rad }}^{i s o}}=4 \pi \frac{U_{\text {rad }}(\theta, \phi)}{P_{\text {total }}}
\]

By this definition, the integral of the directivity over a sphere surrounding the element is exactly \(4 \pi\). Directivity is related to the effective beamwidth of an element. Start with an ideal antenna that has a uniform radiation field over a small solid angle (its beamwidth), \(\Delta \Omega\), in a particular direction, and zero outside that angle. The directivity is
\[
D(\theta, \phi)=4 \Pi \frac{U_{\text {rad }}(\theta, \phi)}{P_{\text {total }}}=\frac{4 \pi}{\Delta \Omega}
\]

The greater the directivity, the smaller the beamwidth.
The radiant intensity can be expressed in terms of the directivity and the total power
\[
U_{\text {rad }}(\theta, \phi)=\frac{1}{4 \pi} D(\theta, \phi) P_{\text {total }}
\]

As an example, the directivity of the electric field of a z-oriented short-dipole antenna element is
\[
D(\theta, \phi)=\frac{3}{2} \cos ^{2} \theta
\]
with a peak value of 1.5. Often, the largest value of \(D(\theta, \varphi)\) is specified as an antenna operating parameter. The direction in which \(D(\theta, \varphi)\) is largest is the direction of maximum power radiation. This direction is often called the boresight direction. In some of the literature, the maximum value itself is called the directivity, reserving the phrase directive gain for what is called here directivity. For the short-dipole antenna, the maximum value of directivity occurs at \(\theta=0\), independent of \(\varphi\), and attains a value of \(3 / 2\). The concept of directivity applies to receiving antennas as well. It describes the output power as a function of the arrival direction of a plane wave impinging upon the antenna. By reciprocity, the directivity of a receiving antenna is the same as the directivity when used as a transmitting antenna. A quantity closely related to directivity is element gain. The definition of directivity assumes that all the power fed to the element is radiated to space. In reality, system losses reduce the radiant intensity by some factor, the element efficiency, \(\eta\). The term \(P_{\text {total }}\) becomes the power supplied to the antenna and \(P_{\text {rad }}\) becomes the power radiated into space. Then, \(P_{\text {rad }}=\eta P_{\text {total }}\). The element gain is
\[
G(\theta, \phi)=4 \Pi \frac{U_{\text {rad }}(\theta, \phi)}{P_{\text {total }}}=4 \Pi \eta \frac{U_{\text {rad }}(\theta, \phi)}{P_{\text {rad }}}=\eta D(\theta, \phi)
\]
and represents the power radiated away from the element compared to the total power supplied to the element.

Using the element pattern method, you can plot the directivity of an element by setting the 'Type ' parameter to 'directivity',
pattern(elem,'Type','directivity');

\section*{Array Response and Radiation Patterns}

\section*{Array Magnitude and Power Patterns}

When individual antenna elements are aggregated into arrays of elements, new response/radiation patterns are created which depend upon both the element patterns and the geometry of the array. These patterns are called beampatterns to reflect the fact that the pattern can be constructed to have a narrow angular distribution, that is, a beam. This term is used for an array in transmitting or receiving modes. Most often, but not always, the array consists of identical antennas. The identical antenna case is interesting because it lets us partition the radiation pattern into two components: one component describes the element radiation pattern and the second describes the array radiation pattern.

Just as an array of transmitting elements has a radiation pattern, an array of receiving elements has a response pattern which describes how the output voltage of the array changes with the direction of arrival of a plane incident wave. By reciprocity, the response pattern is identical to the radiation pattern.

For transmitting arrays, the voltage driving the elements can be phase-adjusted to allow the maximum radiant intensity to be transmitted in a particular direction. For receiving arrays, the arriving signals can be phase-adjusted to maximize the sensitivity in a particular direction.

Start with a simple model of the radiation field produced by a single antenna which is given by
\[
y(\theta, \phi, r)=A f(\theta, \phi) \frac{e^{-i k r}}{r}
\]
where \(A\) is the field amplitude and \(f(\theta, \varphi)\) is the normalized element field pattern. This field can represent any of the components of the electric field, a scalar field, or an acoustic field. For an array of identical elements, the output of the array is the weighted sum of the individual elements, using the complex weights, \(w_{m}\)
\[
z(\theta, \phi, r)=A \sum_{m=0}^{M-1} w_{m}^{*} f(\theta, \phi) \frac{e^{-i k r_{m}}}{r_{m}}
\]
where \(r_{m}\) is the distance from the \(\mathrm{m}^{\text {th }}\) element source point to the field point. In the far-field region, this equation takes the form
\[
z(\theta, \phi, r)=A \frac{e^{-i k r}}{r} f(\theta, \phi) \sum_{m=0}^{M-1} w_{m}^{*} e^{-i k \mathbf{u} \cdot \mathbf{x}_{m}}
\]
where \(\boldsymbol{x}_{\mathrm{m}}\) are the vector positions of the array elements with respect to the array origin. \(\boldsymbol{u}\) is the unit vector from the array origin to the field point. This equation can be written compactly is the form
\[
z(\theta, \phi, r)=A \frac{e^{-i k r}}{r} f(\theta, \phi) \mathbf{w}^{H} \mathbf{s}
\]

The term \(\boldsymbol{w}^{\boldsymbol{H}} \boldsymbol{S}\) is called the array factor, \(F_{\text {array }}(\theta, \varphi)\). The vector \(\boldsymbol{s}\) is the steering vector (or array manifold vector) for directions of propagation for transmit arrays or directions of arrival for receiving arrays
\[
\mathbf{s}(\theta, \phi)=\left\{\ldots, e^{i k \mathbf{u} \cdot \mathbf{x}_{m}}, \ldots\right\}
\]

The total array pattern consists of an amplitude term, an element pattern, \(f(\theta, \varphi)\), and an array factor, \(F_{\text {array }}(\theta, \varphi)\). The total angular behavior of the array pattern, \(B(\theta, \varphi)\), is called the beampattern of the array
\[
z(\theta, \phi, r)=A \frac{e^{-i k r}}{r} f(\theta, \phi) \mathbf{w}^{H} \mathbf{s}=A \frac{e^{-i k r}}{r} f(\theta, \phi) F_{\text {array }}(\theta, \phi)=A \frac{e^{-i k r}}{r} B(\theta, \phi)
\]

When evaluated at the reference distance, the array field pattern has the form
\[
A f(\theta, \phi) \mathbf{w}^{H} \mathbf{s}=A f(\theta, \phi) F_{\text {array }}(\theta, \phi)=A B(\theta, \phi)
\]

The pattern method, when the 'Normalize' parameter is set to false and the 'Type' parameter is set to 'efield', returns the magnitude of the array field pattern at the reference distance.
```

pattern(array,'Normalize',false,'Type','efield');

```

When the 'Normalize' parameter is set to true, the pattern method returns a pattern normalized to unity.
```

pattern(array,'Normalize',true,'Type','efield');

```

The array power pattern is given by
\[
\left|A f(\theta, \phi) \mathbf{w}^{H} \mathbf{s}\right|^{2}=\left|A f(\theta, \phi) F_{\text {array }}(\theta, \phi)\right|^{2}=|A B(\theta, \phi)|^{2}
\]

The pattern method, when the 'Normalize' parameter is set to false and the 'Type' parameter is set to 'power' or 'powerdb', returns the array power pattern at the reference distance.
```

pattern(array,'Normalize',false,'Type','power');

```

When the 'Normalize' parameter is set to true, the pattern method returns the power pattern normalized to unity.
```

pattern(array,'Normalize',true,'Type','power');

```

For the conventional beamformer, the weights are chosen to maximize the power transmitted towards a particular direction, or in the case of receiving arrays, to maximize the response of the array for a particular arrival direction. If \(\boldsymbol{u}_{\mathbf{0}}\) is the desired pointing direction, then the weights which maximize the power and response in this direction have the general form
\[
\mathbf{w}=\left|w_{m}\right| e^{-i k \mathbf{u}_{0} \cdot \mathbf{x}_{m}}
\]

For these weights, the array factor becomes
\[
F_{\text {array }}(\theta, \phi)=\sum_{m=0}^{M-1}\left|w_{m}\right| e^{-i k\left(\mathbf{u}-\mathbf{u}_{0}\right) \cdot \mathbf{x}_{m}}
\]
which has a maximum at \(\mathbf{u}=\mathbf{u}_{0}\).

\section*{Array Directivity}

Array directivity is defined the same way as element directivity: the radiant intensity in a specific direction divided by the isotropic radiant intensity. The isotropic radiant intensity is the array total radiated power divided by \(4 \Pi\). In terms of the arrays weights and steering vectors, the directivity can be written as
\[
D(\theta, \phi)=4 \pi \frac{\left|A f(\theta, \phi) \mathbf{w}^{H} \mathbf{s}\right|^{2}}{P_{\text {total }}}
\]
where \(P_{\text {total }}\) is the total radiated power from the array. In a discrete implementation, the total radiated power can be computed by summing radiant intensity values over a uniform grid of angles that covers the full sphere surrounding the array
\[
P_{\text {total }}=\frac{2 \pi^{2}}{M N} \sum_{m=0}^{M-1} \sum_{n=0}^{1 N-1}\left|A f\left(\theta_{m}, \phi_{n}\right) \mathbf{w}^{H} \mathbf{s}\left(\theta_{m}, \phi_{n}\right)\right|^{2} \cos \theta_{m}
\]
where \(M\) is the number of elevation grid points and \(N\) is the number of azimuth grid points.
Because the radiant intensity is proportional to the beampattern, \(B(\theta, \varphi)\), the directivity can also be written in terms of the beampattern
\[
D(\theta, \phi)=4 \pi \frac{|B(\theta, \phi)|^{2}}{\int|B(\theta, \phi)|^{2} \cos \theta d \theta d \phi}
\]

You can plot the directivity of an array by setting the 'Type' parameter of the pattern methods to 'directivity',
pattern(array,'Type','directivity');

\section*{Array Gain}

In the Phased Array System Toolbox, array gain is defined to be the array SNR gain. Array gain measures the improvement in SNR of a receiving array over the SNR for a single element. Because an array is a spatial filter, the array SNR depends upon the spatial properties of the noise field. When the noise is spatially isotropic, the array gain takes a simple form
\[
G=\frac{\mathrm{SNR}_{\text {array }}}{\mathrm{SNR}_{\text {element }}}=\frac{\left|\mathbf{w}^{H} \mathbf{s}\right|^{2}}{\mathbf{w}^{H} \mathbf{w}}
\]

In addition, for an array with uniform weights, the array gain for an \(N\)-element array has a maximum value at boresight of \(N\) (or \(10 \log N\) in db).

\section*{Grating Lobe Diagram for Microphone URA}

Plot the grating lobe diagram for an 11-by-9-element uniform rectangular array having element spacing equal to one-half wavelength.

Assume the operating frequency of the array is 10 kHz . All elements are omnidirectional microphone elements. Steer the array in the direction 20 degrees in azimuth and 30 degrees in elevation. The speed of sound in air is \(344.21 \mathrm{~m} / \mathrm{s}\) at 21 deg C .
```

cair = 344.21;
f = 10.0e3;
lambda = cair/f;
microphone = phased.OmnidirectionalMicrophoneElement(...
'FrequencyRange',[20 20000]);
array = phased.URA('Element',microphone,'Size',[11,9],...
'ElementSpacing',0.5*lambda*[1,1]);
plotGratingLobeDiagram(array,f,[20;30],cair);

```


Plot the grating lobes. The main lobe of the array is indicated by a filled black circle. The grating lobes in visible and nonvisible regions are indicated by unfilled black circles. The visible region is the region in \(u\)-v coordinates for which \(u^{2}+v^{2} \leq 1\). The visible region is shown as a unit circle centered at the origin. Because the array spacing is less than one-half wavelength, there are no grating lobes in the visible region of space. There are an infinite number of grating lobes in the nonvisible regions, but only those in the range \([-3,3]\) are shown.

The grating-lobe free region, shown in green, is the range of directions of the main lobe for which there are no grating lobes in the visible region. In this case, it coincides with the visible region.

The white areas of the diagram indicate a region where no grating lobes are possible.

\section*{Sonar System Models}
- "Sonar Equation" on page 13-2
- "Doppler Effect for Sound" on page 13-6

\section*{Sonar Equation}

The sonar equation is used in underwater signal processing to relate received signal power to transmitted signal power for one-way or two-way sound propagation. The equation computes the received signal-to-noise ratio (SNR) from the transmitted signal level, taking into account transmission loss, noise level, sensor directivity, and target strength. The sonar equation serves the same purpose in sonar as the radar equation does in radar. The sonar equation has different forms for passive sonar and active sonar.

\section*{Passive Sonar Equation}

In a passive sonar system, sound propagates directly from a source to a receiver. The passive sonar equation is
\[
S N R=S L-T L-(N L-D I)
\]
where SNR is the received signal-to-noise ratio in dB .

\section*{Source Level (SL)}

The source level (SL) is the ratio of the transmitted intensity from the source to a reference intensity, converted to dB:
\[
S L=10 \log \frac{I_{\mathrm{s}}}{I_{\mathrm{ref}}}
\]
where \(I_{\mathrm{s}}\) is the intensity of the transmitted signal measured at 1 m distance from the source. The reference intensity, \(I_{\text {ref, }}\), is the intensity of a sound wave having a root mean square (rms) pressure of \(1 \mu \mathrm{~Pa}\). Source level is sometimes written in \(\mathrm{dB} / / 1 \mu \mathrm{~Pa}\), but actually is referenced to the intensity of a \(1 \mu \mathrm{~Pa}\) signal. The relation between intensity and pressure is
\[
I=\frac{p_{\mathrm{rms}}^{2}}{\rho c}
\]
where \(\rho\) is the density of seawater, (approximately \(1000 \mathrm{~kg} / \mathrm{m}^{3}\) ), \(c\) is the speed of sound (approximately \(1500 \mathrm{~m} / \mathrm{s}\) ). \(1 \mu \mathrm{~Pa}\) is equivalent to an intensity of \(I_{\mathrm{ref}}=6.667 \times 10^{-19} \mathrm{~W} / \mathrm{m}^{2}\)

Sometimes, it is useful to compute the source level from the transmitted power, P. Assuming a nondirectional (isotropic) source, the intensity at one meter from the source is
\[
I=\frac{P}{4 \Pi}
\]

Then, the source level as a function of transmitted power is
\[
S L=10 \log _{10} \frac{I}{I_{\mathrm{ref}}}=10 \log _{10} \frac{P}{4 \pi I_{\mathrm{ref}}}=10 \log _{10} P-10 \log _{10} 4 \pi I_{\mathrm{ref}}=10 \log _{10} P+170.8
\]

When source level is defined at one yard instead of one meter, the final constant in this equation is 171.5.

When the source is directional, the source level becomes
\[
S L=10 \log _{10} \frac{I}{I_{\mathrm{ref}}}=10 \log _{10} P+170.8+D I_{\mathrm{src}}
\]
where \(D I_{\text {src }}\) is the directivity of the source. Source directivity is not explicitly included in the sonar equation.

\section*{Receiver Directivity Index (DI)}

The sonar equation includes the directivity index of the receiver (DI). Directivity is the ratio of the total noise power at the array to the noise received by the array along its main response axis. Directivity improves the signal-to-noise ratio by reducing the total noise. See "Element and Array Radiation and Response Patterns" on page 12-2 for discussions of directivity.

\section*{Transmission Loss (TL)}

Transmission loss is the attenuation of sound intensity as the sound propagates through the underwater channel. Transmission loss (TL) is defined as the ratio of sound intensity at 1 m from a source to the sound intensity at distance \(R\).
\[
T L=10 \log \frac{I_{\mathrm{s}}}{I(R)}
\]

There are two major contributions to transmission loss. The larger contribution is geometrical spreading of the sound wavefront. The second contribution is absorption of the sound as it propagates. There are several absorption mechanisms.

In an infinite medium, the wavefront expands spherically with distance, and attenuation follows a \(1 / R^{2}\) law, where \(R\) is the propagation distance. However, the ocean channel has a surface and a bottom. Because of this, the wavefronts expand cylindrically when they are far from the source and follow a \(1 / R\) law. Near the source, the wavefronts still expand spherically. There must be a transition region where the spreading changes from spherical to cylindrical. In Phased Array System Toolbox sonar models, the transition region as a single range and ensures that the transmission loss is continuous at that range. Authors define the transition range differently. Here, the transition range, \(R_{\text {trans }}\), is one-half the depth, \(D\), of the channel. The geometric transmission loss for ranges less than the transition range is
\[
T L_{\text {geom }}=20 \log _{10} R
\]

For ranges greater than the transition depth, the geometric transmission loss is
\[
T L_{\text {geom }}=10 \log _{10} R+10 \log _{10} R_{\text {trans }}
\]

In Phased Array System Toolbox, the transition range is one-half the channel depth, \(H / 2\).
The absorption loss model has three components: viscous absorption, the boric acid relaxation process, and the magnesium sulfate relaxation process. All absorption components are modeled by linear dependence on range, \(\alpha R\).

Viscous absorption describes the loss of intensity due to molecular motion being converted to heat. Viscous absorption applies primarily to higher frequencies. The viscous absorption coefficient is a function of frequency, \(f\), temperature in Celsius, \(T\), and depth, \(D\) :
\[
\alpha_{\mathrm{vis}}=4.9 \times 10^{-4} f^{2} e^{-(T / 27+D / 17)}
\]
in \(\mathrm{dB} / \mathrm{km}\). This is the dominant absorption mechanism above 1 MHz . Viscous absorption increases with temperature and depth.

The second mechanism for absorption is the relaxation process of boric acid. Absorption depends upon the frequency in kHz , f , the salinity in parts per thousand ( ppt ), \(S\), and temperature in Celsius,T. The absorption coefficient (measured in \(\mathrm{dB} / \mathrm{km}\) ) is
\[
\begin{aligned}
& \alpha_{\mathrm{B}}=0.106 \frac{f_{1} f^{2}}{f_{1}^{2}+f^{2}} e^{-(p H-8) / 0.56} \\
& f_{1}=0.78 \sqrt{S / 35} e^{T / 26}
\end{aligned}
\]
in \(\mathrm{dB} / \mathrm{km} . f_{1}\) is the relaxation frequency of boric acid and is about 1.1 kHz at \(T=10^{\circ} \mathrm{C}\) and \(S=35\) ppt.

The third mechanism is the relaxation process of magnesium sulfate. Here, the absorption coefficient is
\[
\begin{aligned}
& \alpha_{\mathrm{M}}=0.52\left(1+\frac{T}{43}\right)\left(\frac{S}{35}\right) \frac{f_{2} f^{2}}{f_{2}^{2}+f^{2}} e^{-D / 6} \\
& f_{2}=42 e^{T / 17}
\end{aligned}
\]
in \(\mathrm{dB} / \mathrm{km} . f_{2}\) is the relaxation frequency of magnesium sulfate and is about 75.6 kHz at \(\mathrm{T}=10^{\circ} \mathrm{C}\) and \(\mathrm{S}=35 \mathrm{ppt}\).

The total transmission loss modeled in the toolbox is
\[
T L=T L_{\text {geom }}(R)+\left(\alpha_{\text {vis }}+\alpha_{\mathrm{B}}+\alpha_{\mathrm{M}}\right) R
\]
where \(R\) is the range in km. In Phased Array System Toolbox, all absorption models parameters are fixed at \(T=10, S=35\), and \(p H=8\). The model is implemented in range 2 tl . Because \(T L\) is a monotonically increasing function of \(R\), you can use the Newton-Raphson method to solve for \(R\) in terms of \(T L\). This calculation is performed in \(\mathrm{tl2}\) range.

\section*{Noise Level (NL)}

Noise level ( \(N L\) ) is the ratio of the noise intensity at the receiver to the same reference intensity used for source level.

\section*{Active Sonar Equation}

The active sonar equation describes a scenario where sound is transmitted from a source, reflects off a target, and returns to a receiver. When the receiver is collocated with the source, this sonar system is called monostatic. Otherwise, it is bistatic. Phased Array System Toolbox models monostatic sonar systems. The active sonar equation is
\[
S N R=S L-2 T L-(N L-D I)+T S
\]
where \(2 T L\) is the two-way transmission loss (in dB ) and \(T S\) is the target strength (in dB ). The transmission loss is calculated by computing the outbound and inbound transmission losses (in dB ) and adding them. In this toolbox, two-way transmission loss is twice the one-way transmission loss.

\section*{Target Strength (TS)}

Target strength is the sonar analog of radar cross section. Target strength is the ratio of the intensity of a reflected signal at 1 m from a target to the incident intensity, converted to dB . Using the
conservation of energy or, equivalently, power, the incident power on a target equals the reflected power. The incident power is the incident signal intensity multiplied by an effective cross-sectional area, \(\sigma\). The reflected power is the reflected signal intensity multiplied by the area of a sphere of radius \(R\) centered on the target. The ratio of the reflected power to the incident power is
\[
\begin{gathered}
I_{\mathrm{inc}} \sigma=I_{\mathrm{reff}} 4 \pi R^{2} \\
\frac{I_{\mathrm{refl}}}{I_{\mathrm{inc}}}=\frac{\sigma}{4 \pi R^{2}} .
\end{gathered}
\]

The reflected intensity is evaluated on a sphere of 1 m radius. The target strength coefficient \((\sigma)\) is referenced to an area \(1 \mathrm{~m}^{2}\).
\[
T S=10 \log _{10} \frac{I_{\text {refl }}(1 \text { meter })}{I_{\text {inc }}}=10 \log _{10} \frac{\sigma}{4 \Pi}
\]

\section*{References}
[1] Ainslie M. A. and J.G. McColm. "A simplified formula for viscous and chemical absorption in sea water." Journal of the Acoustical Society of America. Vol. 103, Number 3, 1998, pp. 1671--1672.
[2] Urick, Robert J. Principles of Underwater Sound, 3rd ed. Los Altos, CA: Peninsula Publishing, 1983.

\section*{Doppler Effect for Sound}

The Doppler effect is the change in the observed frequency of a source due to the motion of either the source or receiver or both. Only the component of motion along the line connecting the source and receiver contributes to the Doppler effect. Any arbitrary motion can be replaced by motion along the source-receiver axis with velocities consisting of the projections of the velocities along that axis. Therefore, without loss of generality, assume that the source and receiver move along the x-axis and that the receiver is positioned further out along the x -axis. The source emits a continuous tone of frequency, \(f_{0}\), equally in all directions. First examine two important cases. The first case is where the source is stationary and the receiver is moving toward or away from the source. A receiver moving away from the source will have positive velocity. A receiver moving toward the source will have negative velocity. If the receiver moves towards the source, it will encounter wave crests more frequently and the received frequency will increase according to
\[
f^{\prime}=f_{0}\left(\frac{c-v_{r}}{c}\right)
\]

Frequency will increase because \(v_{r}\) is negative. If the receiver is moving away from the source, the \(v_{r}\) is positive and the frequency decreases. A similar situation occurs when the source is moving and the receiver is stationary. Then the frequency at the receiver is
\[
f^{\prime}=f_{0}\left(\frac{c}{c-v_{s}}\right)
\]

The frequency increases when \(v_{s}\) is positive as the source moves toward the receiver. When \(v_{s}\) is negative, the frequency decreases. Both effects can be combined into
\[
f^{\prime}=f_{0}\left(\frac{c-v_{r}}{c}\right)\left(\frac{c}{c-v_{s}}\right)=f_{0}\left(\frac{c-v_{r}}{c-v_{s}}\right)=f_{0}\left(\frac{1-v_{r} / c}{1-v_{s} / c}\right) .
\]

There is a difference in the Doppler formulas for sound versus electromagnetic waves. For sound, the Doppler shift depends on both the source and receiver velocities. For electromagnetic waves, the Doppler shift depends on the difference between the source and receiver velocities.

\section*{References}
[1] Halliday, David, R. Resnick, and J. Walker, Fundamentals of Physics, 10th ed. Wiley, New York, 2013.

\section*{Code Generation}
- "Code Generation" on page 14-2
- "Generate MEX Function to Estimate Directions of Arrival" on page 14-10
- "Generate MEX Function Containing Persistent System Objects" on page 14-12
- "Functions and System Objects Supported for C/C++ Code Generation" on page 14-14

\section*{Code Generation}
```

In this section...
"Code Generation Use and Benefits" on page 14-2
"Limitations Specific to Phased Array System Toolbox" on page 14-3
"General Limitations" on page 14-5
"Limitations for System Objects that Require Dynamic Memory Allocation" on page 14-9

```

\section*{Code Generation Use and Benefits}

You can use the Phased Array System Toolbox software together with the MATLAB Coder \({ }^{\text {TM }}\) product to create \(\mathrm{C} / \mathrm{C}++\) code that implements your MATLAB functions and models. With this software, you can
- Create a MEX file to speed up your own MATLAB application.
- Generate a stand-alone executable that runs independently of MATLAB on your own computer or another platform.
- Include System objects in the same way as any other element.

In general, the code you generate using the toolbox is portable ANSI® C code. In order to use code generation, you need a MATLAB Coder license. Using Phased Array System Toolbox software requires licenses for both the DSP System Toolbox \({ }^{\mathrm{TM}}\) and the Signal Processing Toolbox \({ }^{\mathrm{TM}}\). See the "Get Started with MATLAB Coder" (MATLAB Coder) page for more information.

Creating a MATLAB Coder MEX-file can lead to substantial acceleration of your MATLAB algorithms. It is also a convenient first step in a workflow that ultimately leads to completely standalone code. When you create a MEX-file, it runs in the MATLAB environment. Its inputs and outputs are available for inspection just like any other MATLAB variable. You can use MATLAB visualization and other tools for verification and analysis.

Within your code, you can run specific commands either as generated C code or by running using the MATLAB engine. In cases where an isolated command does not yet have code generation support, you can use the coder.extrinsic command to embed the command in your code. This means that the generated code reenters the MATLAB environment when it needs to run that particular command. This also useful if you wish to embed certain commands that cannot generate code (such as plotting functions).

The simplest way to generate MEX-files from your MATLAB code is by using the codegen function at the command line. Often, generating a MEX-files involves nothing more than invoking the coder command on one of your existing functions. For example, if you have an existing function, my function.m, you can type the commands at the command line to compile and run the MEX function. codegen adds a platform-specific extension to this name. In this case, the "mex" suffix is added.
```

codegen myfunction.m
myfunction_mex;

```

You can generate standalone executables that run independently of the MATLAB environment. You can do this by creating a MATLAB Coder project inside the MATLAB Coder Integrated Development Environment (IDE). Alternatively, you can issue the codegen command in the command line environment with appropriate configuration parameters. To create a standalone executable, you must
write your own main. c or main.cpp function. See "Generating Standalone C/C++ Executables from MATLAB Code" (MATLAB Coder) for more information.

\section*{Set Up Your Compiler}

Before using codegen to compile your code, you must set up your C/C++ compiler. For 32-bit Windows platforms, MathWorks \({ }^{\circledR}\) supplies a default compiler with MATLAB. If your installation does not include a default compiler, you can supply your own compiler. For the current list of supported compilers, see Supported and Compatible Compilers on the MathWorks Web site. Install a compiler that is suitable for your platform. Then, read "Setting Up the C or C++ Compiler" (MATLAB Coder). After installation, at the MATLAB command prompt, run mex - setup. You can then use the codegen function to compile your code.

\section*{Functions and System Objects That Support Code Generation}

Almost all Phased Array System Toolbox functions and System objects are supported for code generation. For a list of supported functions and System objects, see "Functions and System Objects Supported for C/C++ Code Generation" on page 14-14.

\section*{Limitations Specific to Phased Array System Toolbox}

Code Generation has the following limitations when used with the Phased Array System Toolbox software:
- When you employ antennas and arrays that produce polarized fields, the EnablePolarization parameter for these System objects must be set to true:
- phased.Collector
- phased.Radiator
- phased.WidebandCollector
- phased.WidebandRadiator
- phased.RadarTarget
- phased.BackscatterRadarTarget
- phased.WidebandBackscatterRadarTarget
- phased.ArrayResponse
- phased.SteeringVector

This requirement differs from regular MATLAB usage where you can set EnablePolarization property to false even when you use a polarization-enabled antenna. For example, this code uses a polarized antenna, which requires that EnablePolarization property of the phased. Radiator System object be set to true.
```

function [y] = codegen_radiator()
sSD = phased.ShortDipoleAntennaElement(...
'FrequencyRange',[100e6,600e6],'AxisDirection','Y');
c = physconst('LightSpeed');
fc = 200e6;
lambda = c/fc;
d = lambda/2;
sURA = phased.URA('Element',sSD,...
'Size',[3,3],...
'ElementSpacing',[d,d]);

```
```

sRad = phased.Radiator('Sensor',sURA,...
'OperatingFrequency',150e6,...
'CombineRadiatedSignals',true,...
'EnablePolarization',true);
x = [1;2;1];
radiatingAngle = [10;0]; % One angle for one antenna
y = step(sRad,x,radiatingAngle,eye(3,3));

```
- Visualization methods for Phased Array System Toolbox System objects are not supported. These methods are pattern, patternAzimuth, patternElevation, plot, plotResponse, and viewArray.
- When a System object contains another System object as a property value, you must set the contained System object in the constructor. You cannot use Object Property notation to set the property. For example
```

antenna = phased.ShortDipoleAntennaElement(...
'FrequencyRange',[100e6,600e6],'AxisDirection','Y');
array = phased.URA('Element',antenna,'Size',[3,3], ...
'ElementSpacing',[0.75,0.75]);

```
is valid for codegen but
```

antenna = phased.ShortDipoleAntennaElement(...
'FrequencyRange',[100e6,600e6],'AxisDirection','Y');
array = phased.URA('Size',[3,3],'ElementSpacing',[0.75,0.75]);
array.Element = antenna;

```
is not.
- Code generation of Phased Array System Toolbox arrays that contain Antenna Toolbox antennas is not supported.
- A list of the limitations on Phased Array System Toolbox functions and System objects is presented here:
\begin{tabular}{|l|l|}
\hline Function or System Object & Limitation \\
\hline plotResponse & This System object method is not supported. \\
\hline pattern & This System object method is not supported. \\
\hline patternAzimuth & This System object method is not supported. \\
\hline patternElevation & This System object method is not supported. \\
\hline plot & This System object method is not supported. \\
\hline viewArray & This System object method is not supported. \\
\hline ambgfun & \begin{tabular}{l} 
Supported only when output arguments are \\
specified.
\end{tabular} \\
\hline blakechart & This function is not supported. \\
\hline pambgfun & \begin{tabular}{l} 
Supported only when output arguments are \\
specified.
\end{tabular} \\
\hline polsignature & \begin{tabular}{l} 
Supported only when output arguments are \\
specified.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Function or System Object & Limitation \\
\hline rocpfa & \begin{tabular}{l} 
- \begin{tabular}{l} 
Supported only when output arguments \\
are specified. \\
The NonfluctuatingNoncoherent \\
signal type is not supported.
\end{tabular} \\
\hline rocsnr \\
\hline stokes \\
\hline phased.ArrayGain \\
\hline \begin{tabular}{l} 
Supported only when output arguments \\
are specified. \\
The NonfluctuatingNoncoherent \\
signal type is not supported.
\end{tabular} \\
\hline phased. IntensityScope
\end{tabular} \begin{tabular}{l} 
Supported only when output arguments are \\
specified.
\end{tabular} \\
\hline phased.MatchedFilter & \begin{tabular}{l} 
This System object cannot be used with arrays \\
that contain antenna elements that create \\
polarized signals, that is, \\
phased.ShortDipoleAntennaElement or \\
phased.CrossedDipoleAntennaElement \\
This System object is not supported.
\end{tabular} \\
\hline phased.RangeDopplerResponse & \begin{tabular}{l} 
The CustomSpectrumWindow property is not \\
supported.
\end{tabular} \\
\hline phased. ScenarioViewer & \begin{tabular}{l} 
The CustomRangeWindow and the \\
CustomDopplerWindow properties are not \\
supported.
\end{tabular} \\
\hline
\end{tabular}

\section*{General Limitations}

Code Generation has some general limitations not specifically related to the Phased Array System Toolbox software. For a more complete discussion, see "System Objects in MATLAB Code Generation" (MATLAB Coder).
- The data type and complexity (i.e., real or complex) of any input argument to a function or System object must always remain the same.
- You cannot pass a System object to any method or function that you made extrinsic using coder.extrinsic.
- You cannot load a MAT-file using coder. load when it contains a System object. For example, if you construct a System object in the MATLAB environment and save it to a MAT-file
```

sSD = phased.ShortDipoleAntennaElement(...
'FrequencyRange',[0.9e8,2e9],'AxisDirection','Y');
save x.mat sSD;
clear sSD;

```
then you cannot load the System object in your compiled MEX-file:
```

function codegen_load1()
W = coder.load('x.mat');
sSD = W.sSD;

```

The compilation
```

codegen codegen_load1

```
will produced an error message: ' Found unsupported class for variable using function 'coder.load'. MATLAB class 'phased. ShortDipoleAntennaElement' found at 'W.sSD' is unsupported.'

To avoid this problem, you can save the object's properties to a MAT-file, then, use coder. load to load the object properties and re-create the object. For example, create and save a System object's properties in the MATLAB environment
```

sSD = phased.ShortDipoleAntennaElement(...
'FrequencyRange',[0.9e8,2e9],'AxisDirection', 'Y');
FrequencyRange = sSD.FrequencyRange;
AxisDirection = sSD.AxisDirection;
save x.mat FrequencyRange AxisDirection;

```

Then, write a function codegen_load2 to load the properties and create a System object.
```

function codegen_load2()
W = coder.load('x.mat');
sSD = phased.ShortDipoleAntennaElement(...
'FrequencyRange',W.FrequencyRange, ...
'AxisDirection',W.AxisDirection);

```

Then, issue the commands to create and execute the MEX-file, codegen_load2_mex.
```

codegen codegen_load2;
codegen_load2_mēx

```
- System object properties are either tunable or nontunable. Unless otherwise specified, System object properties are nontunable. Nontunable properties must be constant. A constant is a value that can be evaluated at compile-time. You can change tunable properties even if the object is locked. Refer to the object's reference page to determine whether an individual property is tunable or not. If you try to set a nontunable System object property and the compiler determines that it is not constant, you will get an error. For example, the phased. URA System object has a nontunable property, ElementSpacing, which sets the distance between elements. You may want to create an array that is tuned to a frequency. You cannot pass in the frequency as an input argument because the frequency must be a constant.
```

function [resp] = codegen_const1(fc)
sSD = phased.ShortDipoleAñtennaElement(...
'FrequencyRange',[100e6,600e6],'AxisDirection','Y');
c = physconst('LightSpeed');
lambda = c/fc;
d = lambda/2;
sURA = phased.URA('Element',sSD,...
'Size',[3,3],...
'ElementSpacing',[d,d]);
ang = [30;0];
resp = step(sURA,fc,ang);

```

When you codegen this function
```

fc = 200e6;
codegen codegen_const1 -args {fc}

```
the compiler responds that the value of the 'ElementSpacing' property, \(d\), is not constant and generates the error message: "Failed to compute constant value for nontunable
property 'ElementSpacing'. In code generation, nontunable properties can only be assigned constant values." It is not constant because it depends upon a nonconstant variable, fc.

To correct this problem, set fc to a constant within the function:
```

function [resp] = codegen_const2()
sSD = phased.ShortDipoleA\overline{n}tennaElement(...
'FrequencyRange',[100e6,600e6],'AxisDirection','Y');
c = physconst('LightSpeed');
fc = 200e6;
lambda = c/fc;
d = lambda/2;
sURA = phased.URA('Element',sSD,...
'Size',[3,3],...
'ElementSpacing',[d,d]);
ang = [30;0];
resp = step(sURA,fc,ang);

```
and then compile
```

codegen codegen_const2

```
- You can assign a nontunable System object property value only once before a step method is executed. This requirement differs from MATLAB usage where you can initialize these properties multiple times before the step method is executed.

This example sets the Size property twice.
```

function codegen property
sSD = phased.ShortDipoleAntennaElement(...
'FrequencyRange',[0.9e8,2e9],'AxisDirection','Y');
sURA = phased.URA('Element',sSD,...
'Size',[3,3],...
'ElementSpacing',[0.15,0.15]);
sURA.Size = [4,4];

```

When you issue the command
```

codegen codegen_property

```
the following error message is produced: "A nontunable property may only be assigned once."
- In certain cases, the compiler cannot determine the values of nontunable properties at compile time or the code may not even compile. Consider the following example that reads in the \(x, y, z\) coordinates of a 5-element array from a file and then, creates a conformal array System object. The text file, elempos.txt, contains the element coordinates
\begin{tabular}{lclcc}
-0.5000 & -0.2588 & 0 & 0.2588 & 0.5000 \\
-0.8660 & -0.9659 & -1.0000 & -0.9659 & -0.8660 \\
0 & 0 & 0 & 0 & 0
\end{tabular}

The file collectWave.m contains reads the element coordinates and creates the object.
```

function y = collectWave(angle)
elPos = calcElPos;
cArr = phased.ConformalArray('ElementPosition',elPos);
y = collectPlaneWave(cArr,randn(4,2),angle,1e8);

```
```

end
function elPos = calcElPos
fid = fopen('elempos.txt','r');
el = textscan(fid, '%f');
n = length(el{1});
nelem = n/3;
fclose(fid);
elPos = reshape(el{1},nelem,3).';
end

```

Attempting to compile
```

codegen collectWave -args {[10 30]}

```
produces the error "Permissions 'r' and 'r+' are not supported".

The following example is a work-around that uses coder.extrinsic and coder. const to insure that the value for the nontunable property, 'ElementPosition' , is a compile time constant. The function in the file, collectWavel.m, creates the object using the calcElPos function. This function runs inside the MATLAB interpreter at compile time.
```

function y = collectWavel(angle)
coder.extrinsic('calcElPos')
elPos = coder.const(calcElPos);
cArr = phased.ConformalArray('ElementPosition',elPos);
y = collectPlaneWave(cArr,randn(4,2),angle,le8);
end

```

The file calcElPos.m loads the element positions from the text file
```

function elPos = calcElPos
fid = fopen('elempos.txt','r');
el = textscan(fid, '%f');
n = length(el{1});
nelem = n/3;
fclose(fid);
elPos = reshape(el{1},nelem,3).';

```

Only the collectWavel.m file is compiled with codegen. Compiling and running
```

codegen collectWave1 -args {[10 30]}
collectWave1_mex([10,30])

```
will succeed.
An alternate work-around uses coder. load to insure that the value of the nontunable property 'ElementPosition' is compile-time constant. In the MATLAB environment, run calcElPos2 to save the array coordinates contained in elempos. txt to a MAT-file. Then, load the contents of the MAT-file within the compiled code.
```

function calcElPos2
fid = fopen('elempos.txt');
el = textscan(fid, '%f');
fclose(fid);
elPos = reshape(el{1},[],3).';
save('positions', 'elPos');
end

```

The file collectWave2.m loads the coordinate positions and creates the conformal array object
```

function y = collectWave2(angle)
var = coder.load('positions');
cArr = phased.ConformalArray('ElementPosition',var.elPos);
y = collectPlaneWave(cArr,randn(4,2),angle,1e8);
end

```

Only the collectWave2.m file is compiled with codegen. Compiling and running collectWave2.m
```

codegen collectWave2 -args {[10 30]}

```
collectWave2_mex([10,30])
will succeed. This second approach is more general than the first since a MAT-file can contain any variables, except System objects.
- The System object clone method is not supported.

\section*{Limitations for System Objects that Require Dynamic Memory Allocation}

System objects that require dynamic memory allocation cannot be used for code generation in the following cases:
\begin{tabular}{|l|}
\hline Inside a MATLAB Function block in a Simulink \({ }^{\circledR}\) model. \\
\hline Inside a MATLAB function in a Stateflow \({ }^{\circledR}\) chart. \\
\hline When using MATLAB as the action language in a Stateflow chart. \\
\hline Inside a Truth Table block in a Simulink model. \\
\hline Inside a MATLAB System block (except for normal mode). \\
\hline When using Simulink Coder for code generation. \\
\hline When using MATLAB Coder for code generation and dynamic memory allocation is disabled. \\
\hline
\end{tabular}

\section*{Generate MEX Function to Estimate Directions of Arrival}

Compile, using codegen, the function EstimateDOA.m. This function estimates the directions-ofarrival (DOA's) of two signals with added noise that are received by a standard 10-element Uniform Line Array (ULA). The antenna operating frequency is 150 MHz and the array elements are spaced one-half wavelength apart. The actual direction of arrival of the first signal is \(10^{\circ}\) azimuth, \(20^{\circ}\) elevation. The direction of arrival of the second signal is \(45^{\circ}\) azimuth, \(60^{\circ}\) elevation. Signals and noise are generated using the sensorsig function.
```

function [az] = EstimateDOA()
% Example:
% Estimate the DOAs of two signals received by a standard
% 10-element ULA with element spacing one half-wavelength apart.
% The antenna operating frequency is 150 MHz.
% The actual direction of the first signal is 10 degrees in
% azimuth and 20 degrees in elevation. The direction of the
% second signal is 45 degrees in azimuth and 60 degrees in
% elevation.
c = physconst('LightSpeed');
fc = 150e6;
lambda = c/fc;
fs = 8000;
nsamp = 8000;
sigma = 0.1;
ang = [10 20; 45 60]';
antenna = phased.IsotropicAntennaElement(...
'FrequencyRange',[100e6,300e6]);
array = phased.ULA('Element',antenna,'NumElements',10, ...
'ElementSpacing',lambda/2);
pos = getElementPosition(array)/lambda;
sig = sensorsig(pos,nsamp,ang,sigma^2);
estimator = phased.RootMUSICEstimator('SensorArray',array,...
'OperatingFrequency',fc,...
'NumSignalsSource','Property','NumSignals',2);
doas = estimator(sig);
az = broadside2az(sort(doas),[20,60]);
end

```

Run codegen at the command line to generate the mex function, EstimateDOA_mex, and then run the mex function:
```

codegen EstimateDOA.m
EstimateDOA_mex

```

The estimated arrival angles are:
```

az =

```
10.003645 .0030

The program contains a fixed value for the noise variance. If you wanted to reuse the same code for different noise levels, you can pass the noise variance as an argument into the function. This is done in the function EstimateDOA1.m, shown here, which has the input argument sigma.
```

function [az] = EstimateDOA1(sigma)
% Example:
% Estimate the DOAs of two signals received by a standard

```
```

% 10-element ULA with element spacing one half-wavelength apart.
% The antenna operating frequency is 150 MHz.
% The actual direction of the first signal is 10 degrees in
% azimuth and 20 degrees in elevation. The direction of the
% second signal is 45 degrees in azimuth and 60 degrees in
% elevation.
c = physconst('LightSpeed');
fc = 150e6;
lambda = c/fc;
fs = 8000;
nsamp = 8000;
ang = [10 20; 45 60]';
antenna = phased.IsotropicAntennaElement(...
'FrequencyRange', [100e6, 300e6]);
array = phased.ULA('Element',antenna,'NumElements',10, ...
'ElementSpacing',lambda/2);
pos = getElementPosition(array)/lambda;
sig = sensorsig(pos,nsamp,ang,sigma^2);
estimator = phased.RootMUSICEstimator('SensorArray',array, ...
'OperatingFrequency',fc, ...
'NumSignalsSource','Property','NumSignals',2);
doas = estimator(sig);
az = broadside2az(sort(doas),[20,60]);
end

```

Run codegen at the command line to generate the mex function, EstimateDOA1_mex, using the args option to specify the type of input argument. Then run the mex function with several different input parameters:
```

codegen EstimateDOA1.m -args {1}
EstimateDOA1_mex(1)
az =
10.0130 45.0613
EstimateDOA1_mex(10)
az =
10.1882 44.3327
EstimateDOA1_mex(15)
az =
8.1620 46.2440

```

Increasing the value of sigma degrades the estimates of the azimuth angles.

\section*{Generate MEX Function Containing Persistent System Objects}

Sometimes, it is convenient to put System objects inside a function that is to be called many times. This eliminates the overhead in creating new instances of a System object each time the function is called. You can write logic which creates the System object just once and declares it to be persistent. For example, suppose you require the response of an 11-element ULA for several different arrival angles and want to plot that response versus angle.
```

function plot_ULA_response
azangles = [-90:90];
elangles = zeros(size(azangles));
fc = 100e9;
c = physconst('LightSpeed');
N = size(azangles,2);
lambda = c/fc;
d = 0.4*lambda;
numelements = 11;
resp = zeros(1,N);
sIso = phased.IsotropicAntennaElement(...
'FrequencyRange',[1, 200]*1e9,...
'BackBaffled',false);
sULA = phased.ULA('Element',sIso,...
'NumElements',numelements,...
'ElementSpacing',d,...
'Taper',taylorwin(numelements).');
for n = 1:N
x = get_ULA_response(sULA,fc,azangles(n),elangles(n));
resp(n)}= = a\overline{b}s(x)
end
plot(azangles,20*log10(resp));
title('ULA Response');
xlabel('Angle (deg)');
ylabel('Response (db)');
grid;
end
function resp = get_ULA_response(sULA,fc,az,el)
persistent sAR;
c = physconst('LightSpeed');
if isempty(sAR)
sAR = phased.ArrayResponse('SensorArray',sULA,...
'PropagationSpeed',c,...
'WeightsInputPort',false,...
'EnablePolarization',false);
end
resp = step(sAR,fc,[az;el]);
end

```

To create the code, run codegento create the mex-file plot_ULA_response_mex, and execute the mex-file at the command line:
```

codegen plot_ULA_response
plot_ULA_response_mex;

```
which yields the plot


\section*{Functions and System Objects Supported for C/C++ Code Generation}

An asterisk \({ }^{(*)}\) indicates that the reference page has usage notes and limitations for \(\mathrm{C} / \mathrm{C}++\) code generation.
\begin{tabular}{|l|l|}
\hline aictest* & Dimension of signal subspace \\
\hline albersheim* & Required SNR using Albersheim's equation \\
\hline ambgfun* & Ambiguity and crossambiguity function \\
\hline aperture2gain* & Convert effective aperture to gain \\
\hline az2broadside* & Convert azimuth and elevation angle to broadside angle \\
\hline azel2phitheta* & Convert angles from azimuth/elevation form to phi/theta form \\
\hline azel2phithetapat* & Convert radiation pattern from azimuth-elevation to phi-theta coordinates \\
\hline azel2uv* & Convert azimuth/elevation angles to u/v coordinates \\
\hline azel2uvpat* & Convert radiation pattern from azimuth/elevation form to u/v form \\
\hline azelaxes* & Spherical basis vectors in 3-by-3 matrix form \\
\hline azelcut2pat & Create 3-D response pattern from azimuth and elevation cuts \\
\hline \begin{tabular}{l} 
backscatterBicyclis \\
t
\end{tabular} & Backscatter radar signals from bicyclist \\
\hline \begin{tabular}{l} 
backscatterPedestri \\
an
\end{tabular} & Backscatter radar signals from pedestrian \\
\hline beat2range* & Convert beat frequency to range \\
\hline billingsleyicm* & Billingsley's intrinsic clutter motion (ICM) model \\
\hline blkdiagbfweights* & MIMO channel block diagonalized weights \\
\hline broadside2az* & Convert broadside angle to azimuth angle \\
\hline bw2range* & Convert bandwidth to range resolution \\
\hline cart2sphvec* & Convert vector from Cartesian components to spherical representation \\
\hline cbfweights* & Conventional beamformer weights \\
\hline circpol2pol* & \begin{tabular}{l} 
Convert circular component representation of field to linear component \\
representation
\end{tabular} \\
\hline clone & Create identical object \\
\hline clone & Copy of alpha-beta tracking filter \\
\hline clusterDBSCAN & Data clustering \\
\hline correct & Correct the state and state estimation error covariance \\
\hline cranerainpl* & RF signal attenuation due to rainfall using Crane model \\
\hline dechirp* & Perform dechirp operation on FMCW signal \\
\hline delayseq* & Delay or advance sequence \\
\hline depressionang* & Depression angle of surface target \\
\hline diagbfweights* & Diagonalize MIMO channel \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline discoverClusters* & Find cluster hierarchy in data \\
\hline distance & Distances between measurements and predicted measurements \\
\hline dop2speed* & Convert Doppler shift to speed \\
\hline dopsteeringvec* & Doppler steering vector \\
\hline effearthradius* & Effective earth radius \\
\hline espritdoa* & Direction of arrival using TLS ESPRIT \\
\hline estimateEpsilon* & Estimate neighborhood clustering threshold \\
\hline fogpl* & RF signal attenuation due to fog and clouds \\
\hline fspl* & Free space path loss \\
\hline gain2aperture* & Convert gain to effective aperture \\
\hline gaspl* & RF signal attenuation due to atmospheric gases \\
\hline gccphat* & Generalized cross-correlation \\
\hline \begin{tabular}{l} 
getMonopulseEstimat \\
or
\end{tabular} & Create monopulse estimator from monopulse feed \\
\hline getNumScatterers & Number of scatterers on bicyclist \\
\hline global2localcoord* & Convert global to local coordinates \\
\hline grazingang* & Grazing angle of surface target \\
\hline horizonrange* & Horizon range \\
\hline lcmvweights* & Narrowband linearly constrained minimum variance (LCMV) beamformer weights \\
\hline likelihood & Likelihood of measurement \\
\hline local2globalcoord* & Convert local to global coordinates \\
\hline mdltest* & Dimension of signal subspace \\
\hline move & Position, velocity, and orientation of moving bicyclist \\
\hline move & Position and velocity of walking pedestrian \\
\hline musicdoa* & Estimate arrival directions of signals using MUSIC \\
\hline mvdrweights* & Minimum variance distortionless response (MVDR) beamformer weights \\
\hline noisepow* & Receiver noise power \\
\hline npwgnthresh* & Detection SNR threshold for signal in white Gaussian noise \\
\hline ompdecomp & Decomposition using orthogonal matching pursuit \\
\hline omphybweights & Hybrid beamforming weights using orthogonal matching pursuit \\
\hline pambgfun* & Periodic ambiguity function \\
\hline \begin{tabular}{l} 
phased.ADPCACancell \\
er*
\end{tabular} & Adaptive DPCA (ADPCA) pulse canceller \\
\hline \begin{tabular}{l} 
phased.AlphaBetaFil \\
ter
\end{tabular} & Alpha-beta filter for object tracking \\
\hline \begin{tabular}{l} 
phased.AngleDoppler \\
Response*
\end{tabular} & Angle-Doppler response \\
\hline phased.ArrayGain* & Sensor array gain \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline phased.ArrayRespons e* & Sensor array response \\
\hline phased.BackscatterR adarTarget* & Backscatter radar target \\
\hline phased.BackscatterS onarTarget* & Sonar target backscatter \\
\hline phased.BarrageJamme r* & Barrage jammer \\
\hline phased.BeamscanEsti mator* & Beamscan spatial spectrum estimator for ULA \\
\hline phased.BeamscanEsti mator2D* & 2-D beamscan spatial spectrum estimator \\
\hline phased.BeamspaceESP RITEstimator* & Beamspace ESPRIT direction of arrival (DOA) estimator for ULA \\
\hline phased.CFARDetector* & Constant false alarm rate (CFAR) detector \\
\hline phased.CFARDetector 2D* & Two-dimensional CFAR detector \\
\hline phased.Collector* & Narrowband signal collector \\
\hline phased.ConformalArr ay* & Conformal array \\
\hline phased.ConstantGamm aClutter* & Constant gamma clutter simulation \\
\hline phased.CosineAntenn aElement* & Cosine antenna element \\
\hline phased.CrossedDipol eAntennaElement* & Crossed-dipole antenna element \\
\hline phased.CustomAntenn aElement* & Custom antenna element \\
\hline phased.CustomMicrop honeElement* & Custom microphone \\
\hline phased.DopplerEstim ator* & Doppler estimation \\
\hline phased.DPCACancelle r* & Displaced phase center array (DPCA) pulse canceller \\
\hline phased.ElementDelay* & Sensor array element delay estimator \\
\hline phased.ESPRITEstima tor* & ESPRIT direction of arrival (DOA) estimator for ULA \\
\hline phased.FMCWWaveform* & FMCW waveform \\
\hline phased.FreeSpace* & Free space environment \\
\hline phased.FrostBeamfor mer* & Frost beamformer \\
\hline phased.GCCEstimator* & Wideband direction of arrival estimation \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
phased.GSCBeamforme \\
\(r^{*}\)
\end{tabular} & Generalized sidelobe canceler beamformer \\
\hline \begin{tabular}{l} 
phased.Heterogeneou \\
sConformalArray*
\end{tabular} & Heterogeneous conformal array \\
\hline \begin{tabular}{l} 
phased.Heterogeneou \\
sULA*
\end{tabular} & Heterogeneous uniform linear array \\
\hline \begin{tabular}{l} 
phased.Heterogeneou \\
sURA*
\end{tabular} & Heterogeneous uniform rectangular array \\
\hline \begin{tabular}{l} 
phased.IsoSpeedUnde \\
rwaterPaths*
\end{tabular} & Isospeed multipath sonar channel \\
\hline \begin{tabular}{l} 
phased.IsotropicAnt \\
ennaElement*
\end{tabular} & Isotropic antenna element \\
\hline \begin{tabular}{l} 
phased.IsotropicHyd \\
rophone*
\end{tabular} & Isotropic hydrophone \\
\hline \begin{tabular}{l} 
phased.IsotropicPro \\
jector*
\end{tabular} & Isotropic projector \\
\hline \begin{tabular}{l} 
phased.LCMVBeamform \\
er*
\end{tabular} & Narrowband LCMV beamformer \\
\hline \begin{tabular}{l} 
phased.LinearFMWave \\
form*
\end{tabular} & Linear FM pulse waveform \\
\hline phased.LOSChannel* & Narrowband LOS propagation channel \\
\hline \begin{tabular}{l} 
phased.MatchedFilte \\
r*
\end{tabular} & Matched filter \\
\hline phased.MFSKWaveform* & MFSK waveform \\
\hline \begin{tabular}{l} 
phased.MonopulseEst \\
imator*
\end{tabular} & Amplitude monopulse direction finding \\
\hline \begin{tabular}{l} 
phased.MonopulseFee \\
d*
\end{tabular} & Creates sum and difference channels \\
\hline \begin{tabular}{l} 
phased.MultipathCha \\
nnel*
\end{tabular} & Propagate signals in multipath channel \\
\hline \begin{tabular}{l} 
phased.MUSICEstimat \\
or*
\end{tabular} & Estimate direction of arrival using narrowband MUSIC algorithm for ULA \\
\hline \begin{tabular}{l} 
phased.MUSICEstimat \\
or2D*
\end{tabular} & Estimate 2D direction of arrival using narrowband MUSIC algorithm \\
\hline \begin{tabular}{l} 
phased.MVDRBeamform \\
er*
\end{tabular} & Narrowband minimum-variance distortionless-response beamformer \\
\hline \begin{tabular}{l} 
phased.MVDREstimato \\
r*
\end{tabular} & MVDR (Capon) spatial spectrum estimator for ULA \\
\hline \begin{tabular}{l} 
phased.MVDREstimato \\
r2D*
\end{tabular} & 2-D MVDR (Capon) spatial spectrum estimator \\
\hline \begin{tabular}{l} 
phased.Omnidirectio \\
nalMicrophoneElemen \\
t*
\end{tabular} & Omnidirectional microphone \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline phased.PartitionedA rray* & Phased array partitioned into subarrays \\
\hline phased.PhaseCodedWa veform* & Phase-coded pulse waveform \\
\hline phased.PhaseShiftBe amformer* & Narrowband phase shift beamformer \\
\hline phased.Platform* & Model platform motion \\
\hline phased.PulseCompres sionLibrary* & Create a library of pulse compression specifications \\
\hline phased.PulseWavefor mLibrary* & Create a library of pulse waveforms \\
\hline phased.RadarTarget* & Radar target \\
\hline phased.Radiator* & Narrowband signal radiator \\
\hline phased.RangeAngleRe sponse* & Range-angle response \\
\hline phased.RangeDoppler Response* & Range-Doppler response \\
\hline phased.RangeEstimat or* & Range estimation \\
\hline phased.RangeRespons e* & Range response \\
\hline phased.ReceiverPrea mp* & Receiver preamp \\
\hline phased.RectangularW aveform* & Rectangular pulse waveform \\
\hline phased.ReplicatedSu barray* & Phased array formed by replicated subarrays \\
\hline phased.RootMUSICEst imator* & Root MUSIC direction of arrival (DOA) estimator for ULA and UCA \\
\hline phased.RootWSFEstim ator* & Root WSF direction of arrival (DOA) estimator for ULA \\
\hline phased.ScatteringMI MOChannel* & Scattering MIMO channel \\
\hline phased.ShortDipoleA ntennaElement* & Short-dipole antenna element \\
\hline phased.STAPSMIBeamf ormer* & Sample matrix inversion (SMI) beamformer \\
\hline phased.SteeringVect or* & Sensor array steering vector \\
\hline phased.SteppedFMWav eform* & Stepped FM pulse waveform \\
\hline phased.StretchProce ssor* & Stretch processor for linear FM waveform \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
phased.SubbandMVDRB \\
eamformer*
\end{tabular} & Wideband minimum-variance distortionless-response beamformer \\
\hline \begin{tabular}{l} 
phased.SubbandPhase \\
ShiftBeamformer*
\end{tabular} & Subband phase shift beamformer \\
\hline \begin{tabular}{l} 
phased.SumDifferenc \\
eMonopulseTracker*
\end{tabular} & Sum and difference monopulse for ULA \\
\hline \begin{tabular}{l} 
phased.SumDifferenc \\
eMonopulseTracker2D*
\end{tabular} & Sum and difference monopulse for URA \\
\hline \begin{tabular}{l} 
phased.TimeDelayBea \\
mformer*
\end{tabular} & Time delay beamformer \\
\hline \begin{tabular}{l} 
phased.TimeDelayLCM \\
VBeamformer*
\end{tabular} & Time delay LCMV beamformer \\
\hline \begin{tabular}{l} 
phased.TimeVaryingG \\
ain*
\end{tabular} & Time varying gain control \\
\hline phased.Transmitter* & Transmitter \\
\hline \begin{tabular}{l} 
phased.TwoRayChanne \\
l*
\end{tabular} & Two-ray propagation channel \\
\hline phased.UCA* & Uniform circular array \\
\hline phased.ULA* & Uniform linear array \\
\hline \begin{tabular}{l} 
phased.UnderwaterRa \\
diatedNoise*
\end{tabular} & Radiate acoustic noise from underwater or surface sound source \\
\hline phased.URA* & Uniform rectangular array \\
\hline \begin{tabular}{l} 
phased.WidebandBack \\
scatterRadarTarget*
\end{tabular} & Backscatter wideband signal from radar target \\
\hline \begin{tabular}{l} 
phased.WidebandColl \\
ector*
\end{tabular} & Wideband signal collector \\
\hline \begin{tabular}{l} 
phased.WidebandFree \\
Space*
\end{tabular} & Wideband freespace propagation \\
\hline \begin{tabular}{l} 
phased.WidebandLOSC \\
hannel*
\end{tabular} & Wideband LOS propagation channel \\
\hline \begin{tabular}{l} 
phased.WidebandRadi \\
ator*
\end{tabular} & Wideband signal radiator \\
\hline \begin{tabular}{l} 
phased.WidebandTwoR \\
ayChannel*
\end{tabular} & Wideband two-ray propagation channel \\
\hline phitheta2azel* & Convert angles from phi/theta form to azimuth/elevation form \\
\hline phitheta2azelpat* & Convert radiation pattern from phi/theta form to azimuth/elevation form \\
\hline phitheta2uv* & Convert phi/theta angles to u/v coordinates \\
\hline phitheta2uvpat* & Convert radiation pattern from phi/theta form to u/v form \\
\hline physconst* & Physical constants \\
\hline pilotcalib* & Array calibration using pilot sources \\
\hline pol2circpol* \\
representation
\end{tabular}
\begin{tabular}{|l|l|}
\hline polellip* & Parameters of ellipse traced out by tip of a polarized field vector \\
\hline polloss* & Polarization loss \\
\hline polratio* & Ratio of vertical to horizontal linear polarization components of a field \\
\hline polsignature* & Copolarization and cross-polarization signatures \\
\hline predict & Predict the state and state estimation error covariance \\
\hline pulsint* & Pulse integration \\
\hline radareqpow* & Peak power estimate from radar equation \\
\hline radareqrng* & Maximum theoretical range estimate \\
\hline radareqsnr* & SNR estimate from radar equation \\
\hline radarvcd* & Vertical coverage diagram \\
\hline radialspeed* & Relative radial speed \\
\hline rainpl* & RF signal attenuation due to rainfall \\
\hline range2beat* & Convert range to beat frequency \\
\hline range2bw* & Convert propagation distance to propagation time \\
\hline range2time* & Compute underwater sound transmission loss from range \\
\hline range2tl* & Range and angle calculation \\
\hline rangeangle* & Radar cross section of cylinder \\
\hline rcscylinder & Radar cross section of flat circular plate \\
\hline rcsdisc & Radar cross section of truncated cone \\
\hline rcstruncone & Range Doppler coupling \\
\hline rdcoupling* & Reflected signal from walking pedestrian \\
\hline reflect & Reflected signal from moving bicyclist \\
\hline reflect & \begin{tabular}{l} 
Release resources and allow changes to object property values and input \\
characteristics
\end{tabular} \\
\hline release & Reset object state and property values \\
\hline Reset & Receiver operating characteristic curves by false-alarm probability \\
\hline rocpfa* & Receiver operating characteristic curves by SNR \\
\hline rocsnr* & Rirection of arrival using Root MUSIC \\
\hline rootmusicdoa* & Rotation matrix for rotations around x-axis \\
\hline rotpat & Rotation matrix for rotations around y-axis sonar equation \\
\hline rotx* & Scattering channel matrix \\
\hline roty* & Sensor spatial covariance matrix \\
\hline rotz* & Simulate received signal at sensor array \\
\hline scatteringchanmta \\
\hline sensorcov* & sensorsig* \\
\hline shnidman* & sonareqsl*
\end{tabular}
\begin{tabular}{|l|l|}
\hline sonareqsnr* & Compute SNR using the sonar equation \\
\hline sonareqtl* & Compute transmission loss using the sonar equation \\
\hline speed2dop* & Convert speed to Doppler shift \\
\hline sph2cartvec* & Convert vector from spherical basis components to Cartesian components \\
\hline spsmooth* \(^{\text {steervec* }}\) & Spatial smoothing \\
\hline Steering vector \\
\hline stokes* \(_{\text {stretchfreq2rng* }}\) & Stokes parameters of polarized field \\
\hline surfacegamma* & Convert frequency offset to range \\
\hline surfclutterrcs* & Surface clutter radar cross section (RCS) \\
\hline systemp* & Receiver system-noise temperature \\
\hline taylortaperc* & Taylor nbar taper for arrays \\
\hline time2range* & Convert propagation time to propagation distance \\
\hline tl2range* & Compute range from underwater transmission loss \\
\hline unigrid* & Uniform grid \\
\hline uv2azel* & Convert u/v coordinates to azimuth/elevation angles \\
\hline uv2azelpat* & Convert radiation pattern from u/v form to azimuth/elevation form \\
\hline uv2phitheta* & Convert u/v coordinates to phi/theta angles \\
\hline uv2phithetapat* & Convert radiation pattern from u/v form to phi/theta form \\
\hline val2ind* & Uniform grid index \\
\hline waterfill* & Waterfill MIMO power distribution \\
\hline
\end{tabular}

Simulink Examples

\section*{Convert Azimuth and Elevation to Broadside Angle}

Convert a direction with an azimuth angle of 45 degrees and an elevation angle of 30 degrees into a broadside angle.
```

model = 'AzEl2Broadsidel';
open_system(model);
sim(model);

```

close_system(model);

\section*{Phase-Shift Beamforming of Plane Wave Signal}

Beamform a plane wave arriving at a 10 element ULA of isotropic antenna elements. The operating frequency of the array is 100 MHz .
```

model = 'PhaseShiftBeamformerlExample';
open_system(model);
sim(model);

```



All the signals are delayed by 100 samples.

RF Propagation

\section*{Access TIREM Software}

The Terrain Integrated Rough Earth Model \({ }^{T M}\) (TIREM \({ }^{T M}\) ) is a propagation model for computing the path loss for irregular terrain and seawater scenarios. TIREM is developed, trademarked, and licensed by Alion Science. To use TIREM, you need to acquire it from Alion Science.

TIREM is designed to calculate the reference basic median propagation loss (path loss) based on the terrain profile along the great circle path between two antennas for example using digital terrain elevation data (DTED). You can use TIREM model to calculate the point-to-point path loss between sites over irregular terrain. The model combines physics with empirical data to provide path loss estimates. The TIREM propagation model can predict path loss at frequencies between 1 MHz and 1 THz.

Use tiremSetup to enable TIREM access from within MATLAB. The TIREM library folder contains the tirem3 shared library. The full library name is platform dependent:
\begin{tabular}{|l|l|}
\hline Platform & Shared library name \\
\hline Windows & libtirem3.dll or tirem3.dll \\
\hline Linux & libtirem3.so \\
\hline Mac & libtirem3.dylib \\
\hline
\end{tabular}

\section*{Antenna Array Analysis with Custom Radiation Pattern}

This example shows how to create an antenna array with a custom antenna radiation pattern and then how to analyze the array's response pattern. Such a pattern can be obtained either from measurements or from simulations.

\section*{Import the Radiation Pattern}

Depending on the application, practical phased antenna arrays sometimes use specially designed antenna elements whose radiation pattern cannot be represented by a closed-form equation. Even when the element pattern is well understood, as is the case with a dipole antenna, the mutual coupling among the elements can significantly change the individual element pattern when the element is put into an array. This makes the closed-form pattern less accurate. Therefore, for high fidelity pattern analysis, you often need to use a custom radiation pattern obtained from measurements or simulations.

There is no standard convention for the coordinate system used to specify the radiation pattern, so the result from one simulation package often cannot not be directly used in another software package. For example, in Phased Array System Toolbox \({ }^{\text {TM }}\) (PST), the radiation pattern is expressed using azimuth ( \(a z\) ) and elevation (el) angles, as depicted in Figure 1. It is assumed that the main beam of the antenna points toward \(0^{\circ}\) azimuth and \(0^{\circ}\) elevation, that is, the \(x\)-axis. The value of \(a z\) lies between \(-180^{\circ}\) and \(180^{\circ}\) and the value of el lies between \(-90^{\circ}\) and \(90^{\circ}\). See "Spherical Coordinates" on page 10-10.


Figure 1: Spherical coordinate system convention used in Phased Array System Toolbox \({ }^{\mathrm{TM}}\).
A frequently-used full-wave modeling tool for simulating antenna radiation patterns is HFSS \({ }^{\mathrm{TM}}\). In this tool, individual elements are modeled as if they were part of an infinite array. The simulated radiation pattern is represented as an \(M\)-by- 3 matrix where the first column represents the azimuth angle \(\phi\), the second column represents the elevation angle \(\theta\), and the third column represents the radiation pattern in dB . The coordinate system and the definitions of \(\theta\) and \(\phi\) used in HFSS is shown in Figure 2. In this convention, the main beam of the antenna points along the \(z\)-axis which usually points vertically. The value of \(\phi\) is between \(0^{\circ}\) and \(360^{\circ}\) and the value of \(\theta\) is between \(0^{\circ}\) and \(180^{\circ}\).


Figure 2: Spherical coordinate system convention used in HFSS.
Note that the HFSS coordinate system is not exactly the same as the \(\phi-\theta\) coordinate system used in Phased Array System Toolbox \({ }^{\text {TM }}\). In HFSS, the beam mainlobe points along the \(z\)-axis and the plane orthogonal to the beam is formed from the \(x\) - and \(y\) axes. One possible approach to import a custom pattern in \(\phi-\theta\) convention without any coordinate axes rotation is shown below.

For example, a cardioid-shaped antenna pattern is simulated in the \(\phi-\theta\) convention and is saved in a .csv file. The helper function helperPatternImport reads the .csv file and reformats its contents into a two-dimensional matrix in \(\phi\) and \(\theta\).
```

[pattern_phitheta,phi,theta] = helperPatternImport;

```

The phi-theta pattern can now be used to form a custom antenna element. Assume that this antenna operates between 1 and 1.25 GHz .
```

freqVector = [1 1.25].*le9; % Frequency range for element pattern
antenna = phased.CustomAntennaElement('FrequencyVector',freqVector, ...
'PatternCoordinateSystem','phi-theta',...
'PhiAngles',phi,...
'ThetaAngles',theta,...
'MagnitudePattern',pattern_phitheta,...
'PhasePattern',zeros(size(pattern_phitheta)));

```

To verify that the pattern has been correctly imported, plot the response of the custom antenna element. Notice that the main beam points to \(0^{\circ}\) azimuth and \(90^{\circ}\) elevation, the custom pattern with main beam along z -axis is imported without any rotation.
```

fmax = freqVector(end);
pattern(antenna,fmax,'Type','powerdb')

```


\section*{Construct Antenna Array}

Consider a 100-element antenna array whose elements reside on a 10 -by-10 rectangular grid, as shown in Figure 3. To ensure that no grating lobes appear, elements are spaced at one-half wavelength at the highest operating frequency. This rectangular array can be created using the following commands.


Figure 3: A 10-by-10 URA.
```

c = physconst('LightSpeed');
lambda = c/fmax;
array = phased.URA('Element',antenna,'Size',10,'ElementSpacing',lambda/2)
array =
phased.URA with properties:
Element: [1x1 phased.CustomAntennaElement]
Size: [10 10]
ElementSpacing: [0.1199 0.1199]
Lattice: 'Rectangular'
ArrayNormal: 'x'
Taper: 1

```

The total radiation pattern of the resulting antenna array is plotted below in \(u-v\) space. The pattern is a combination of both the element pattern and the array factor.
```

pattern(array,fmax,'PropagationSpeed',c,'Type','powerdb',...
'CoordinateSystem','UV');

```


One can also easily examine the \(u\)-cut of the pattern as shown below.
```

pattern(array,fmax,-1:0.01:1,0,'PropagationSpeed',c, ...

```
'CoordinateSystem', 'UV', 'Type',' powerdb')
axis([-1 1-50 0]);


\section*{Steer the Beam in Azimuth}

This section illustrates the idea of phase steering an array. An advantage of phased arrays over a single antenna element is that the main beam can be electronically steered to a given direction. Steering is accomplished by adjusting the weights assigned to each element. The set of weights is also called the steering vector. Each weight is a complex number whose magnitude controls the sidelobe characteristics of the array and whose phase steers the beam.

The example scans the main beam of the array from \(-30^{\circ}\) azimuth to \(30^{\circ}\) azimuth, with the elevation angle fixed at \(0^{\circ}\) during the scan.
helperPatternScan(array)

clear helperPatternScan

\section*{Plot Radar Vertical Coverage Diagram}

When a radar is deployed in the field, its radiation pattern is modified by the surrounding environment. For example, reflections from the earth may enforce or attenuate the signal arriving at the target via the direct path. In addition, the refraction from the ionosphere can also introduce another path from the top. The resulting pattern in the elevation direction is often quite complicated and a radar engineer often needs to do a rough estimate of the vertical coverage during the system design stage. This section shows how to estimate the radar vertical diagram, also referred to as Blake chart, if the array is deployed at a height of 20 meters and covers a free space range of 100 km .

Derive the elevation pattern.
```

el_ang = -90:90;
arrayresp = phased.ArrayResponse('SensorArray',array, ...
'PropagationSpeed',c);
el_pat = abs(arrayresp(fmax,el_ang)); % elevation pattern

```

Plot the radar vertical diagram.
```

freespace_rng = 100; % in km
ant_height = 20; % in m
radarvcd(fmax,freespace_rng,ant_height,....
'HeightUnit','m','RangeUnit','km',...
'AntennaPattern',el_pat/max(el_pat),'PatternAngles',el_ang.');

```


The resulting diagram contains a curve in space along which the return signal level is a constant. It clearly shows that the main beam is severely modified by the reflection. For example, at a range of 100 km , the return from a target at an elevation angle of \(1^{\circ}\) is much smaller compared to a target at the same range at a nearby elevation angle. The curve also show that for certain angles, a target can be detected at as far as 200 km . This is the case when the reflected signal and the direct path signal are in phase, thus resulting in an enhanced return.

\section*{Summary}

This example shows how to construct and analyze an antenna array using a custom antenna pattern.
The pattern can be generated using full-wave modeling simulation software with the \(\phi_{-\theta}\) convention. The pattern can then be used to form a custom antenna element. The resulting array is used to generate a vertical coverage diagram and is also scanned from \(-30^{\circ}\) to \(30^{\circ}\) in the azimuth direction to illustrate the phase steering concept.

\section*{Array Pattern Synthesis}

This example shows how to use Phased Array System Toolbox \({ }^{\text {TM }}\) to solve some array synthesis problems.

In phased array design applications, it is often necessary to find a way to taper element responses so that the resulting array pattern satisfies certain performance criteria. Typical performance criteria include the mainlobe location, null location(s) and sidelobe levels.

\section*{Interference Removal Using Sidelobe Canceller}

A common requirement when synthesizing beam patterns is pointing a null towards a given arrival direction. This helps suppress interference from that direction and improves the signal-tointerference ratio. The interference is not always malicious- an airport radar system may need to suppress interference from a nearby radio station. In this case, the position of the radio station is known and a sidelobe cancellation algorithm can be used to remove the interference.

Sidelobe cancellation is useful for suppressing interference that enters through the array's sidelobes. In this case, because the interference direction is known, the algorithm is simple. Form a beam that points towards the interference direction, then scale the beam weights and subtract scaled weights from the weights for the beam patterns that point towards any other look direction. This process always places a strong null in the interference direction.

The following example shows how to design the weights of the radar so that it scans between -30 and 30 degrees yet always keeps a null at 40 degrees. Assume that the radar uses a 10 -element ULA that is parallel to the ground and that the known radio interference arrives from 40 degrees azimuth.
```

c = 3e8; % signal propagation speed
fc = le9; % signal carrier frequency
lambda = c/fc; % wavelength
thetaad = -30:5:30; % look directions
thetaan = 40; % interference direction
ula = phased.ULA(10,lambda/2);
ula.Element.BackBaffled = true;
% Calculate the steering vector for null directions
wn = steervec(getElementPosition(ula)/lambda,thetaan);
% Calculate the steering vectors for lookout directions
wd = steervec(getElementPosition(ula)/lambda,thetaad);
% Compute the response of desired steering at null direction
rn = wn'*wd/(wn'*wn);
% Sidelobe canceler - remove the response at null direction
w = wd-wn*rn;
% Plot the pattern
pattern(ula,fc,-180:180,0,'PropagationSpeed',c,'Type','powerdb',...
'CoordinateSystem','rectangular','Weights',w);
hold on; legend off;
plot([40 40],[-100 0],'r--','LineWidth',2)
text(40.5,-5,'\leftarrow Interference Direction','Interpreter','tex',...
'Color','r','FontSize',10)

```


The figure above shows the resulting beam patterns for look directions from -30 degrees azimuth to 30 degrees azimuth, in 5 degrees increment. It is clear from the zoomed figure below that no matter where the look direction is, the radar beam pattern has a strong null at the interference direction.
\% Zoom
\(x \lim ([3050])\)
legend(arrayfun(@(k)sprintf('\%d degrees',k),thetaad,...
'Uniform0utput', false), 'Location', 'SouthEast');


\section*{Pattern Synthesis Using Windowing Function}

Another frequent problem when designing a phased array is matching a desired beam pattern to a specification that is handed to you. Often, the requirements are expressed in terms of beamwidth and sidelobe level.

The process of addressing such a problem often include these steps:
1 Observe the desired pattern and decide an array geometry;
2 Choose an array size based on the desired beamwidth;
3 Design tapers based on the desired sidelobe level;
4 Iterate on adjusting the parameter obtained step 2 and 3 to get a best match.
The following example illustrates these four steps. First, observe the desired pattern shown in the following figure.
```

load desiredSynthesizedAntenna;
clf;
pattern(mysteryAntenna,fc,'CoordinateSystem','polar','Type','powerdb');
view(50,20);
ax = gca;
ax.Position = [-0.15 0.1 0.9 0.8];
camva(4.5);
campos([520 -250 200]);

```


The 3D radiation patterns exhibits some symmetries in both azimuth and elevation cuts. Therefore, the pattern may be best obtained using a uniform rectangular array (URA). It is also clear from the plot that there is no energy radiated toward back of the array.

Next, determine the size of the array. To avoid grating lobes, the element spacing is set to half wavelength. For a URA, the sizes along the azimuth and elevation directions can be derived from the required beamwidths along azimuth and elevation directions, respectively. In the case of half wavelength spacing, the number of elements along a certain direction can be approximated by
\[
N \simeq \frac{2}{\sin \left(\theta_{b}\right)}
\]
where \(\theta_{b}\) is the beamwidth along that direction. Hence, the aperture size of the URA can be computed as
```

[azpat,elpat,az,el] = helperExtractSynthesisPattern(mysteryAntenna,fc,c);

```
\% Azimuth direction
idx = find(azpat>pow2db(1/2));
azco = [az(idx(1)) az(idx(end))]; \% azimuth cutoff
N_col = round(2/sind(diff(azco)))
\% Elevation direction
idx = find(elpat>pow2db(1/2));
elco = [el(idx(1)) el(idx(end))]; \% elevation cutoff
N_row \(=\) round(2/sind(diff(elco)))

The estimation suggests to start with a 14 x 19 URA.
```

% form the URA
ura = phased.URA([N_row N_col],[lambda/2 lambda/2]);
ura.Element.BackBaffled = true;
helperArraySynthesisComparison(ura,mysteryAntenna,fc,c)

```


The figure shows that the synthesized array exceeds the beamwidth requirement of the desired pattern. However, the sidelobes are much larger than the desired pattern. You can reduce the sidelobes by applying a windowing operation to the array. Because the URA can be considered to be the combination of two separable uniform linear arrays (ULA), the window can be designed independently along both the azimuth and elevation directions using familiar filter design methods.

The code below shows how to obtain the windows for azimuth and elevation directions.
```

AzSidelobe = 20;
Ap = 0.1; % Passband ripples
AzWeights = designfilt('lowpassfir','FilterOrder',N_col-1,...
'CutoffFrequency',azco(2)/90,'PassbandRipple',0.1,...
'StopBandAttenuation',AzSidelobe);
azw = AzWeights.Coefficients;
ElSidelobe = 30;
ElWeights = designfilt('lowpassfir','FilterOrder',N_row-1,...
'CutoffFrequency',elco(2)/90,'PassbandRipple',0.1,...
'StopBandAttenuation',ElSidelobe);
elw = ElWeights.Coefficients;
% Assign the weights to the array
ura.Taper = elw(:)*azw(:).';
% Compare the pattern
helperArraySynthesisComparison(ura,mysteryAntenna,fc,c)

```


The figure shows that the resulting sidelobe level is lower compared to the previous design but still does not satisfy the requirement. By some trials and errors, the following parameters are used to create the final design:
```

N_row = N_row+2; % trial and error
N_col = N_col-3; % trial and error
A\overline{z}Sidelob\overline{e = 26;}
ElSidelobe = 35;

```
```

AzWeights = designfilt('lowpassfir','FilterOrder',N_col-1,...
'CutoffFrequency', azco(2)/90, 'PassbandRipple',0.1,...
'StopBandAttenuation',AzSidelobe);
azw = AzWeights.Coefficients;
ElWeights = designfilt('lowpassfir','FilterOrder',N_row-1,...
'CutoffFrequency',elco(2)/90,'PassbandRipple',0.1,...
'StopBandAttenuation',ElSidelobe);
elw = ElWeights.Coefficients;
ura = phased.URA([N_row N_col],[lambda/2 lambda/2]);
ura.Element.BackBaffled = true;
ura.Taper = elw(:)*azw(:).';
helperArraySynthesisComparison(ura,mysteryAntenna,fc,c)

```


The figure shows that the beamwidth and sidelobe levels of the synthesized pattern match the desired specifications. The following figures show the desired 3D pattern, the synthesized 3D pattern, the resulting array geometry, and the taper.
helperArraySynthesisComparison(ura,mysteryAntenna,fc, c, '3d')


\section*{Array Thinning Using Genetic Algorithm}

Many array synthesis problems can be treated as optimization problems, especially for arrays with large apertures or complex geometries. In those situations, a closed form solution often does not exist and the solution space is very large. For example, for a large array, it is often necessary to thin the array to control the sidelobe levels to avoid wasting power delivered to each antenna element. In this case, an element can be turned on or off. If you were to try all possible solutions in a 400 -element array, you would need to try \(2^{400}\) combinations, which is unrealistic, and a 400 -element array is not considered to be a big aperture at all. Optimization techniques are often adopted in this situation.

A frequently used optimization technique is the genetic algorithm. A genetic algorithm achieves the optimal solution by simulating the natural selection process. It starts with randomly selected candidates as the first generation. At each evolution cycle, the algorithm sorts the generation according to a predetermined performance measure (in the thinned array example, the performance measure would be the ratio of peak-to-sidelobe level), and then discards the ones with lower performance scores. The algorithm then mutates the remaining candidates to generate a newer generation and repeats the process, until it reaches a stop condition, such as the maximum number of generations.

The following example shows how to use a genetic algorithm to thin a \(40 \times 40\) URA. The goal is to achieve maximum sidelobe suppression in both azimuth and elevation cut. The beam pattern of the full array is shown first.
```

Nside = 40;
geneticArray = phased.URA(Nside,lambda/2);
geneticArray.Element.BackBaffled = true;

```
clf;
wplot \(=\) helperThinnedArrayComparison(geneticArray,fc, c\()\);



The sidelobe level can be computed as
```

% Compute beam pattern
[azpat,elpat,az,el] = helperExtractSynthesisPattern(geneticArray,fc,c);
%Compute relative sidelobe level
pks_az = findpeaks(azpat,'NPeaks',2,'SortStr','descend');
pks_el = findpeaks(elpat,'NPeaks',2,'SortStr','descend');
% find the smaller sidelobe level between two cuts
sllopt = min(pks_az(1)-pks_az(2),pks_el(1)-pks_el(2))
sllopt =

```
    13.2981

As expected, the sidelobe level is about 13 dB .
Now apply the genetic algorithm. Notice that the URA has symmetry in both rows and columns, thus one can take advantage of this symmetry so that each thinning coefficients candidate applies to only quarter of the array. This reduces the search space of the algorithm.
```

% Set random seed
prvS = rng(2013);
% Initial generation with 200 candidates. Initially, the elements toward
% the center are active and the dummy elements are toward the edge
w0 = double(rand(Nside/2,Nside/2,200)>0.5);
w0(1:14,1:14,:) = 1;
% Pick one candidate, plot the beam pattern, and compute the sidelobe
% level
wtemp = w0(:,:,100);
wo = [fliplr(wtemp) wtemp;rot90(wtemp,2) flipud(wtemp)];
wplot = helperThinnedArrayComparison(geneticArray,fc,c,[wplot wo(:)],...
{'Full','Initial'});

```


The figure shows the beam pattern resulted from one typical first generation candidate. The sidelobe level is lower in azimuth direction but higher in elevation direction compared to the full array. The exact sidelobe level and the fill rate of the array can be computed as
```

[azpat,elpat] = helperExtractSynthesisPattern(geneticArray,fc,c,wo(:));
% Compute relative sidelobe level
pks_az = findpeaks(azpat,'NPeaks',2,'SortStr','descend');
pks_el = findpeaks(elpat,'NPeaks',2,'SortStr','descend');
sllopt = min(pks_az(1)-pks_az(2),pks_el(1)-pks_el(2))
fillrate = sum(wo(:))/Nside^2*100

```
sllopt =
8.7013
fillrate =
71.7500

This means that \(71.75 \%\) of the array elements (1148 of them) are active and the sidelobe level is about 9 dB . It needs to be suppressed further. The code below applies genetic algorithm with 30 generations.
```

% Max number of generations
Niter = 30;
% Number of candidates in each generation
numGene = size(w0,3);
w = w0;
pos = getElementPosition(geneticArray)/lambda;
angspan = -90:90;
for m = 1:Niter
% Compute the beam pattern for the entire generation
[azpat,elpat] = helperArraySynthesisBeamPattern(pos,angspan,w);
% Compute the sidelobe level for each candidate
sll = helperArraySynthesisRelativeSidelobeLevel(azpat,elpat);
% Sort the resulting sidelobe level
[~,idx] = sort(sll,2,'descend');
% Discard half of the generation that gets the lower score
w = w(:,:,[idx(1:numGene/2) idx(1:numGene/2)]);
% Mutate rows and columns in the newly generated candidates
mutIdx_row = randi(Nside/2,1,1);
mutIdx_col = randi(Nside/2,1,1);
w(mutI\overline{d}x_row:end,:,numGene/2+1:numGene) = flipud(...
w(mutIdx_row:end,:,numGene/2+1: numGene));
w(mutIdx_col:end,:,numGene/2+1:numGene) = fliplr(...
w(mu\overline{tIdx_col:end,:,numGene/2+1:numGene));}
end
wopt = w(:,:,1);
rng(prvS);
wo = [fliplr(wopt) wopt;rot90(wopt,2) flipud(wopt)];
wplot = helperThinnedArrayComparison(geneticArray,fc,c,[wplot wo(:)],...
{'Full','Initial','Synthesized'});

```

sllopt \(=\operatorname{sll}(i d x(1))\)
fillrate = sum(wo(:))/Nside^2*100
sllopt =
17.5380
fillrate =
76.5000

The figure shows the resulting beam pattern. It can be seen that the sidelobe level has been further improved to about 17.5 dB with a fill rate of \(76.5 \%\) (1224 active elements). Compared to the first generation candidate, it uses \(5 \%\) more active elements while achieving an additional 9 dB sidelobe suppression. Compared to the full array, the resulting thinned array can save the cost of implementing T/R switches behind dummy elements, which in turn leads to a roughly \(25 \%\) saving on the consumed power. Also note that even though the thinned array uses less elements, the beamwidth is close to what could be achieved with a full array.

The final thinned array is shown below with black circles represents the dummy elements.
clf;
geneticArray.Taper = wo;
viewArray(geneticArray,'ShowTaper',true);

Array Geometry


It is worth noting that the genetic algorithm does not always land on the same solution in each trial. However, in general the resulting beam patterns share a similar sidelobe level.

The script above shows a very simple genetic algorithm applied to the array synthesis problem. In real applications, the genetic algorithm is likely to be more complex. There are also other optimization algorithms used in array synthesis, such as the simulated annealing algorithm. Interested readers can find both genetic algorithm and simulated annealing algorithm solvers in the Global Optimization Toolbox \({ }^{\mathrm{TM}}\).

\section*{Summary}

This example shows several approaches to perform array synthesis on a phased array. In practice, one needs to choose the appropriate synthesis method according to the specific constraint of the application, such as the size of the array aperture, the shape of the array geometry, etc.

\section*{Reference}
[1] Randy L. Haupt, Thinned Arrays Using Genetic Algorithms, IEEE Transactions on Antennas and Propagation, Vol 42, No 7, 1994
[2] Randy L. Haupt, An Introduction to Genetic Algorithms for Electromagnetics, IEEE antennas and Propagation Magazine, Vol 37, No 2, 1995
[3] Harry L. Van Trees, Optimum Array Processing, Wiley-Interscience, 2002

\section*{Modeling and Analyzing Polarization}

This example introduces the basic concept of polarization. It shows how to analyze the polarized field and model the signal transmission between polarized antennas and targets using Phased Array System Toolbox \({ }^{\mathrm{TM}}\).

\section*{Polarization of an Electromagnetic Field}

The electromagnetic field generated by an antenna is orthogonal to the propagation direction in the far field. The field can be pointing to any direction in this plane, and therefore can be decomposed into two orthogonal components. Theoretically, there are an infinite number of ways to define these two components, but most often, one uses either ( \(\mathrm{H}, \mathrm{V}\) ) set or ( \(\mathrm{L}, \mathrm{R}\) ) set. ( \(\mathrm{H}, \mathrm{V}\) ) stands for horizontal and vertical, which can be easily pictured as \(x\) and \(y\) component; while \((L, R)\) stands for left and right circular. It may be difficult to imagine that a vector in space can have a circular component in it, the secret lies in the fact that each component can be a complex number, which greatly increases the complexity of the trace of such a vector.

Let's look at several simple examples. The time varying field can be written as
\[
E=\mathbf{u}_{\mathbf{h}}\left|\mathbf{E}_{\mathbf{h}}\right| \cos \left(\omega \mathbf{t}-\mathbf{k z}+\phi_{\mathbf{h}}\right)+\mathbf{u}_{\mathbf{v}}\left|\mathbf{E}_{\mathbf{v}}\right| \cos \left(\omega \mathbf{t}-\mathbf{k} \mathbf{z}+\phi_{\mathbf{v}}\right)
\]
where
\[
E_{h}=\left|E_{h}\right| e^{j \phi_{h}}, E_{v}=\left|E_{v}\right| e^{j \phi_{v}}
\]
are the two components in phasor representation. \(\mathbf{u}_{\mathbf{h}}\) and \(\mathbf{u}_{\mathbf{v}}\) are the unit vector of \(h\) and \(v\) axes, respectively.

The simplest case is probably a linear polarization, which happens when the two components are always in phase. Assume
\(\left|E_{h}\right|=\left|E_{v}\right|=1, \phi_{h}=\phi_{v}=0\),
the field can be represented by a vector of [1;1]. The polarization for such a field looks like
```

fv = [1;1];
helperPolarizationView(fv)

```

\section*{\(\mathrm{H}, \mathrm{V}\) and Combined Fields}



From the figure, it is clear that the combined polarization is along the 45 degrees diagonal.
The plot in the upper right portion of the figure is often referred to as the polarization ellipse. It is the projection of the combined field trace on the \(\mathrm{H}-\mathrm{V}\) plane. The polarization ellipse is often characterized by two angles, the tilt angle (also known as orientation angle) \(\tau\) and the ellipticity angle \(\epsilon\). In this case, the tilt angle is 45 degrees and the ellipticity angle is 0 . The dot on the ellipse shows how the combined field moves along the trace on the \(\mathrm{H}-\mathrm{V}\) plane while time passes.

A polarized field can also be represented by Stokes vector, which is a length-4 vector. The corresponding Stokes vector of the linear polarization, [1;1], is given by
```

s = stokes(fv)
s =
2
0
2
0

```

Note that all 4 entries in the vector are real numbers. In fact, all these entries are measurable. In addition, it can be shown that the four quantities always satisfy the following equation
\(s(1)^{2}=s(2)^{2}+s(3)^{2}+s(4)^{2}\).

Therefore, each set of Stokes can be considered as a point on a sphere. Such a sphere is referred to as a Poincare sphere. The Poincare sphere for the above field is shown in the bottom right portion of the figure.

Next is a circular polarized field, where
\[
\left|E_{h}\right|=\left|E_{v}\right|=1, \phi_{h}=0, \phi_{v}=\pi / 2
\]
\(\mathrm{fv}=[1 ; 1 \mathrm{l}] ;\)
helperPolarizationView(fv)

\section*{H, V and Combined Fields}


The figure shows that the trace of the combined field is a circle. Both the polarization ellipse and the Poincare sphere shows that the field is left circularly polarized.

In general, the trace of a field is an ellipse, as shown below
fv = [2+1i;1-1i];
helperPolarizationView(fv)

\section*{\(\mathrm{H}, \mathrm{V}\) and Combined Fields}


\section*{Polarization of an Antenna}

The polarization of an antenna is defined as the polarization of the field transmitted by the antenna regardless whether it's in the transmitting or receiving mode. However, as mentioned earlier, the polarization is defined in the plane that is orthogonal to the propagation direction. Therefore, it is defined in the local coordinate system of each propagation direction, as shown in the following diagram.


Some antennas have a structure that determines its polarization, such as a dipole. The dipole antenna has a polarization that is parallel to its orientation. Assuming the frequency is 300 MHz , for a vertical short dipole, the polarization response at boresight, i.e., 0 degrees azimuth and 0 degrees elevation, is given by
```

antenna = phased.ShortDipoleAntennaElement('AxisDirection','Z');
fc = 3e8;
resp = antenna(fc,[0;0])
resp =
struct with fields:
H: 0
V: -1.2247

```

Note that the horizontal component is 0 . If we change the orientation of the dipole antenna to horizontal, the vertical component becomes 0 .
```

antenna = phased.ShortDipoleAntennaElement('AxisDirection','Y');
resp = antenna(fc,[0;0])
resp =
struct with fields:
H: -1.2247
V: 0

```

\section*{Polarization Loss}

When two antennas form a transmit/receive pair, their polarizations could affect the received signal power. Therefore, to collect a signal with maximum power possible, the receive antenna's polarization has to match the transmit antenna's polarization. The polarization matching factor can be measured as
\[
\rho=\left|p_{t}^{T} p_{r}\right|^{2}
\]
where \(p_{t}\) and \(p_{r}\) represent the normalized polarization states of the transmit and receive antenna, respectively.

Assume both transmit and receive antennas are short dipoles. The transmit antenna sits at the origin and the receive antenna at location ( \(100,0,0\) ). First, consider the case where both antennas are along Y axis and face each other. This is the scenario where the two antennas are matched in polarization.
```

pos_r = [100;0;0];
lclaxes_t = azelaxes(0,0); % transmitter coordinate system
lclaxes_r = azelaxes(180,0); % receiver faces transmitter
ang_t = [0;0]; % receiver at transmitter's boresight
ang_r = [0;0]; % transmitter at receiver's boresight
txAntenna = phased.ShortDipoleAntennaElement('AxisDirection','Z');

```
```

resp_t = txAntenna(fc,ang_t);
rxAnT̄enna = phased.ShortDipoleAntennaElement('AxisDirection','Z');
resp_r = rxAntenna(fc,ang_r);
ploss = polloss([resp_t.H;resp_t.V],[resp_r.H;resp_r.V],pos_r,lclaxes_r)
ploss =
0

```

The loss is 0 dB , indicating that there is no loss due to polarization mismatch. The section below shows the effect with a simulated signal.
```

% Signal simulation
[x,t] = helperPolarizationSignal;
% Create radiator and collector
radiator = phased.Radiator('Sensor',txAntenna,'Polarization','Combined',...
'OperatingFrequency',fc,'PropagationSpeed',3e8);
collector = ...
phased.Collector('Sensor',rxAntenna,'Polarization','Combined',...
'OperatingFrequency',fc,'PropagationSpeed',3e8);
% Signal transmission and reception
xt = radiator(x,ang_t,lclaxes_t);
y = collector(xt,ang_r,lclaxes_r);
helperPolarizationSignalPlot(t,x,y,'vertically')

```


The figure shows that the signal is received with no loss. Each short dipole antenna provides a gain of 1.76 dB , so the received signal is 1.5 times stronger than the transmitted signal.

If instead a horizontally polarized antenna is used to receive the signal, the two antennas are now orthogonal in polarization and as a result, no power will be delivered to the received antenna. The polarization loss can be found by
```

rxAntenna = phased.ShortDipoleAntennaElement('AxisDirection','Y');
resp_r = rxAntenna(fc,ang_r);
ploss = polloss([resp_t.H;resp_t.V],[resp_r.H;resp_r.V],pos_r,lclaxes_r)
ploss =

```
    Inf

This process can be better understood using the following diagram.


As the diagram shows, the polarization of an antenna can be seen as a filter blocking out any polarized wave that is orthogonal to the antenna's own polarization state.

As expected, the signal simulation shows that the received signal is 0 .
```

collector = ...
phased.Collector('Sensor',rxAntenna,'Polarization','Combined',...
'OperatingFrequency',fc,'PropagationSpeed',3e8);
% Signal transmission and reception
xt = radiator(x,ang_t,lclaxes_t);
y = collector(xt,ang_r,lclaxes_r);
helperPolarizationSignalPlot(t,x,y,'horizontally')

```


Received signal with horizontally polarized dipole


One can rotate the receive antenna to get a partial match in polarization. For instance, assume the receiving antenna in the previous example is rotated 45 degrees around \(x\) axis, then the received signal is no longer 0 , although not as strong as when the polarizations are matched.
```

% Rotate axes
lclaxes_r = rotx(45)*azelaxes(180,0);
% Signal transmission and reception
xt = radiator(x,ang_t,lclaxes_t);
y = collector(xt,ang_r,lclaxes_r);
helperPolarizationSignalPlot(t,x,y,'45 degree')

```

Transmitted signal with vertically polarized dipole


Received signal with 45 degree polarized dipole


The corresponding polarization loss is
```

ploss = polloss([resp_t.H;resp_t.V],[resp_r.H;resp_r.V],pos_r,lclaxes_r)
% measured in dB.

```
ploss =
3.0103

\section*{Target Polarization Signature}

When an electromagnetic wave hits the target, the wave will be scattered off the target and some energy will be transferred between two orthogonal polarization components. Therefore, the target scattering mechanism is often modeled by a \(2 x 2\) radar cross section (RCS) matrix (also known as scattering matrix), whose diagonal terms specify how the target scatters the energy into the original H and V polarization component and off diagonal terms specify how the target scatters the energy into the opposite polarization component.

Because the transmit and receive antennas can have any combination of polarizations, it is often of interest to look at the polarization signature for a target for different polarization configurations. The signature plots the received power under different polarizations as a function of the tilt angle and the ellipticity angle of the transmit polarization ellipse. This can also be seen as a measure of the effective RCS. Two most widely used polarization signatures (also known as polarization responses), are co-polarization (co-pol) response and cross polarization (cross-pol) response. Co-pol response uses the same polarization for both transmit and receive while the cross-pol response uses the orthogonal polarization to receive.

The simplest target is a sphere, whose RCS matrix is given by [10;01], meaning that the reflected polarization is the same as the incident polarization. The polarization signature for a sphere is given by
```

s = eye(2);
subplot(211); polsignature(s,'c');
subplot(212); polsignature(s,'x');

```


From the plot, it can be seen that for such a target, a linear polarization, where the ellipticity angle is 0 , generates the maximum return in a co-pol setting while a circular polarization, where the ellipticity angle is either 45 or -45 degrees, generates the maximum return in a cross-pol configuration.

A more complicated target is a dihedral, which is essentially a corner that reflects the wave twice, as shown in left side of the following sketch:


The right side of the above figure shows how the polarization field changes along the two reflections. After the two reflections, the horizontal polarization component remains the same while the vertical polarization component is reversed. Hence, its cross section matrix and polarization signature are give by
\(\mathrm{s}=[10 ; 0-1]\);
subplot(211); polsignature(s,'c')
subplot(212); polsignature(s,'x')


The signature shows that the circular polarization works best in a co-pol setting while 45-degree linear polarization works best in a cross-pol situation.

\section*{Simulation of Polarized Signal Propagation Using Antenna and Target}

Putting everything together, the polarized signal is first transmitted by an antenna, then bounces off a target, and finally gets received at the receive antenna. Next is a simulation for this signal flow.

The simulation assumes a vertical dipole as the transmit antenna, a horizontal dipole as the receive antenna, and a target whose RCS matrix is [ \(01 ; 10\) ], which flips the signal's polarization. For the illustration purpose, the propagation in free space is ignored because it does not affect the polarization. It is also assumed that the transmit antenna, the target, and the receive antenna are on a line along the transmit antenna's boresight. The local coordinate system is the same for the transmit antenna and the target. The receive antenna is facing the transmit antenna.
```

% Define transmit and antenna
txAntenna = phased.ShortDipoleAntennaElement('AxisDirection','Z');
rxAntenna = phased.ShortDipoleAntennaElement('AxisDirection','Y');
radiator = phased.Radiator('Sensor',txAntenna,'Polarization','Combined');
collector = phased.Collector('Sensor',rxAntenna,'Polarization','Combined');
% Simulate signal
[x,t] = helperPolarizationSignal;
% Incident and arriving angles
ang_tx = [0;0];
ang_tgt_in = [180;0];

```
```

ang_tgt_out = [0;0];
ang_rx = [0;0];
% Local coordinate system
lclaxes_tx = azelaxes(0,0);
lclaxes_tgt = lclaxes tx;
lclaxes_rx = azelaxes(180,0);
% Define target
target = phased.RadarTarget('EnablePolarization',true,...
'Mode','Bistatic','ScatteringMatrix',[0 1;1 0]);
% Simulate received signal
xt = radiator(x,ang_tx,lclaxes_tx); % radiate
xr = target(xt,ang_tgt_in,ang_tgt_out,lclaxes_tgt); % reflect
y = collector(xr,ang_rx,lclaxes_rx); % collect
helperPolarizationSignalPlot(t,x,y,'horizontally');

```


Note that because the target flips the polarization components, the horizontally polarized antenna is able to receive the signal sent with a vertically polarized antenna.

\section*{Summary}

This example reviews the basic concepts of polarization and introduces how to analyze and model polarized antennas and targets using Phased Array System Toolbox.

\section*{Modeling Mutual Coupling in Large Arrays Using Embedded Element Pattern}

The pattern multiplication principle states that the radiation pattern of an array can be considered as the multiplication of the element pattern and the array factor. However, when an antenna gets deployed into an array, its radiation pattern is modified by its neighboring elements. This effect is often referred to as mutual coupling. Thus, to improve the fidelity of the analysis, one should use the element pattern with mutual coupling effect in the pattern multiplication instead of the isolated element (an element located in space by itself) pattern.

Unfortunately it is often very difficult to model the exact mutual coupling effect among elements. This example shows one possible approach to model the mutual coupling effects via an embedded pattern, which refers to the pattern of a single element embedded in a finite array. The element of choice is in general at the center of the array. The embedded pattern is calculated or measured by transmitting through the element itself while terminating all other elements in the array with a reference impedance [1]-[3]. This approach works well when the array is large so the edge effects may be ignored.

The example models two arrays: first using the pattern of the isolated element, second with the embedded element pattern and compare the results of the two with the full-wave Method of Moments \((\mathrm{MoM})\) based solution of the array. The array performance for scanning at broadside, and for scanning off broadside is established. Finally, the array spacing is adjusted to investigate the occurrence of scan blindness and compare against reference results [3].

This example requires Antenna Toolbox \({ }^{\mathrm{TM}}\).

\section*{Model an Array of Dipoles Using Isolated Element Pattern}

First, we design an array with isolated element. For this example we choose the center of the X-band as our design frequency.
```

freq = 10e9;
vp = physconst('lightspeed');
lambda = vp/freq;

```

In [4], it was discussed that the central element of a \(5 \lambda \mathrm{X} 5 \lambda\) array, where \(\lambda\) is the wavelength, starts to behave like it is in an infinite array. Such an aperture would correspond to a 10 X 10 array of halfwavelength spaced radiators. We choose to slightly exceed this limit and consider a 11 X 11 array of dipoles.
```

Nrow = 11;
Ncol = 11;
drow = 0.5*lambda;
dcol = 0.5*lambda;

```

The dipole of choice has a length slightly lower than \(\lambda / 2\) and a radius of approximately \(\lambda / 150\).
```

mydipole = dipole;
mydipole.Length = 0.47*lambda;
mydipole.Width = cylinder2strip(0.191e-3);
figure('Color','w');
show(mydipole);

```


Now creates an 11 X 11 URA and assign the isolated dipole as its element. Adjust the element spacing to be half-wavelength at 10 GHz . The dipole tilt is set to zero so its orientation matches the array geometry in the Y-Z plane.
```

isolatedURA = phased.URA;
isolatedURA.Element = mydipole;
isolatedURA.Size = [Nrow Ncol];
isolatedURA.ElementSpacing = [drow dcol];
viewArray(isolatedURA);
myFigure = gcf;
myFigure.Color = 'w';

```


\section*{Model Array of Dipoles Using Embedded Element Pattern}

To compute the embedded pattern of the center dipole element, we first create a full-wave model of the previous array. Since the default orientation of the dipole element in the library is along z-axis, we tilt it so that the array is formed in the X-Y plane.
```

fullWaveArray = rectangularArray(...
'Size',[Nrow Ncol],...
'RowSpacing',drow,...
'ColumnSpacing',dcol);
fullWaveArray.Element = mydipole;
fullWaveArray.Element.Tilt = 90;
fullWaveArray.Element.TiltAxis = [0 1 0];
show(fullWaveArray)
title('Rectangular 11 X 11 Array of Dipole Antennas')

```

\section*{Rectangular 11 X 11 Array of Dipole Antennas}


To calculate the embedded element pattern, use the pattern function and pass in additional input parameters of the element number(index of the center element) and termination resistance. The scan resistance and scan reactance for an infinite array of resonant dipoles spaced \(\lambda / 2\) apart is provided in [3] and we choose the resistance at broadside as the termination for all elements.
```

Zinf = 76 + 1i*31;
ElemCenter = (prod(fullWaveArray.Size)-1)/2 + 1;
az = -180:2:180;
el = -90:2:90;
EmbElFieldPatCenter = pattern(fullWaveArray,freq,az,el,...
'ElementNumber',ElemCenter,'Termination',real(Zinf),'Type','efield');

```

Import this embedded element pattern into a custom antenna element and create the same rectangular array using that element. Since the array will be in the Y-Z plane, rotate the pattern to match the scan planes.
```

embpattern = helperRotatePattern(az,el,EmbElFieldPatCenter,[0 1 0],90);
embpattern = mag2db(embpattern);
fmin = freq - 0.1*freq;
fmax = freq + 0.1*freq;
freqVector = [fmin fmax];
embantenna = phased.CustomAntennaElement('FrequencyVector',freqVector,...
'AzimuthAngles',az,'ElevationAngles',el,...
'MagnitudePattern',embpattern,'PhasePattern',zeros(size(embpattern)));
embeddedURA = phased.URA;
embeddedURA.Element = embantenna;

```
embeddedURA.Size \(=\) [Nrow Ncol];
embeddedURA. ElementSpacing = [drow dcol];

\section*{Compare Array Pattern in Elevation and Azimuth Plane}

Next, calculate and compare the patterns in different planes for the three arrays : the one using the isolated element pattern, the one using the embedded element pattern, and the full-wave model (used as the ground truth).

First, the pattern in the elevation plane (specified by azimuth \(=0\) deg and also called the E-plane)
```

Eplane_embedded = pattern(embeddedURA,freq,0,el);
Eplane_isolated = pattern(isolatedURA,freq,0,el);
[Eplane_fullwave,~,el3e] = pattern(fullWaveArray,freq,0,0:1:180);
el3e = el3e'-90;
helperATXPatternCompare([el(:) el(:) el3e(1:2:end)],...
[Eplane_isolated Eplane_embedded Eplane_fullwave(1:2:end)],...
'Elevation Angle (deg.)','Directivity (dBi)',...
'E-plane Array Directivity Comparison',...
{'With Isolated Pattern','With Embedded Pattern',...
'Full Wave Solution'},[-60 30]);

```


Now, the pattern in the azimuth plane (specified by elevation \(=0\) deg and called the H -plane).
Hplane_embedded = pattern(embeddedURA,freq,az/2,0);
Hplane_isolated = pattern(isolatedURA, freq,az/2,0);
Hplane_fullwave = pattern(fullWaveArray, freq, \(90,0: 1: 180)\);
helperATXPatternCompare([az(:)/2 az(:)/2 el3e],...
[Hplane_isolated Hplane_embedded Hplane_fullwave],...
'Azimuth Angle (deg.)','Directivity (dBī)',...
'H-plane Array Directivity Comparison',... \{'With Isolated Pattern','With Embedded Pattern',... 'Full Wave Solution'\},[-60 30]);


The array directivity is approximately 23 dBi . This result is close to the theoretical calculation for the peak directivity [5] after taking into account the absence of a reflector, D \(=4 \pi A / \lambda^{2} N\) row \(N\) col, \(A=\) drow \(*\) dcol.

The pattern comparison suggests that the main beam and the first sidelobes are aligned for all three cases. Moving away from the main beam shows the increasing effect of coupling on the sidelobe level. As expected,the embedded element pattern approach suggests a coupling level in between the fullwave simulation model and the isolated element pattern approach.

\section*{Increase Array Size}

The behavior of the array pattern is intimately linked to the embedded element pattern. To understand how our choice of a 11 X 11 array impacts the center element behavior, we increase the array size to a 25 X 25 array ( \(12.5 \lambda\) X \(12.5 \lambda\) aperture size). Note that the triangular mesh size for the full wave Method of Moments (MoM) analysis with 625 elements increases to 25000 triangles ( 40 triangles per dipole) and the computation for the embedded element pattern takes approximately 12 minutes on a 2.4 GHz machine with 32 GB memory. This time can be reduced by lowering the mesh size per element by meshing manually using a maximum edge length of \(\lambda / 20\).

Below is the pattern plot for the E-plane,
load atexdipolearray
embpattern = helperRotatePattern(...
DipoleArrayPatData.AzAngles, DipoleArrayPatData.ElAngles,...
DipoleArrayPatData.ElemPat(:,:,3),[0 1 0],90);
embpattern \(=\) mag2db(embpattern);
embantenna2 = clone(embantenna);
embantenna2.AzimuthAngles = DipoleArrayPatData.AzAngles;
embantenna2.ElevationAngles = DipoleArrayPatData.ElAngles;
embantenna2.MagnitudePattern = embpattern;
embantenna2. PhasePattern \(=\) zeros(size(embpattern));
Eplane_embedded = pattern(embantenna2,freq,0,el);
Eplane_embedded = Eplane_embedded - max(Eplane_embedded); \% normalize
Eplane_isolated = pattern(mydipole,freq,0,el);
Eplane_isolated = Eplane_isolated - max(Eplane_isolated); \% normalize
embpatE = pattern(embantenna,freq,0,el);
embpatE \(=\) embpatE-max (embpatE); \(\quad\) \% normalize
helperATXPatternCompare([el(:) el(:) el(:)],...
[Eplane_isolated embpatE Eplane_embedded],...
'Elevatīon Angle (deg.)','Directivity (dBi)',...
'Normalized E-plane Element Directivity Comparison',... \{'Isolated Pattern','Embedded Pattern - 11 X 11',... 'Embedded Pattern - 25 X 25'\},[-50 5]);

and the H-plane.
```

Hplane_embedded = pattern(embantenna2,freq,0,az/2);
Hplane_embedded = Hplane_embedded - max(Hplane_embedded); % normalize
Hplane_isolated = pattern}(mydipole,freq,0,az/2);
Hplane isolated = Hplane_isolated - max(Hplane_isolated); % normalize
embpat\overline{H}= pattern(embantēnna,freq,az/2,0);
embpatH = embpatH-max(embpatH); % normalize
helperATXPatternCompare([az(:)/2 az(:)/2 az(:)/2],...
[Hplane_isolated embpatH Hplane_embedded],...
'Azimuth Angle (deg.)','Directivity (dBi)',...
'Normalized H-plane Element Directivity Comparison',...
{'Isolated Pattern','Embedded Pattern - 11 X 11',...
'Embedded Pattern - 25 X 25'},[-50 5]);

```


The plot above reveals that the difference between embedded element patterns of the 11 X 11 and the 25 X 25 array, respectively, is less than 0.5 dB , in the E-plane. However, the H-plane shows more variation for the 11 X 11 array as compared with the 25 X 25 array.

\section*{Scan Behavior and Embedded Element Pattern}

This section scans the array based on the embedded element pattern in the elevation plane defined by azimuth \(=0\) deg and plot the normalized directivity. In addition, the normalized embedded element pattern is also plotted. Note the overall shape of the normalized array pattern approximately follows the normalized embedded element pattern, just as predicted by the pattern multiplication principle.
```

eplane_indx = find(az==0);
scan_el1 = -30:10:30;
scan_az1 = zeros(1,numel(scan_el1));
scan\overline{E}plane = [scan_az1;scan_e\overline{l}1];
% compute array scanning weights
steeringvec = phased.SteeringVector('SensorArray',embeddedURA,...
'IncludeElementResponse',true);
weights = steeringvec(freq,scanEplane);
% array scanning
legend_string1 = cell(1,numel(scan_el1));
scanEPat = nan(numel(el),numel(scan_ell));
for i = 1:numel(scan_ell)
scanEPat(:,i) = pattern(embeddedURA,freq,scan_az1(i),el,...
'Weights',weights(:,i));
legend_stringl{i} = strcat('scan = ',num2str(scan_el1(i)));
end
scanEPat = scanEPat - max(max(scanEPat)); % normalize
helperATXPatternCompare(el(:),scanEPat,...
'Elevation Angle (deg.)','Directivity (dBi)',...
'E-plane Scan Comparison',legend_string1(1:end-1),[-50 5]);
hold on;
plot(el(:),embpatE,' -.','LineWidth',1.5);
legend([legend_string1,{'Embedded element'}],'location','best')
hold off;

```

E-plane Scan Comparison


\section*{Scan Blindness}

In large arrays, the array directivity can reduce drastically at certain scan angles under certain situations. At these scan angles, referred to as the blind angles, the array does not radiate the power supplied at its input terminals [3]. Two common mechanisms under which blindness conditions occur are

\section*{- Surface Wave Excitation}
- Grating Lobe Excitation

It is possible to detect scan blindness in large finite arrays by studying the embedded element pattern (also known as array element pattern in the infinite array analysis). The array being investigated in this example does not have a dielectric substrate/ground plane, and therefore the surface waves are eliminated. However we can investigate the second mechanism, i.e. the grating lobe excitation. To do so, let us increase the spacing across rows and columns of the array to be \(0.7 \lambda\). Since this spacing is greater than the half-wavelength limit we should expect grating lobes in the visible space beyond a specific scan angle. As pointed out in [3], to accurately predict the depth of grating lobe blind angles in the finite array of dipoles, we need to have an array of the size 41 X 41 or higher. We will compare 3 cases, namely the \(11 \times 11,25 \times 25\) and the 41 X 41 size arrays and check if the existence of blind angles can at least be observed in the 11 X 11 array. As mentioned earlier, the results were precomputed in Antenna Toolbox \({ }^{\mathrm{TM}}\) and saved in a MAT file. To reduce the computational time, the elements were meshed with maximum edge length of \(\lambda / 20\).
load atexdipolearrayblindness.mat


The normalized E-plane embedded element pattern for arrays of three sizes


The normalized H-plane embedded element pattern for arrays of three sizes. Notice the blind angle around -62 and -64 deg.

\section*{Conclusion}

The embedded element pattern approach is one possible way to perform the analysis of large finite arrays. They need to be large enough so that the edge effects can be ignored. The approach replaces the isolated element pattern with the embedded element pattern since the latter includes the effect of mutual coupling.

\section*{Reference}
[1] R. J. Mailloux, 'Phased Array Antenna Handbook', Artech House,2nd edition, 2005
[2] W. Stutzman, G. Thiele, 'Antenna Theory and Design', John Wiley \& Sons Inc., 3rd Edition, 2013.
[3] R. C. Hansen, Phased Array Antennas, Chapter 7 and 8, John Wiley \& Sons Inc.,2nd Edition, 1998.
[4] H. Holter, H. Steyskal, "On the size requirement for finite phased-array models," IEEE Transactions on Antennas and Propagation, vol.50, no.6, pp.836-840, Jun 2002.
[5] P. W. Hannan, "The Element-Gain Paradox for a Phased-Array Antenna," IEEE Transactions on Antennas Propagation, vol. 12, no. 4, July 1964, pp. 423-433.

\section*{Modeling Mutual Coupling in Large Arrays Using Infinite Array Analysis}

This example uses infinite array analysis to model large finite arrays. The infinite array analysis on the unit cell reveals the scan impedance behavior at a particular frequency. This information is used with the knowledge of the isolated element pattern and impedance to calculate the scan element pattern. The large finite array is then modeled using the assumption that every element in the array possesses the same scan element pattern.

This example requires Antenna Toolbox \({ }^{\mathrm{TM}}\).

\section*{Define Individual Element}

For this example we choose the center of the X-band as our design frequency.
```

freq = 10e9;
vp = physconst('lightspeed');
lambda = vp/freq;
ucdx = 0.5*lambda;
ucdy = 0.5*lambda;

```

Create a thin dipole of length slightly less than \(\lambda / 2\) and assign it as the exciter to a infinitely large reflector.
```

d = dipole;
d.Length = 0.495*lambda;
d.Width = lambda/160;
d.Tilt = 90;
d.TiltAxis = [0 1 0];
r = reflector;
r.Exciter = d;
r.Spacing = lambda/4;
r.GroundPlaneLength = inf;
r.GroundPlaneWidth = inf;
figure;
show(r);

```


Calculate the isolated element pattern and the impedance of the above antenna. These results will be used to calculate the Scan Element Pattern(SEP). This term is also known as Array Element Pattern(AEP) or Embedded Element Pattern(EEP).
```

%Define az and el vectors
az = 0:2:360;
el = 90:-2:-90;
% Calculate power pattern
giso = pattern(r,freq,az,el,'Type','power');
% Calculated impedance
Ziso = impedance(r,freq);

```

\section*{Calculate Infinite Array Scan Element Pattern}

Unit Cell In the infinite array analysis the term unit cell refers to a single element in an infinite array. The unit cell element needs a ground plane. Antennas that don't have a ground plane need to be backed by a reflector. A representative example for each case would be dipole backed by a reflector and a microstrip patch antenna. This example will use the dipole backed by a reflector and analyze the impedance behavior at 10 GHz as a function of scan angle. The unit cell will have a \(\lambda / 2{ }_{\mathrm{x}} \lambda / 2\) cross-section.
```

r.GroundPlaneLength = ucdx;
r.GroundPlaneWidth = ucdy;
infArray = infiniteArray;
infArray.Element = r;

```
```

infArray.ScanAzimuth = 30;
infArray.ScanElevation = 45;
figure;
show(infArray);

```


Scan impedance The scan impedance at a single frequency and single scan angle is shown below.
```

scanZ = impedance(infArray,freq)

```
scanZ =
    \(1.1077 \mathrm{e}+02+3.0010 \mathrm{e}+01 \mathrm{i}\)

For this example the scan impedance for the full volume of scan is calculated using 50 terms in the double summation for the periodic Greens function to improve convergence behavior.

Scan Element Pattern /Array Element Pattern /Embedded Element Pattern The scan element pattern (SEP) is calculated from the infinite array scan impedance, the isolated element pattern and the isolated element impedance. The expression used is shown here[1],[2]:
\[
\begin{aligned}
& g_{s}(\theta)=\frac{4 R_{g} R_{i}\left(g_{i}(\theta)\right)}{\left|Z_{s}(\theta)+Z_{g}\right|^{2}} \\
& \text { load atexInfArrayScanZData } \\
& \text { scanZ }=\text { scanZ.' }
\end{aligned}
\]
```

Rg = 185;
Xg = 0;
Zg = Rg + 1i*Xg;
gs = nan(numel(el),numel(az));
for i = 1:numel(el)
for j = 1:numel(az)
gs(i,j) = 4*Rg*real(Ziso).*giso(i,j)./(abs(scanZ(i,j) + Zg)).^2;
end
end

```

\section*{Build Custom Antenna Element}

The scan element pattern which represents a power pattern is used to build a custom antenna element.
```

fieldpattern = sqrt(gs);

```
bandwidth = 500e6;
customAntennaInf = helperATXBuildCustomAntenna(...
    fieldpattern,freq, bandwidth, az,el);
figure;
pattern(customAntennaInf,freq);


\section*{Build 21 X 21 URA}

Create a uniform rectangular array (URA), with the custom antenna element, which has the scan element pattern.
```

N = 441;
Nrow = sqrt(N);
Ncol = sqrt(N);
drow = ucdx;
dcol = ucdy;
myURA1 = phased.URA;
myURA1.Element = customAntennaInf;
myURA1.Size = [Nrow Ncol];
myURA1.ElementSpacing = [drow dcol];

```

\section*{Plot Slices in E and H Planes}

Calculate the pattern in the elevation plane (specified by azimuth \(=0\) deg and also called the E-plane) and azimuth plane (specified by elevation \(=0\) deg and called the H -plane) for the array built using infinite array analysis.
```

azang_plot = -90:0.5:90;
elang_plot = -90:0.5:90;
% E-plane
Darray1_E = pattern(myURA1,freq,0,elang_plot);
Darray1_Enormlz = Darray1_E - max(Darray1_E);
% H-plane
Darray1_H = pattern(myURA1,freq,azang_plot,0);
Darrayl_Hnormlz = Darray1_H - max(Darray1_H);
% Scan element pattern in both planes
DSEP1_E = pattern(customAntennaInf,freq,0,elang_plot);
DSEP1_Enormlz = DSEP1_E - max(DSEP1_E);
DSEP1 H = pattern(customAntennaInf,freq,azang_plot,0);
DSEP1 Hnormlz = DSEP1 H - max(DSEP1 H);
figure
subplot(211)
plot(elang_plot,Darray1_Enormlz,elang_plot,DSEP1_Enormlz,'LineWidth',2)
grid on
axis([min(azang_plot) max(azang_plot) -40 0]);
legend('Array Pattern, az = 0 deg','Element Pattern')
xlabel('Elevation (deg)')
ylabel('Directivity (dB)')
title('Normalized Directivity')
subplot(212)
plot(azang_plot,Darray1_Hnormlz,azang_plot,DSEP1_Hnormlz,'LineWidth',2)
grid on
axis([min(azang_plot) max(azang_plot) -40 0]);
legend('Array Pattern, el = 0 deg','Element Pattern')
xlabel('Azimuth (deg)')
ylabel('Directivity (dB)')

```


\section*{Comparison with a Full Wave Finite Array Analysis}

To understand the effect of the finite size of the array, we execute a full wave analysis of a 21 X 21 dipole array backed by an infinite reflector. The full wave array pattern slices in the E and H planes as well as the center element embedded element pattern is also calculated. This data is loaded from a MAT file. This analysis took approximately 630 seconds on a 2.4 GHz machine with 32 GB memory.

Load Full Wave Data and Build Custom Antenna Load the finite array analysis data, and use the embedded element pattern to build a custom antenna element. Note that the pattern from the fullwave analysis needs to be rotated by 90 degrees so that it lines up with the URA model built on the YZ plane.
```

load atexInfArrayDipoleRefArray
elemfieldpatternfinite = sqrt(FiniteArrayPatData.ElemPat);
arraypatternfinite = FiniteArrayPatData.ArrayPat;
bandwidth = 500e6;
customAntennaFinite = helperATXBuildCustomAntenna(...
elemfieldpatternfinite,freq,bandwidth,az,el);
figure
pattern(customAntennaFinite,freq)

```


Create Uniform Rectangular Array with Embedded Element Pattern As done before create a uniform rectangular array with the custom antenna element.
```

myURA2 = phased.URA;
myURA2.Element = customAntennaFinite;
myURA2.Size = [Nrow Ncol];
myURA2.ElementSpacing = [drow dcol];

```

E and H Plane Slice - Array With Embedded Element Pattern Calculate the pattern slices in two orthogonal planes - E and H for the array with the embedded element pattern and the embedded element pattern itself. In addition since the full wave data for the array pattern is also available use this to compare results. E-plane
```

Darray2_E = pattern(myURA2,freq,0,elang_plot);
Darray2_Enormlz = Darray2_E - max(Darray2_E);
% H-plane
Darray2_H = pattern(myURA2,freq,azang_plot,0);
Darray2_Hnormlz = Darray2_H - max(Darray2_H);

```

\section*{E and H Plane Slice - Embedded Element Pattern from Finite Array}
```

DSEP2_E = pattern(customAntennaFinite,freq,0,elang_plot);
DSEP2 Enormlz = DSEP2 E - max(DSEP2 E);
DSEP2_H = pattern(customAntennaFinite,freq,azang_plot,0);
DSEP2_Hnormlz = DSEP2_H - max(DSEP2_H);

```

\section*{E and H Plane Slice - Full Wave Analysis of Finite Array}
```

azang_plot1 = -90:2:90;
elang_plot1 = -90:2:90;
Darray3_E = FiniteArrayPatData.EPlane;
Darray3_Enormlz = Darray3_E - max(Darray3_E);
Darray3_H = FiniteArrayPatData.HPlane;
Darray3_Hnormlz = Darray3_H - max(Darray3_H);

```

Comparison of Array Patterns The array patterns in the two orthogonal planes are plotted here.
```

figure
subplot(211)
plot(elang_plot,Darray1_Enormlz,elang_plot,Darray2_Enormlz,...
elang_plot1,Darray3_Enormlz,'LineWidth',2)
grid on
axis([min(elang_plot) max(elang_plot) -40 0]);
legend('Infinite','Finite','Finite Full wave','location','best')
xlabel('Elevation (deg)')
ylabel('Directivity (dB)')
title('E-plane (az=0 deg) Normalized Array Directivity')
subplot(212)
plot(azang_plot,Darray1_Hnormlz,azang_plot,Darray2_Hnormlz,...
azang_plot1,Darray3_Hnormlz,'LineWWidth',2)
grid on
axis([min(azang_plot) max(azang_plot) -40 0]);
legend('Infinite','Finite','Finite Full wave','location','best')
xlabel('Azimuth (deg)')
ylabel('Directivity (dB)')
title('H-Plane (el = 0 deg) Normalized Array Directivity')

```


The pattern plots in the two planes reveals that all three analysis approaches suggest similar behavior out to \(+/-40\) degree from boresight. Beyond this range, it appears that using the scan element pattern for all elements in a URA underestimates the sidelobe level compared to the full wave analysis of a finite array. The one possible reason for this could be the edge effect from the finite size array.

Comparison of Element Patterns The element patterns from the infinite array analysis and the finite array analysis are compared here.
```

figure
subplot(211)
plot(elang_plot,DSEP1_Enormlz,elang_plot,DSEP2_Enormlz,'LineWidth',2)
grid on
axis([min(azang_plot) max(azang_plot) -40 0]);
legend('Infinite','Finite','location','best')
xlabel('Elevation (deg)')
ylabel('Directivity (dB)')
title('E-plane (az=0 deg) Normalized Element Directivity')
subplot(212)
plot(azang_plot,DSEP1_Hnormlz,azang_plot,DSEP2_Hnormlz,'LineWidth',2)
grid on
axis([min(azang_plot) max(azang_plot) -40 0]);
legend('Infinite','Finite','location','best')
xlabel('Azimuth (deg)')
ylabel('Directivity (dB)')
title('H-Plane (el = 0 deg) Normalized Element Directivity')

```


\section*{Scan Behavior with Infinite Array Scan Element Pattern}

Scan the array based on the infinite array scan element pattern in the elevation plane defined by azimuth \(=0\) deg and plot the normalized directivity. Also, overlay the normalized scan element pattern.
helperATXScanURA(myURA1,freq,azang_plot,elang_plot,...
DSEP1_Enormlz,DSEP1_Hnormlz);


Note the overall shape of the normalized array pattern approximately follows the normalized scan element pattern. This is also predicted by the pattern multiplication principle.

\section*{Conclusion}

The infinite array analysis is one of the tools deployed to analyze and design large finite arrays. The analysis assumes that all elements are identical, that edge effects can be ignored and have uniform excitation amplitude The isolated element pattern is replaced with the scan element pattern which includes the effect of mutual coupling.

\section*{Reference}
[1] J. Allen, "Gain and impedance variation in scanned dipole arrays," IRE Transactions on Antennas and Propagation, vol.10, no.5, pp.566-572, September 1962.
[2] R. C. Hansen, Phased Array Antennas, Chapter 7 and 8, John Wiley \& Sons Inc.,2nd Edition, 1998.

\section*{Modeling Perturbations and Element Failures in a Sensor Array}

This example shows how to model amplitude, phase, position and pattern perturbations as well as element failures in a sensor array.

\section*{Amplitude Perturbation}

This section shows how to add gain or amplitude perturbations on a uniform linear array (ULA) of 10 elements. Consider the perturbations to be statistically independent zero-mean Gaussian random variables with standard deviation of 0.1.

Create a ULA antenna of 10 elements.
```

N = 10;
ula = phased.ULA(N);

```

Create amplitude or gain perturbations by generating normally distributed random numbers with mean of 1 .
```

rs = rng(7);
pertStDev = 0.1;
% Clone the ideal ULA
perturbedULA = clone(ula);
perturbedULA.Taper = 1+randn(1,N)*pertStDev;

```

Compare the response of the perturbed to the ideal array.
```

% Overlay responses
c = 3e8; freq = c;
subplot(2,1,1);
helperCompareResponses(perturbedULA,ula,'Amplitude Perturbation', ...
{'Perturbed','Ideal'});
% Show the corresponding tapers
subplot(2,1,2);
stem(perturbedULA.Taper)
title('Amplitude Tapers');xlabel('Sensor');ylabel('Gain');

```


\section*{Phase Perturbation}

This section shows how to add phase perturbations to the ULA antenna used in the previous section. Consider the perturbations distribution to be similar to the previous section.

Release the System object and set the tapers. The tapers have a magnitude of 1 and random phase shifts with 0 mean.
```

release(perturbedULA);
perturbedULA.Taper = exp(1i*randn(1,N)*pertStDev);

```

Compare the response of the perturbed to the ideal array.
```

% Overlay responses
subplot(2,1,1);
helperCompareResponses(perturbedULA,ula,'Phase Perturbation', ...
{'Perturbed','Ideal'});
% Show the corresponding tapers
subplot(2,1,2);
stem(angle(perturbedULA.Taper))
title('Phase Tapers');xlabel('Sensor');ylabel('Phase (rad)');

```


Notice how the perturbed response has shallower nulls.

\section*{Position Perturbation}

This section shows how to perturb the positions of the ULA sensor along the three axes.
```

% Get positions of ideal ULA
ulaPos = getElementPosition(ula);
% Add perturbations in all dimensions
ulaPosPert = ulaPos + randn(size(ulaPos))*pertStDev;

```

Create the perturbed array.
perturbedULA \(=\) phased.ConformalArray('ElementPosition',ulaPosPert,...
'ElementNormal', zeros(2,N));
Compare the response of the perturbed to the ideal array.
```

% Overlay responses
clf;
helperCompareResponses(perturbedULA,phased.ULA(N), ...
'Position Perturbation', {'Perturbed','Ideal'});

```


View the array.
viewArray(perturbedULA);
title('Element Positions');

\section*{Array Geometry}


\section*{Pattern Perturbation}

This section will replace the isotropic antenna elements with perturbed patterns.
First create 10 custom antenna elements with perturbed isotropic patterns.
```

antenna = phased.CustomAntennaElement;
radpat = antenna.MagnitudePattern;
element = cell(1,N);
for i = 1:N
perturbedAntenna = clone(antenna);
perturbedAntenna.MagnitudePattern = ...
pow2db(1+randn(size(radpat))*pertStDev);
element{i} = perturbedAntenna;
end

```

Here, map the 10 patterns in the cell array 'element' to the 10 sensors using the ElementIndices property.
```

perturbedULA = phased.HeterogeneousULA('ElementSet',element, ...
'ElementIndices',1:N);

```

Compare the response of the perturbed to the ideal array.
```

% Overlay responses
clf;
subplot(2,2,[1 2]);
helperCompareResponses(perturbedULA, phased.ULA(N),...

```
```

 'Pattern Perturbation', ...
 {'Perturbed','Ideal'});

```
\% Show the perturbed pattern response next to the ideal isotropic pattern
subplot (2,2,3);
pattern(ula.Element,freq,'CoordinateSystem','polar','Type','power')
title('Isotropic pattern');
subplot (2,2,4);
pattern(element\{1\},freq,'CoordinateSystem','polar','Type','power')
title('Perturbed pattern');



\section*{Element Failures}

This section will model element failures on an 8 by 10 uniformly rectangular array. Each element has 10 percent probability of failing.

Create a URA antenna of 8 by 10 elements.
ura = phased.URA([8 10]);
Failures can be modeled by setting the gain on the corresponding sensor to 0 . Here a matrix is created in which each element has a 10 percent probability of being 0 .
ura.Taper \(=\) double \((\operatorname{rand}(8,10)>.1)\);
Compare the response of the array with failed elements to the ideal array.
\% Overlay responses
clf;
```

helperCompareResponses(ura,phased.ULA(N),'Element Failures', ...
{'Failures','No Failures'});

```
                    Element Failures

\begin{tabular}{|l|}
\hline- \\
\hline
\end{tabular} Failures

Notice how deep nulls are hard to attain in the response of the array with failed elements.
View the failed elements.
```

viewArray(ura,'ShowTaper',true);
title('Failed Elements');
% reset the random seed
rng(rs)

```


\section*{Summary}

This example showed how to model different kind of perturbations as well as element failures. It also demonstrated the effect on the array response for all the cases.

\section*{Patch Antenna Array for FMCW Radar}

This example shows how to model a 77 GHz 2 x 4 antenna array for Frequency-Modulated ContinuousWave (FMCW) radar applications. The presence of antennas and antenna arrays in and around vehicles has become a commonplace with the introduction of wireless collision detection, collision avoidance, and lane departure warning systems. The two frequency bands considered for such systems are centered around 24 GHz and 77 GHz , respectively. In this example, we will investigate the microstrip patch antenna as a phased array radiator. The dielectric substrate is air.

This example requires the Antenna Toolbox \({ }^{\mathrm{TM}}\).

\section*{Antenna Array Design}

The FMCW antenna array is intended for a forward radar system designed to look for and prevent a collision. Therefore, A cosine antenna pattern is an appropriate choice for the initial design since it does not radiate any energy backwards. Assume that the radar system operates at 77 GHz with a 700 MHz bandwidth.
```

fc = 77e9;
fmin = 73e9;
fmax = 80e9;
vp = physconst('lightspeed');
lambda = vp/fc;
cosineantenna = phased.CosineAntennaElement;
cosineantenna.FrequencyRange = [fmin fmax];
pattern(cosineantenna,fc)

```


The array itself needs to be mounted on or around the front bumper. The array configuration we investigate is a 2 X 4 rectangular array, similar to what is mentioned in [1]. Such a design has bigger aperture along azimuth direction thus providing better azimuth resolution.
```

Nrow = 2;
Ncol = 4;
fmcwCosineArray = phased.URA;
fmcwCosineArray.Element = cosineantenna;
fmcwCosineArray.Size = [Nrow Ncol];
fmcwCosineArray.ElementSpacing = [0.5*lambda 0.5*lambda];
pattern(fmcwCosineArray,fc)

```


\section*{Design Realistic Patch Antenna}

The Antenna Toolbox has several antenna elements that could provide hemispherical coverage and resemble a pattern of cosine shape. Choose a patch antenna element with typical radiator dimensions. The patch length is approximately half-wavelength at 77 GHz and the width is 1.5 times the length to improving the bandwidth. The ground plane is \(\lambda\) on each side and the feed offset from center in the direction of the patch length is about a quarter of the length.
patchElement \(=\) design(patchMicrostrip,fc);
Because the default patch antenna geometry has its maximum radiation directed towards zenith, rotate the patch antenna by 90 degrees about the y-axis so that the maximum would now occur along the x -axis.
```

patchElement.Tilt = 90;
patchElement.TiltAxis = [0 1 0];

```

\section*{Isolated Patch Antenna 3D Pattern and Resonance}

Plot the pattern of the patch antenna at 77 GHz . The patch is a medium gain antenna with the peak directivity around 6-9 dBi.
```

myFigure = gcf;
myFigure.Color = 'w';
pattern(patchElement,fc)

```


The patch is radiating in the correct mode with a pattern maximum at 0 degrees azimuth and 0 degrees elevation. Since the initial dimensions are approximations, it is important to verify the antenna's input impedance behavior.

Numfreqs = 21;
freqsweep \(=\) unique([linspace(fmin,fmax,Numfreqs) fc]); impedance(patchElement, freqsweep);


According to the figure, the patch antenna has its first resonance (parallel resonance) at 74 GHz . It is a common practice to shift this resonance to 77 GHz by scaling the length of the patch.
```

act_resonance = 74e9;
lambda_act = vp/act_resonance;
scale = lambda/lambda_act;
patchElement.Length = scale*patchElement.Length;

```

Next is to check the reflection coefficient of the patch antenna to confirm a good impedance match. It is typical to consider the value \(S_{11}=-10 d B\) as a threshold value for determining the antenna bandwidth.
```

s = sparameters(patchElement,freqsweep);
rfplot(s,'m-.')
hold on
line(freqsweep/1e9,ones(1,numel(freqsweep))*-10,'LineWidth',1.5)
hold off

```


The deep minimum at 77 GHz indicates a good match to 50 . The antenna bandwidth is slightly greater than 1 GHz . Thus, the frequency band is from 76.5 GHz to 77.5 GHz .

Finally, check if the pattern at the edge frequencies of the band meets the design. This is a good indication whether the pattern behaves the same across the band. The patterns at 76.5 GHz and 77.6 GHz are shown below.
pattern(patchElement,76.5e9)

pattern(patchElement,77.6e9)


In general, it is a good practice to check pattern behavior over the frequency band of interest.

\section*{Create Array from Isolated Radiators and Plot Pattern}

Next, creates a uniform rectangular array (URA) with the patch antenna. The spacing is chosen to be \(\lambda / 2\), where \(\lambda\) is the wavelength at the upper frequency of the band ( 77.6 GHz ).
```

fc2 = 77.6e9;

```
lambda fc2 = vp/77.6e9;
fmcwPatchArray = phased.URA;
fmowPatchArray.Element = patchElement;
fmcwPatchArray.Size = [Nrow Ncol];
fmcwPatchArray.ElementSpacing = [0.5*lambda_fc2 0.5*lambda_fc2];

The following figure shows the pattern of the resulting patch antenna array. The pattern is computed using a 5 degree separation in both azimuth and elevation.
```

az = -180:5:180;
el = -90:5:90;
clf
pattern(fmcwPatchArray,fc,az,el)

```


Plots below compare the pattern variation in 2 orthogonal planes for the patch antenna array and the cosine element array. Note that both arrays ignore mutual coupling effect.

First, plot the patterns along the azimuth direction.
```

patternAzimuth(fmcwPatchArray,fc)
hold on
patternAzimuth(fmcwCosineArray,fc)
p = polarpattern('gco');
p.LegendLabels = {'Patch','Cosine'};

```

Right click to interact with the plot

\section*{Azimuth Cut (elevation angle \(=0.0^{\circ}\) )}


Directivity (dBi), Broadside at \(0.00^{\circ}\)

Then, plot the patterns along the elevation direction.
```

clf
patternElevation(fmcwPatchArray,fc)
hold on
patternElevation(fmcwCosineArray,fc)
p = polarpattern('gco');
p.LegendLabels = {'Patch','Cosine'};

```
\begin{tabular}{|r|r|}
\hline Right click to interact with the plot & 区 \\
\hline
\end{tabular}


Directivity (dBi), Broadside at \(0.00^{\circ}\)
The figures show that both arrays have similar pattern behavior around the main beam in the elevation plane (azimuth \(=0\) deg). The patch-element array has a significant backlobe as compared to the cosine-element array.

\section*{Conclusions}

This example starts the design of an antenna array for FMCW radar with an ideal cosine antenna and then uses a patch antenna to form the real array. The example compares the patterns from the two arrays to show the design tradeoff. From the comparison, it can be seen that using the isolated patch element is a useful first step in understanding the effect that a realistic antenna element would have on the array pattern.

However, analysis of realistic arrays must also consider mutual coupling effect. Since this is a small array ( 8 elements in \(2 \times 4\) configuration), the individual element patterns in the array environment could be distorted significantly. As a result it is not possible to replace the isolated element pattern with an embedded element pattern, as shown in the "Modeling Mutual Coupling in Large Arrays Using Embedded Element Pattern" on page 17-38 example. A full-wave analysis must be performed to understand the effect of mutual coupling on the overall array performance.

\section*{Reference}
[1] R. Kulke, et al. 24 GHz Radar Sensor Integrates Patch Antennas, EMPC 2005 http: // empire.de/main/Empire/pdf/publications/2005/26-doc-empc2005.pdf

\section*{Phased Array Gallery}

This example shows how to model and visualize a variety of antenna array geometries with Phased Array System Toolbox \({ }^{\mathrm{TM}}\). These geometries can also be used to model other kind of arrays, such hydrophone arrays and microphone arrays. You can view code for each plot, and use it in your own project.

\section*{Linear Arrays}

Linear antenna arrays can have uniform or nonuniform spacing between elements. This most common linear antenna array is the Uniform Linear Array (ULA).
\(\mathrm{N}=20\); \(\%\) Number of elements
D \(=0.5\); Element spacing (m)
ula = phased.ULA(N,D);
viewArray(ula,'Title','Uniform Linear Array (ULA)')
set (gca, 'CameraViewAngle',4.4) ;


A Minimum Redundancy Linear Array (MRLA) is an example of nonuniformly spaced linear array. The MRLA minimizes the number of element pairs that have the same spatial correlation lag. It is possible to design a 4 -element array whose aperture is equivalent to 7 -element ULA.
```

N = 4; % Number of elements
pos = zeros(3,N);
pos(2,:) = [-1.5 -1 0.5 1.5]; % Aperture equivalent to 7-element ULA
mrla = phased.ConformalArray('ElementPosition',pos,...

```
```

 'ElementNormal',zeros(2,N));
 viewArray(mrla,'Title','Minimum Redundancy Linear Array (MRLA)')
set(gca,'CameraViewAngle',4.85);

```

Minimum Redundancy Linear Array (MRLA)


> Array Span: X axis \(=0 \mathrm{~m}\) Y axis \(=3 \mathrm{~m}\) Z axis \(=0 \mathrm{~m}\)

\section*{Circular Arrays}

Circular antenna arrays can also have uniform or nonuniform spacing between elements. Next is an example of a Uniform Circular Array (UCA).
```

N = 24; % Number of elements
R = 1; % Radius (m)
uca = phased.UCA(N,R);
viewArray(uca,'ShowNormals',true,'Title','Uniform Circular Array (UCA)')
view(0,90)

```

\section*{Uniform Circular Array (UCA)}


Multiple circular antenna arrays with the same number of elements and different radii form a concentric circular array.
```

N = 16; % Number of elements on each ring
R = [1 1.5 2];
% Radii (m)
azang = (0:N-1)*360/N-180;
pos = [zeros(1,N);cosd(azang);sind(azang)];
elNormal = zeros(2,N);
concentricCircularArray = phased.ConformalArray(...
'ElementPosition',[R(1)*pos R(2)*pos R(3)*pos],...
'ElementNormal',[elNormal elNormal elNormal]);
viewArray(concentricCircularArray,'Title','Concentric Circular Array');

```


\section*{Planar Arrays with Rectangular Grid}

Planar antenna arrays can have a uniform grid (or lattice) and different boundary shapes. Next is an example of a Uniform Rectangular Array (URA) with a rectangular grid and rectangular boundary.
```

M = 18; % Number of elements on each row
N = 16; % Number of elements on each column
dy = 0.5; % Spacing between elements on each row (m)
dz = 0.5; % Spacing between elements on each column (m)
ura = phased.URA([N M],[dz dy]);
viewArray(ura,'Title','Uniform Rectangular Array (URA)');

```

\section*{Uniform Rectangular Array (URA)}


Aperture Size:
Y axis \(=9 \mathrm{~m}\)
Z axis \(=8 \mathrm{~m}\)
Element Spacing:
\(\Delta y=500 \mathrm{~mm}\)
\(\Delta z=500 \mathrm{~mm}\)

You can also model a planar antenna array with a circular boundary. The following code starts with a URA and removes elements outside a circle.
```

N = 20; % Number of elements on each row/column of rectangular array
dy = 0.5; % Spacing between elements on each row (m)
dz = 0.5; % Spacing between elements on each column (m)
R = 4.5; % Radius (m)
refArray = phased.URA(N,[dy,dz]);
pos = getElementPosition(refArray);
elemToRemove = sum(pos.^2)>R^2;
pos(:,elemToRemove) = []; % Exclude elements outside circle
circularPlanarArray = phased.ConformalArray('ElementPosition',pos,...
'ElementNormal',zeros(2,size(pos,2)));
viewArray(circularPlanarArray,'Title','Circular Planar Array');

```

\section*{Circular Planar Array}

\(\sum_{-}^{2} y\)
Array Span:
\(X\) axis \(=0.0 \mathrm{~m}\)
Y axis \(=8.5 \mathrm{~m}\)
Z axis \(=8.5 \mathrm{~m}\)

Next is an example of a planar antenna array with an elliptical boundary.
```

N = 20; % Number of elements on each row/column of rectangular array
dy = 0.5; % Spacing between elements on each row (m)
dz = 0.5; % Spacing between elements on each column (m)
Ry = 4.5; % Major radius (m)
Rz = 2.8; % Minor radius (m)
refArray = phased.URA(N,[dy,dz]);
pos = getElementPosition(refArray);
elemToRemove = (pos(2,:)/Ry).^2+(pos(3,:)/Rz).^2>1;
pos(:,elemToRemove) = []; % Exclude elements outside ellipse
ellipticalPlanarArray = phased.ConformalArray('ElementPosition',pos,...
'ElementNormal',zeros(2,size(pos,2)));
viewArray(ellipticalPlanarArray,'Title','Elliptical Planar Array');

```

\section*{Elliptical Planar Array}

\(\sum_{x}^{2}-y\)
Array Span:
\(X\) axis \(=0.0 \mathrm{~m}\)
Y axis \(=8.5 \mathrm{~m}\)
\(Z\) axis \(=5.5 \mathrm{~m}\)

The next example is a hexagonal array with a rectangular grid.
```

Nmin = 7; % Number of elements on bottom row
Nmax = 19; % Number of elements on widest row
dy = 0.5; % Row spacing
dz = 0.5; % Column spacing
rows = [Nmin:2:Nmax Nmax-2:-2:Nmin];
N = sum(rows); % Total number of elements
stop = cumsum(rows);
start = stop-rows+1;
pos = zeros(3,N);
count = 0;
for m = Nmin-Nmax:2:Nmax-Nmin
count = count+1;
idx = start(count):stop(count);
pos(2,idx) = (-(rows(count)-1)/2:(rows(count)-1)/2)*dy;
pos(3,idx) = m/2*dz;
end
hexagonalPlanarArray = phased.ConformalArray('ElementPosition',pos,...
'ElementNormal',zeros(2,N));
viewArray(hexagonalPlanarArray,...
'Title','Hexagonal Planar Array with Rectangular Grid');

```

Array Span:
X axis \(=0 \mathrm{~m}\)
\(Y\) axis \(=9 \mathrm{~m}\)
\(Z\) axis \(=6 \mathrm{~m}\)

\section*{Planar Arrays with Triangular Grid}

Triangular grids provide an efficient spatial sampling and are widely used in practice. Here again, different boundary geometries can be applied. First is a rectangular array with a triangular lattice.
```

M = 18; % Number of elements on each row
N = 16; % Number of elements on each column
dy = 0.5; % Spacing between elements on each row (m)
dz = 0.5; % Spacing between elements on each column (m)
rectArrayTriGrid = phased.URA([N M],[dz dy],'Lattice','Triangular');
viewArray(rectArrayTriGrid,...
'Title','Rectangular Array with Triangular Grid');

```

\section*{Rectangular Array with Triangular Grid}


Aperture Size:
Y axis \(=9 \mathrm{~m}\)
Z axis \(=8 \mathrm{~m}\)
Element Spacing:
\(\Delta y=500 \mathrm{~mm}\)
\(\Delta z=500 \mathrm{~mm}\)

Next is a circular planar antenna array with a triangular lattice.
```

N = 18; % Number of elements on each row/column of rectangular array
dy = 0.5; % Spacing between elements on each row (m)
dz = 0.5; % Spacing between elements on each column (m)
R = 4.5; % Radius (m)
refArray = phased.URA(N,[dy,dz],'Lattice','Triangular');
pos = getElementPosition(refArray);
elemToRemove = sum(pos.^2)>R^2;
pos(:,elemToRemove) = []; % Exclude elements outside circle
circularPlanarArrayTriGrid = phased.ConformalArray(...
'ElementPosition',pos,'ElementNormal',zeros(2,size(pos,2)));
viewArray(circularPlanarArrayTriGrid,...
'Title','Circular Planar Array with Triangular Grid');

```

Circular Planar Array with Triangular Grid


Next is an elliptical planar antenna array with a triangular lattice.
```

N = 18; % Number of elements on each row/column of rectangular array
dy = 0.5; % Spacing between elements on each row (m)
dz = 0.5; % Spacing between elements on each column (m)
Ry = 4.5; % Major radius (m)
Rz = 2.8; % Minor radius (m)
refArray = phased.URA(N,[dy,dz],'Lattice','Triangular');
pos = getElementPosition(refArray);
elemToRemove = (pos(2,:)/Ry).^2+(pos(3,:)/Rz).^2>1;
pos(:,elemToRemove) = []; % Exclude elements outside ellipse
ellipticalPlanarArrayTriGrid = ...
phased.ConformalArray('ElementPosition',pos,...
'ElementNormal',zeros(2,size(pos,2)));
viewArray(ellipticalPlanarArrayTriGrid,...
'Title','Elliptical Planar Array with Triangular Grid');

```

\section*{Elliptical Planar Array with Triangular Grid}


Array Span:
\(X\) axis \(=0.0 \mathrm{~m}\)
Y axis \(=8.5 \mathrm{~m}\)
\(Z\) axis \(=5.5 \mathrm{~m}\)

Next is an example of a Uniform Hexagonal Array (UHA).
```

Nmin = 9; % Number of elements on bottom row
Nmax = 17; % Number of elements on mid row
dy = 0.5; % Row spacing
dz = 0.5*sin(pi/3); % Column spacing
rows = [Nmin:Nmax Nmax-1:-1:Nmin];
N = sum(rows); % Total number of elements
stop = cumsum(rows);
start = stop-rows+1;
pos = zeros(3,N);
count = 0;
for m = Nmin-Nmax:Nmax-Nmin
count = count+1;
idx = start(count):stop(count);
pos(2,idx) = (-(rows(count)-1)/2:(rows(count)-1)/2)*dy;
pos(3,idx) = m*dz;
end
uha = phased.ConformalArray('ElementPosition',pos,...
'ElementNormal',zeros(2,N));
viewArray(uha,'Title','Uniform Hexagonal Array (UHA)');

```

\section*{Uniform Hexagonal Array (UHA)}


\section*{Thinned Arrays}

You can also model planar antenna arrays with nonuniform grids. Next is an example of a thinned antenna array.
```

M = 19; %Number of elements on each row
N = 17; % Number of elements on each column
dy = 0.5; % Spacing between elements on each row (m)
dz = 0.5; % Spacing between elements on each column (m)
refArray = phased.URA([N M],[dz dy]);
pos = getElementPosition(refArray);
elemToRemove = [3:11:M*(N-1)/2 M*N-3:-11:(N+1)/2];
pos(:,elemToRemove) = [];
thinnedURA = phased.ConformalArray('ElementPosition',pos,...
'ElementNormal',zeros(2,size(pos,2)));
viewArray(thinnedURA,'Title','Thinned Array');

```

\section*{Thinned Array}


Array Span:
\(X\) axis \(=0 \mathrm{~m}\)
\(Y\) axis \(=9 \mathrm{~m}\)
\(Z\) axis \(=8 \mathrm{~m}\)

\section*{Hemispherical Conformal Arrays}

You can also model nonplanar arrays. In many applications, sensors must conform to the shape of the curved surface they are mounted on. Next is an example of an antenna array whose elements are uniformly distributed on a hemisphere.
```

R = 2; % Radius (m)
az = -90:10:90; % Azimuth angles
el = -80:10:80; % Elevation angles (excluding poles)
[az grid, el grid] = meshgrid(az,el);
poles = [0 0; -90 90]; % Add south and north poles
nDir = [poles [az_grid(:) el_grid(:)]']; % Element normal directions
N = size(nDir,2); % Number of elements
[x, y, z] = sph2cart(degtorad(nDir(1,:)), degtorad(nDir(2,:)),R*ones(1,N));
hemisphericalConformalArray = phased.ConformalArray(...
'ElementPosition',[x; y; z],'ElementNormal',nDir);
viewArray(hemisphericalConformalArray,...
'Title','Hemispherical Conformal Array');
view(90,0)

```


\section*{Subarrays}

You can model and visualize subarrays. Next is an example of contiguous subarrays.
```

replicatedURA = phased.ReplicatedSubarray('Subarray',phased.URA(5),...
'Layout','Rectangular',...
'GridSize',[3 3],'GridSpacing','Auto');
viewArray(replicatedURA,'Title','3x3 Subarrays Each Having 5x5 Elements');

```
\(3 \times 3\) Subarrays Each Having 5x5 Elements


Array Span:
X axis \(=0 \mathrm{~m}\)
\(Y\) axis \(=7 \mathrm{~m}\)
Z axis \(=7 \mathrm{~m}\)

You can lay out subarrays on a nonuniform grid. The next example models the failure of a T/R module for one subarray.
```

Ns = 6; % Number of subarrays
posc = zeros(3,Ns);
posc(2,:) = -5:2.5:7.5; % Subarray phase centers
posc(:,3) = []; % Take out 3rd subarray to model T/R failure
defectiveSubarray = phased.ReplicatedSubarray(...
'Subarray',phased.URA([25 5]),...
'Layout','Custom',...
'SubarrayPosition',posc, ...
'SubarrayNormal',zeros(2,Ns-1));
viewArray(defectiveSubarray,'Title','Defective Subarray');
view(90,0)

```

Defective Subarray


Subarrays can be interlaced and overlapped to mitigate grating lobes.
```

N = 40; % Number of elements
Ns = 8; % Number of subarrays
sel = zeros(Ns,N);
Nsec = N/Ns;
for m = 1:Ns
if m==1
sel(m,(m-1)*Nsec+1:m*Nsec+1) = 1;
elseif m==Ns
sel(m,(m-1)*Nsec:m*Nsec) = 1;
else
sel(m,(m-1)*Nsec:m*Nsec+1) = 1;
end
end
overlappedSubarray = phased.PartitionedArray('Array',phased.ULA(N),...
'SubarraySelection', sel);
viewArray(overlappedSubarray,'Title','Overlapped Subarrays');
set(gca,'CameraViewAngle',4.65);

```


In certain space-constrained applications, such as on satellites, multiple antenna arrays must share the same space. Groups of elements are interleaved, interlaced or interspersed. The next example models interleaved, non-overlapped subarrays.
```

N = 20;
idx = reshape(randperm(N*N),N,N);
sel = zeros(N,N*N);
for i =1:N,
sel(i,idx(i,:)) = 1;
end
interleavedArray = phased.PartitionedArray('Array',phased.URA(N),...
'SubarraySelection',sel);
viewArray(interleavedArray,'Title','Interleaved Arrays');

```

Interleaved Arrays


Another type of nonplanar antenna array is an array with multiple planar faces. The next example shows uniform hexagonal arrays arranged as subarrays on a sphere.
```

R = 9; %Radius (m)
az = unigrid(-180,60,180,'[)'); % Azimuth angles
el = unigrid(-30,60,30); % Elevation angles (excluding poles)
[az_grid, el_grid] = meshgrid(az,el);
poles = [0 0; -90 90]; % Add south and north poles
nDir = [poles [az_grid(:) el_grid(:)]']; % Subarray normal directions
N = size(nDir,2); % Number of subarrays
[x, y, z] = sph2cart(degtorad(nDir(1,:)), degtorad(nDir(2,:)),R*ones(1,N));
sphericalHexagonalSubarray = phased.ReplicatedSubarray('Subarray',uha,...
'Layout','Custom',...
'SubarrayPosition',[x; y; z], ...
'SubarrayNormal',nDir);
viewArray(sphericalHexagonalSubarray,...
'Title','Hexagonal Subarrays on a Sphere');
view(30,0)

```

\section*{Hexagonal Subarrays on a Sphere}


You can also view the array from a different angle and interactively rotate it in 3-D.
view(0,90)
rotate3d on

\section*{Hexagonal Subarrays on a Sphere}


\section*{Using Pilot Calibration to Compensate For Array Uncertainties}

This example shows how to use pilot calibration to improve the performance of an antenna array in the presence of unknown perturbations.

\section*{Introduction}

In principle, one can easily design an ideal uniform linear array (ULA) to perform array processing tasks such as beamforming or direction of arrival estimation. In practice, there is no such thing as an ideal array. For example, there will always be some inevitable manufacturing tolerances among different elements within the array. Since in general it is impossible to obtain exact knowledge about those variations, they are often referred to as uncertainties or perturbations. Commonly observed uncertainties include element gain and element phase uncertainties (electrical uncertainties) as well as element location uncertainties (geometrical uncertainties).

The presence of uncertainties in an array system causes rapid degradation in the detection, resolution, and estimation performance of array processing algorithms. Therefore it is critical to calibrate the array before its deployment. In addition to the aforementioned factors, uncertainties can also arise due to other factors such as hardware aging and environmental effects. Calibration is therefore also performed on a regular basis in all deployed systems.

There are many array calibration algorithms. This example focuses on the pilot calibration approach [1], where the uncertainties are estimated from the response of the array to one or more known external sources at known locations. The example compares the effect of uncertainties on the array performance before and after the calibration.

\section*{Modeling Electrical and Geometrical Uncertainties}

Consider an ideal 6 -element ULA along y-axis operating with half-wavelength spacing and uniform tapering. For a ULA, the expected element positions and tapers can be computed.
```

N = 6;
designed_pos = [zeros(1,N);(0:N-1)*0.5;zeros(1,N)];
designed_taper = ones(N,1);

```

Next, model the perturbations that may exist in a real array. These are usually modeled as random variables. For example, assume that the taper's magnitude and phase are perturbed by normally distributed random variables with standard deviations of 0.1 and 0.05 , respectively.
```

rng(2014);
taper = (designed_taper + 0.1*randn(N,1)).*exp(1i*0.05*randn(N,1));

```

The following figure shows the difference between the magnitude and phase of the perturbed taper and the designed taper.
```

helperCompareArrayProperties('Taper',taper,designed_taper,...

```
\{'Perturbed Array','Designed Array'\});


Perturbations in the sensor locations in the \(\mathrm{x}, \mathrm{y}\), and z directions are generated similarly with a standard deviation of 0.05 .
pos \(=\) designed_pos \(+0.05 *\) randn \((3, N)\);
The figure below shows where the element positions of the perturbed array and the ideal array.
helperCompareArrayProperties('Position',pos,designed_pos,....
\{'Perturbed Array','Designed Array'\});


\section*{Effect of Array Perturbation}

The previous section shows the difference between the designed, ideal array and the real, perturbed array. Because of these errors, if one blindly applies processing steps, such as beamforming weights, computed using the designed array, on the perturbed array, the performance degrades significantly.

Consider the case of an LCMV beamformer designed to steer the ideal array to a direction of 10 degrees azimuth with two interferences from two known directions of -10 degrees azimuth and 60 degrees azimuth. The goal is to preserve the signal of interest while suppressing the interferences.

If the precise knowledge of the array's taper and geometry is known, the beamforming weights can be computed as follows:
```

% Generate 10K samples from target and interferences with 30dB SNR
az = [-10 10 60];
Nsamp = 1e4;
ncov = db2pow(-30);
[~,~,rx_cov] = sensorsig(pos,Nsamp,az,ncov,'Taper',taper);
% Compute LCMV beamforming weights assuming the designed array
sv = steervec(pos,az);
w = lcmvweights(bsxfun(@times,taper,sv),[0;1;0],rx_cov);

```

However, since the array contains unknown perturbations, beamforming weights must be computed based on the positions and taper of the designed array.
```

designed_sv = steervec(designed_pos,az);
designed_w = lcmvweights(bsxfun(@times,designed_taper,designed_sv),...
[0;1;0],rx_cov);

```

The following figure compares the expected beam pattern with the pattern resulted from applying the designed weights on the perturbed array.
```

helperCompareBeamPattern(pos,taper,w,designed_w,-90:90,az,...
{'Expected Pattern','Uncalibrated Pattern'`,'...
'Beam Pattern Before Calibration');

```


From the plotted patterns, it is clear that the pattern resulted from the uncalibrated weights does not satisfy the requirements. It puts a null around the desired 10 degrees azimuth direction. This means that the desired signal can no longer be retrieved. Fortunately, array calibration can help bring the pattern back to order.

\section*{Pilot Calibration}

There are many algorithm available to perform array calibration. One class of commonly used algorithms is pilot calibration. The algorithm sets up several sources in known directions and then uses the array to receive the signal from those transmitters. Because these transmitters are at the known directions, the expected received signal of the ideal array can be computed. Comparing these with the actual received signal, it is possible to derive the difference due to the uncertainties and correct them.

The code below shows the process of array calibration. First, the pilot sources need to be chosen at different directions. Note that the number of pilot sources determines how many uncertainties the
algorithm can correct. In this example, to correct both sensor location uncertainties and taper uncertainty, a minimum of four external sources is required. If more sources are used, the estimation will improve.
```

pilot_ang = [-60, -5 ,5, 40; -10, 0, 0, 30];

```

The four pilot sources are located at the following azimuth and elevation angle pairs: ( \(-60,-10\) ), ( -5 , \(0),(5,0)\), and \((40,30)\). The received signal from these pilots can be simulated as
```

for m = size(pilot_ang,2):-1:1
calib_sig(:,:,m) = sensorsig(pos,Nsamp,pilot_ang(:,m),...
ncov,'Taper',taper);
end

```

Using the received signal from the pilots at the array, together with the element positions and tapers of the designed array, the calibration algorithm [1] estimates the element positions and tapers for the perturbed array.
```

[est pos,est taper] = pilotcalib(designed pos,...
calib_sig},pilot_ang,designed_taper)

```

Once the estimated positions and taper are available, these can be used in place of the designed array parameters when calculating beamformer weights. This results in the array pattern represented by the red line below.
```

corrected_w = lcmvweights(bsxfun(@times,est_taper,...
steervec(est_pos,az)),[0;1;0],rx_cov);
helperCompareBeamPattern(pos,taper,...
w,corrected_w,-90:90,az,...
{'Expected P
'Beam Pattern After Calibration');

```


The figure above shows that the pattern resulting from the calibrated array is much better than the one from the uncalibrated array. In particular, signals from the desired direction are now preserved.

\section*{Summary}

This example shows how uncertainties of an array can impact its response pattern and in turn degrade the array's performance. The example also illustrates how pilot calibration can be used to help restore the array performance.

\section*{References}
[1] N. Fistas and A. Manikas, "A New General Global Array Calibration Method", IEEE Proceedings of ICASSP, Vol. IV, pp. 73-76, April 1994.

\section*{Using Self Calibration to Accommodate Array Uncertainties}

This example shows a self calibration procedure based on a constrained optimization process. Sources of opportunity are exploited to simultaneously estimate array shape uncertainties and source directions.

This example requires Optimization Toolbox \({ }^{\mathrm{TM}}\).

\section*{Introduction}

In theory, one can design a perfect uniform linear array (ULA) to perform all sorts of processing such as beamforming or direction of arrival estimation. Typically this array will be calibrated in a controlled environment before being deployed. However, uncertainties may arise in the system during operation indicating that the array needs recalibrating. For instance, environmental effects may cause array element positions to become perturbed, introducing array shape uncertainties. The presence of these uncertainties causes rapid degradation in the detection, resolution and estimation performance of array processing algorithms. It is therefore critical to remove these array uncertainties as soon as possible.

There are many array calibration algorithms. This example focuses on one class of them, self calibration (also called auto-calibration), where uncertainties are estimated jointly with the positions of a number of external sources at unknown locations [1]. Unlike pilot calibration, this allows an array to be re-calibrated in a less known environment. However, in general, this results in a small number of signal observations with a large number of unknowns. There are a number of approaches to solving this problem as described in [2]. One is to construct and optimize against a cost function. These cost functions tend to be highly non-linear and contain local minima. In this example, a cost function based on the Multiple Signal Classification (MUSIC) algorithm [3] is formed and solved as an fmincon optimization problem using Optimization Toolbox (TM). In the literature, many other combinations also exist [2].

\section*{A Perfect Array}

Consider first a 5 -element ULA operating with half wavelength spacing is deployed. In such an array, the element positions can be readily computed.
```

N = 5;
designed_pos = [zeros(1,N);-(N-1)/2:(N-1)/2;zeros(1,N)]*0.5;

```

\section*{A Not So Perfect Array}

Next, assume the array is perturbed whilst in operation and so undergoes array shape uncertainties in the x and y dimensions. In order to fix the global axes, assume that the first sensor and the direction to the second sensor is known as prescribed in [4].
```

rng default
pos_std = 0.02;
pert̄urbed_pos = designed_pos + pos_std*[randn(2,N);zeros(1,N)];
perturbed_pos(:,1) = designed_pos(:,1); % The reference sensor has no
% uncertainties
perturbed_pos(1,2) = designed_pos(1,2); % The x axis is fixed down by
% assuming the x-location of
% another sensor is known

```

\section*{Visualize the Array Imperfections}

The figure below shows the difference between the deployed and the perturbed array.
helperCompareArrayProperties('Position', perturbed_pos,designed_pos,...
\{'Perturbed Array','Deployed Array'\});
view(90,90);

Array Element Positions


\section*{Degradation of DOA Estimation}

The previous section shows the difference between the deployed array and an array which has undergone perturbations while in operation. If one blindly uses the processing designed for the deployed array, the performance of the array reduces. For example, consider a beamscan estimator is used to estimate the directions of 3 unknown sources at -20, 40 and 85 degrees azimuth.
```

% Generate 100K samples with 30dB SNR
ncov = db2pow(-30);
Nsamp = le5; % Number of snapshots (samples)
incoming_az = [-20,40,85]; % Unknown source locations to be estimated
M = length(incoming_az);
[x_pert,~,Rxx] = sensorsig(perturbed_pos,Nsamp,incoming_az,ncov);
% Estimate the directions of the sources
ula = phased.ULA('NumElements',N);
spatialspectrum = phased.BeamscanEstimator('SensorArray',ula,...
'DOAOutputPort',true,'NumSignals',M);
[y,estimated_az] = spatialspectrum(x_pert);
incoming_az
incoming_az = 1×3

```
```

estimated_az
estimated_az = 1×3
-19 48 75

```

These uncertainties degrade the array performance. Self calibration can allow the array to be recalibrated using sources of opportunity, without needing to know their locations.

\section*{Self Calibration}

A number of self calibration approaches are based on optimizing a cost function to jointly estimate unknown array and source parameters (such as array sensor and source locations). The cost function and optimization algorithm must be carefully chosen to encourage a global solution to be reached as easily and quickly as possible. In addition, parameters associated with the optimization algorithm must be tuned for the given scenario. A number of combinations of cost function and optimization algorithm exist in the literature. For this example scenario, a MUSIC cost function [3] is chosen alongside an fmincon optimization algorithm. As the scenario changes, it may be appropriate to adapt the approach used depending upon the robustness of the calibration algorithm. For instance, in this example, the performance of the calibration algorithm drops as sources move away from end-fire or the number of array elements increase. The initial estimates of the source locations estimated previously are used as the initialization criterion of the optimization procedure.
```

fun = @(x_in)helperMUSICIteration(x_in,Rxx,designed_pos);
nvars = 2*N - 3 + M; % Assuming 2D uncertainties
x0 = [0.1*randn(1,nvars-M),estimated_az]; % Initial value
locTol = 0.1; % Location tolerance
angTol = 20; % Angle tolerance
lb = [-locTol*ones(nvars-M,1);estimated_az.'-angTol]; % lower bound
ub = [locTol*ones(nvars-M,1);estimated_\overline{az.'+angTol]; % upper bound}
options = optimoptions('fmincon','TolCon',le-6,'DerivativeCheck','on',...
'Display','off');
[x,fval,exitflag] = fmincon(fun,x0,[],[],[],[],lb,ub,[],options);
% Parse the final result
[~,perturbed_pos_est,postcal_estimated_az]=helperMUSICIteration(...
x,Rxx,designed_pos);
helperCompareArrayProperties('Position',perturbed_pos,perturbed_pos_est,...
{'Perturbed Array','Calibrated Array'});
view(90,90);

```



By performing this calibration process the accuracy of the source estimation has improved significantly. In addition, the positions of the perturbed sensors have also been estimated which can be used as the new array geometry in the future.

\section*{Summary}

This example shows how array shape uncertainties can impact the ability to estimate the direction of arrival of unknown sources. The example also illustrates how self calibration can be used to overcome the effects of these perturbations and estimate these uncertainties simultaneously.

\section*{References}
[1]Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.
[2] E Tuncer and B Friedlander. Classical and Modern Direction-of-Arrival Estimation. Elsevier, 2009.
[3] Schmidt, R. O. "Multiple Emitter Location and Signal Parameter Estimation." IEEE Transactions on Antennas and Propagation. Vol. AP-34, March, 1986, pp. 276-280.
[4] Y. Rockah and P. M. Schultheiss. Array shape calibration using sources in unknown locations- Part I: Farfield sources. IEEE Trans. ASSP, 35:286-299, 1987.

\section*{Subarrays in Phased Array Antennas}

This example shows how to model subarrays, commonly used in modern phased array systems, using Phased Array System Toolbox \({ }^{\text {TM }}\) and perform analyses.

\section*{Introduction}

Phased array antennas provide many benefits over traditional dish antennas. The elements of phased array antennas are easier to manufacture; the entire system suffers less from component failures; and best of all, can be electronically scanned toward different directions.

However, such flexibility does not come for free. Taking full advantage of a phased array requires placing steering circuitry and T/R switches behind each individual element. For applications that require large arrays with thousands or tens of thousands of elements, the cost of doing so is too high to be practical. In addition, in many such applications, the desired performance does not require full degree of freedom from the array. Hence, in practice, deployed systems often use a compromised approach. Elements are grouped into subarrays and then subarrays form the entire array. The elements are still easy to manufacture; the entire array is still robust with respect to component failures; in addition, T/R switches are only needed at each subarray, thus significantly reducing the cost.

The following sections show how to model a subarray network with different configurations for two specific applications: limited field of view (LFOV) arrays and wideband arrays.

\section*{Limited Field of View (LFOV) Arrays}

LFOV arrays are commonly used in satellite applications. As the name suggests, an LFOV array only scans within a very limited window, normally less than 10 degrees. Because of that, it is possible to use subarrays and such subarrays can be placed at a spacing much larger than half of the wavelength.

The simplest way to construct an array with subarrays is to contiguously tile the subarray. The following code snippet constructs a 64-element ULA consists of eight 8 -element ULAs. Within each subarray, the elements are spaced by half the wavelength. Note that there is no steering capability inside each subarray so the array can only be steered using subarrays.

The array geometry can be seen in the following figure.

```

fc = 3e8;
c = 3e8;
antenna = phased.IsotropicAntennaElement('BackBaffled',true);
N = 64;
Nsubarray = 8;
subula = phased.ULA(N/Nsubarray,0.5*c/fc,'Element',antenna);
replarray = phased.ReplicatedSubarray('Subarray',subula,...
'GridSize',[1 Nsubarray])
replarray =
phased.ReplicatedSubarray with properties:

```
```

 Subarray: [1x1 phased.ULA]
 Layout: 'Rectangular'
 GridSize: [1 8]
 GridSpacing: 'Auto'
 SubarraySteering: 'None'

```

Next, compare the radiation pattern of this array to the radiation pattern of a 64-element ULA with no subarrays.
```

refula = phased.ULA(N,0.5*c/fc,'Element',antenna);
subplot(2,1,1), pattern(replarray,fc,-180:180,0,'Type','powerdb',...
'CoordinateSystem','rectangular','PropagationSpeed',c);
title('Subarrayed ULA Azimuth Cut'); axis([-90 90 -50 0]);
subplot(2,1,2), pattern(refula,fc,-180:180,0,'Type','powerdb',...
'CoordinateSystem','rectangular','PropagationSpeed ', c) ;
title('ULA Azimuth Cut'); axis([-90 90 -50 0]);

```


From the plot, it is clear that the two responses are identical at broadside. Note that even though the subarrays are widely spaced, there is no grating lobe in the response.

Next, steer both arrays to 2 degrees azimuth.
```

steerang = 2;
steeringvec_replarray = phased.SteeringVector('SensorArray',replarray,...
'PropagationSpeed',c);
w = steeringvec_replarray(fc,steerang);

```
```

steeringvec_refula = phased.SteeringVector('SensorArray',refula,...
'PropagationSpeed',c);
wref = steeringvec_refula(fc,steerang);
subplot(2,1,1), pattern(replarray,fc,-180:180,0,'Type','powerdb',...
'CoordinateSystem','rectangular','PropagationSpeed ',c,'Weights',w);
title('Subarrayed ULA Azimuth Cut'); axis([-90 90 -50 0]);
subplot(2,1,2), pattern(refula,fc,-180:180,0,'Type','powerdb',...
'CoordinateSystem','rectangular','PropagationSpeed', c,'Weights',wref);
title('ULA Azimuth Cut'); axis([-90 90 -50 0]);

```


In this case, the response of the reference array still retains its original shape, but this is not the case for the subarrayed ULA. For the subarrayed ULA, although the mainlobe is correctly steered and stands well above the sidelobes, the response clearly shows what is often referred to as quantization lobes. The name comes from the fact that the steering is at the subarray level; hence, the required phase shift for each element is quantized at the subarray level. This effect gets worse when the array is steered further from the broadside. The following plots show the response after steering the arrays toward 6 degrees off broadside.
```

steerang = 6;
w = steeringvec_replarray(fc,steerang);
wref = steeringvec_refula(fc,steerang);
subplot(2,1,1), pattern(replarray,fc,-180:180,0,'Type','powerdb',...
'CoordinateSystem','rectangular','PropagationSpeed ', c,'Weights',w);
title('Subarrayed ULA Azimuth Cut'); axis([-90 90 -50 0]);
subplot(2,1,2), pattern(refula,fc,-180:180,0,'Type','powerdb',...

```
```

 'CoordinateSystem','rectangular','PropagationSpeed',c,'Weights',wref);
 title('ULA Azimuth Cut'); axis([-90 90 -50 0]);

```


Therefore, when forming an LFOV, one needs to be cautious about using contiguous subarrays.
One way to compensate for quantization lobes is to add phase shifters behind each element. Although it increases the cost, it still provides a big saving compared to the full degree of freedom array because the \(T / R\) switches, which are the most expensive parts, only need to be implemented at the subarray level. If there is a phase shifter behind each element, then the response becomes much better, as shown in the following plots, assuming the phase shifters behind each element are also configured to point each subarray toward 6 degrees off the broadside.
```

release(replarray);
replarray.SubarraySteering = 'Phase';
replarray.PhaseShifterFrequency = fc;
subplot(2,1,1);
pattern(replarray,fc,-180:180,0,'Type','powerdb','Weights',w,...
'CoordinateSystem','rectangular','PropagationSpeed',c,'SteerAngle' ,6);
title('Subarrayed ULA Azimuth Cut'); axis([-90 90 -50 0]);
subplot(2,1,2);
pattern(refula,fc,-180:180,0,'Type',' powerdb',...
'CoordinateSystem','rectangular','PropagationSpeed', c,'Weights',wref);
title('ULA Azimuth Cut'); axis([-90 90 -50 0]);

```


As a side note, the element and the subarrays do not necessarily steer to the same direction. In some applications, the elements inside the subarrays are steered toward a specific direction. The subarrays can then be steered to slightly different directions to search the vicinity.

\section*{Wideband Scanning Arrays}

Although an electronically scanned array is often called a phased array, in reality, adjusting the phase is only one way to steer the array. The phase shifters are, by nature, narrowband devices so they only work well within a narrow band, especially for large arrays. The following figure shows the radiation patterns when the reference array is phase steered to 30 degrees, both at the carrier frequency and 3 percent above the carrier frequency.
```

fsteer = [1 1.03]*fc;
steerang = 30;
release(steeringvec_refula);
wref = squeeze(steeringvec_refula(fc,steerang));
subplot(2,1,1)
pattern(refula,fsteer,-180:180,0,'Type','powerdb',...
'CoordinateSystem','rectangular','PropagationSpeed',c,'Weights',wref);
title('ULA Azimuth Cut'); axis([-90 90 -50 0]);
subplot(2,1,2)
pattern(refula,fsteer,-180:180,0,'Type','powerdb',...
'CoordinateSystem','rectangular','PropagationSpeed ',c,'Weights',wref);
title('ULA Azimuth Cut, Peak Zoom View'); axis([25 35 -5 0]);

```


It is obvious from the figure that even though the frequency offset is a mere 3 percent, the peak location moved away from the desired direction. This is referred to as squint effect. Thus, to achieve steering across a wideband, one needs to steer using true time delays.

The most popular way to achieve true time delay is to use cables. However, in a big array aperture with thousands of elements, implementing the potentially huge time delay can require a lot of cables. Hence, this approach is not only expensive, but also cumbersome. Subarrays provide a compromise between the accuracy and feasibility. In summary, within each subarray, the steering is achieved by the phase; and among subarrays, the steering is done by true time delays.

The simplest way to build such an array is to contiguously group the subarrays, as in previous sections.

The following plots compare the radiation patterns at three frequencies for a subarrayed ULA. The array is steered toward 30 degrees azimuth at the subarray level using true time delay. Again, within each subarray, the elements are also steered toward 30 degrees azimuth. The radiation pattern is shown at the carrier frequency, 10 percent above the carrier frequency, and 15 percent above the carrier frequency.
```

steerang = 30;
fsteer = [1 1.1 1.15]*fc;
release(steeringvec_replarray);
release(steeringvec_refula);
w = squeeze(steeringvec_replarray(fsteer,steerang));
wref = squeeze(steeringvec_refula(fsteer,steerang));

```
```

subplot(2,1,1)
pattern(replarray,fsteer,-180:180,0,'Type','powerdb',...
'PropagationSpeed',c,'CoordinateSystem','rectangular','Weights',w,...
'SteerAngle',steerang);
title('Subarrayed ULA Azimuth Cut'); axis([-90 90 -50 0]);
subplot(2,1,2)
pattern(replarray,fsteer,-180:180,0,'Type',' powerdb',...
'PropagationSpeed',c,'CoordinateSystem','rectangular','Weights',w,...
'SteerAngle',steerang);
title('Subarrayed ULA Azimuth Cut, Peak Zoom View'); axis([25 35 -5 0]);

```


The plots show that the squint effect has been suppressed even though the bandwidth is much wider compared to the previous case. However, as in the LFOV case, if the required bandwidth extends to 15 percent above the carrier frequency, the radiation pattern becomes undesirable due to quantization lobes.

One way to address this issue is to use a configuration with aperiodic subarrays. Examples of such configurations are interlaced subarrays, overlapped subarrays, and even random subarrays. Next example shows an interlaced subarray, where the ends of the subarray are interlaced and overlapped. Because it is no longer formed by identical subarrays, one needs to start with a large array aperture and partition it to achieve such configuration.

The array geometry can be seen in the following figure.

\section*{}
```

partarray = ...
phased.PartitionedArray('Array',phased.ULA(N,0.5,'Element',antenna),...
'SubarraySteering','Phase');
sel = zeros(Nsubarray,N);
Nsec = N/Nsubarray;
for m = 1:Nsubarray
if m==1
sel(m,(m-1)*Nsec+1:m*Nsec+1) = 1;
elseif m==Nsubarray
sel(m,(m-1)*Nsec:m*Nsec) = 1;
else
sel(m,(m-1)*Nsec:m*Nsec+1) = 1;
end
end
partarray.SubarraySelection = sel
partarray =
phased.PartitionedArray with properties:
Array: [1x1 phased.ULA]
SubarraySelection: [8x64 double]
SubarraySteering: 'Phase'
PhaseShifterFrequency: 300000000
NumPhaseShifterBits: 0

```

The resulting radiation pattern can be seen in the following figures.
```

steeringvec_partarray = ...
phased.S.SteeringVector('SensorArray',partarray,'PropagationSpeed', c);
wwa = squeeze(steeringvec_partarray(fsteer,steerang));
subplot(2,1,1);
pattern(partarray,fsteer, -180:180,0,'Type','powerdb',...
'PropagationSpeed',c,'CoordinateSystem','rectangular','Weights',wwa,...
'SteerAngle',steerang);
title('Interlaced and Overlapped Subarrayed ULA Azimuth Cut');
axis([-90 90 -50 0]);
subplot(2,1,2);
pattern(replarray,fsteer,-180:180,0,'Type','powerdb',...
'PropagationSpeed',c,'CoordinateSystem','rectangular','Weights',w,...
'SteerAngle',steerang);
title('Contiguous Subarrayed ULA Azimuth Cut'); axis([-90 90 -50 0]);

```


The new radiation pattern suppresses the largest quantization lobe, achieving a gain of around 5 dB . Higher gains can be achieved by designing a more sophisticated overlapped subarray network, but that is outside the scope of this example.

\section*{Summary}

This example shows how to model a phased array with subarrays and illustrates several practical concerns when applying the subarray technique to applications such as LFOV arrays or wideband scanning arrays.

\section*{Reference}
[1] Robert Mailloux, Electronically Scanned Arrays, Morgan \& Claypool, 2007.

\section*{Tapering, Thinning and Arrays with Different Sensor Patterns}

This example shows how to apply tapering and model thinning on different array configurations. It also demonstrates how to create arrays with different element patterns.

\section*{ULA Tapering}

This section shows how to apply a Taylor window on the elements of a uniform linear array (ULA) in order to reduce the sidelobe levels.
```

%set the random seed
rs = rng(6);
% Create a ULA antenna of 10 elements.
N = 20;
ula = phased.ULA(N);
% Clone the ideal ULA
taperedULA = clone(ula);
% Calculate and assign the taper
nbar = 5; sll = -20;
taperedULA.Taper = taylorwin(N,nbar,sll).';

```

Compare the response of the tapered to the untapered array. Notice how the sidelobes of the tapered ULA are lower.
```

helperCompareResponses(taperedULA,ula, ...
'Ideal ULA versus Tapered ULA response', ...
{'Tapered','Not tapered'});

```


\section*{ULA Thinning}

This section shows how to model thinning using tapering. When thinning, each element of the array has a certain probability of being deactivated or removed. The taper values can be either 0 , for an inactive element, or 1 for an active element. Here, the probability of keeping the element is proportional to the value of the Taylor window at that element.
```

%Get that previously computed taper values corresponding to a Taylor
% window
taper = taperedULA.Taper;
% Create a random vector uniformly distributed between 0 and 1
randvect = rand(size(taper));
% Compute the taper values whose probability of being 1 is equal to
% the value of the normalized Taylor window at the corresponding sensor.
thinningTaper = zeros(size(taper));
thinningTaper(randvect<taper/max(taper)) = 1;
% Apply thinning
thinnedULA = clone(ula);
thinnedULA.Taper = thinningTaper;

```

The following plot shows how the thinning taper values are distributed. Notice on the edges when the window level goes down, the number of inactive sensors is up.
```

plot(taper)

```
hold on
plot(thinningTaper,'o')
hold off
legend('Taylor window','Thinning taper')
title('Applied Thinning Taper');xlabel('Sensor Position');
ylabel('Taylor Window Values');


Compare the response of the thinned to the ideal array. Notice how the sidelobes of the thinned ULA are lower.
```

helperCompareResponses(thinnedULA,ula, ...
'Ideal ULA versus Thinned ULA response', ...
{'Thinned','Not thinned'});

```


\section*{URA Tapering}

This section shows how to apply a Taylor window along both dimensions of a 13 by 10 uniform rectangular array (URA).
```

uraSize = [13,10];
heterogeneousURA = phased.URA(uraSize);
nbar=2; sll = -20;
% along the z axis
twinz = taylorwin(uraSize(1),nbar,sll);
% along the y axis
twiny = taylorwin(uraSize(2),nbar,sll);
% Get the total taper values by multiplying the vectors of both dimensions
tap = twinz*twiny.';
% Apply the taper
taperedURA = clone(heterogeneousURA);
taperedURA.Taper = tap;

```

View the sensor's color brightness in proportion to the taper magnitudes
viewArray(taperedURA,'Title','Tapered URA','ShowTaper',true);

\section*{Tapered URA}


Plot the taper values at each sensor in 3d space
clf pos \(=\) getElementPosition(taperedURA); plot3(pos(2,:), pos(3,:),taperedURA.Taper(:),'*');
title('Applied Taper') ;ylabel('Sensor Position'); zlabel('Taper Values');

\section*{Applied Taper}


Compare the response of the tapered to the untapered array. Notice how the sidelobes of the tapered URA are lower.
helperCompareResponses(heterogeneousURA, taperedURA, ...
'Ideal URA versus Tapered URA response', ... \{'Not tapered','Tapered'\});


\section*{Circular Planar Tapering}

This section shows how to apply a taper on a circular planar array with a radius of 5 meters and distance between elements of 0.5 meters.
```

radius = 5; dist = 0.5;
numElPerSide = radius*2/dist;
% Get the positions of the smallest URA which could fit the circular planar
% array
pos = getElementPosition(phased.URA(numElPerSide,dist));
% Remove all elements in URA which are outside the circle
elemToRemove = sum(pos.^2) > radius^2;
pos(:,elemToRemove) = [];
% Create the circular planar array
circularPlanarArray = phased.ConformalArray('ElementPosition',pos,...
'ElementNormal',[0;0]*ones(1,size(pos,2)));

```

Apply a circular Taylor window
taperedCircularPlanarArray = clone(circularPlanarArray);
nbar=3; sll = -25;
taperedCircularPlanarArray.Taper = taylortaperc(pos,2*radius,nbar,sll).';
View the array and plot the taper values at each sensor.
viewArray(taperedCircularPlanarArray,...
'Title','Tapered Circular Planar Array','ShowTaper',true)

\section*{Tapered Circular Planar Array}

clf
plot3(pos(2,:), pos(3,:),taperedCircularPlanarArray.Taper,'*');
title('Applied Taper');ylabel('Sensor Position');zlabel('Taper Values');

\section*{Applied Taper}


Compare the response of the tapered to the untapered array. Notice how the sidelobes of the tapered array are lower.
```

helperCompareResponses(circularPlanarArray,taperedCircularPlanarArray, ...
'Ideal versus Tapered response', ...
{'Not tapered','Tapered'});

```


\section*{Circular Planar Thinning}

Calculate the thinning taper values similar to the ULA section.
```

taper = taperedCircularPlanarArray.Taper;
randvect = rand(size(taper));
thinningTaper = zeros(size(taper));
thinningTaper(randvect<taper/max(max(taper))) = 1;
thinnedCircularPlanarArray = clone(circularPlanarArray);
thinnedCircularPlanarArray.Taper = thinningTaper;

```

View the array and Compare the response of the thinned to the ideal array.
```

viewArray(thinnedCircularPlanarArray,'ShowTaper',true)

```

clf;
helperCompareResponses(circularPlanarArray,thinnedCircularPlanarArray, ...
'Ideal versus Thinned response', ...
\{'Not thinned','Thinned'\});


\section*{Multiple Element Patterns in URA}

This section shows how to create a 13 by 10 URA with sensor patterns on the edges and corners different than the patterns of the remaining sensors. This ability could be used to model coupling effects.

Create three different cosine patterns with the following azimuth and elevation cosine exponents [azim exponent, elev exponent]: [2, 2] for the edges, [4, 4] for the corners, and [1.5, 1.5] for the main sensors.
```

mainAntenna = phased.CosineAntennaElement('CosinePower',[1.5 1.5]);
edgeAntenna = phased.CosineAntennaElement('CosinePower',[2 2]);
cornerAntenna = phased.CosineAntennaElement('CosinePower',[4 4]);

```

Map the sensors to the patterns.
```

uraSize = [13,10];
% Create a cell array which includes all the patterns
patterns = {mainAntenna, edgeAntenna, cornerAntenna};
% Initialize all sensors to first pattern.
patternMap = ones(uraSize);
% Set the edges to the second pattern.
patternMap([1 end],2:end-1) = 2;
patternMap(2:end-1,[1 end]) = 2;

```
```

% Set the corners to the third pattern.
patternMap([1 end],[1 end]) = 3;
% Create the URA
heterogeneousURA = phased.HeterogeneousURA('ElementSet' , patterns, ...
'ElementIndices', patternMap);

```

View the pattern layout in the array.
helperViewPatternArray(heterogeneousURA);

Array Geometry
\begin{tabular}{ll|}
\hline 0 & Pattern 1 \\
0 & Pattern 2 \\
& Pattern 3 \\
\hline
\end{tabular}


Aperture Size:
Y axis \(=5.0 \mathrm{~m}\)
Z axis \(=6.5 \mathrm{~m}\)
Element Spacing:
\(\Delta y=500 \mathrm{~mm}\)
\(\Delta z=500 \mathrm{~mm}\)

Compare the response of the multiple pattern array to the single pattern array.
clf;
helperCompareResponses( heterogeneousURA, ... phased.URA(uraSize,'Element',mainAntenna), ...
'Multiple versus single pattern response', ...
\{'Single Pattern','Multiple Patterns'\});


\section*{Multiple Element Patterns in Circular Planar Arrays}

This section shows how to set the pattern of sensors located more than 4 meters from the center of the array.
```

% Create a cell array which includes all the patterns
patterns = {mainAntenna, edgeAntenna};
% Get positions
pos = getElementPosition(circularPlanarArray);
% Initialize all sensors to first pattern in sensorPatterns.
patternMap = ones(1,size(pos,2));
% Get the indexed of the sensors more than 4 meters away from the center.
sensorIdx = find(sum(pos.^2) > 4^2);
% Set the edges to the second pattern in sensorPatterns.
patternMap(sensorIdx) = 2;
% Set the corresponding properties
heterogeneousCircularPlanarArray = ...
phased.HeterogeneousConformalArray('ElementPosition',pos,...
'ElementNormal',[1;0]*ones(1,size(pos,2)),...
'ElementSet' , patterns, ...
'ElementIndices', patternMap);

```

View the pattern layout in the array.
helperViewPatternArray(heterogeneousCircularPlanarArray);


Compare the response of the multiple pattern array to the single pattern array.
```

clf;

```
helperCompareResponses(circularPlanarArray,...
    heterogeneousCircularPlanarArray,...
    'Multiple versus single pattern response',...
    \{'Single Pattern','Multiple Patterns'\});
\% reset the random seed
rng(rs)


\section*{Summary}

This example demonstrated how to apply taper values and model thinning using taper values for different array configurations. It also showed how to create arrays with different element patterns.

\section*{Frequency Agility in Radar, Communications, and EW Systems}

This example shows how to model frequency agility in radar, communications and EW systems to counter the effects of interference.

\section*{Introduction}

Active electronically steered phased array systems can support multiple applications using the same array hardware. These applications may include radar, EW, and communications. However, the RF environments that these types of systems operate in are complex and sometimes hostile. For example, a repeater jammer can repeat the received radar signal and retransmit it to confuse the radar. In some literature, this is also called spoofing. Frequency agility can be an effective technique to counter the signals generated from interference sources and help support effective operations of these systems.

In this example, we first set up a scenario with a stationary monostatic radar and a moving aircraft target. The aircraft then generates a spoofing signal which confuses the radar. Once the radar detects the jamming source, frequency agility techniques can be employed which allows the radar to overcome the interference.

\section*{System Simulation In an Interference Free Environment}

Assume an X-band monostatic radar at the origin.
```

fc = 10e9; % Define frequency of operation for X-band Radar
fs = 2e6; % Define sample rate for the systems
c = 3e8;
lambda = c/fc;
radar_pos = [0;0;0];
radar_vel = [0;0;0];

```

The radar receiver, which can also function as an EW receiver, is a 64 -element (8x8) URA with half wavelength spacing.
```

% Array specification for the radar
taper = taylorwin(8);
taperURA = taper.*taper';
antenna = phased.URA('Element',phased.CosineAntennaElement,...
'Size',[8 8],'ElementSpacing',[lambda/2 lambda/2],...
'Taper',taperURA);

```

The beam pattern of the array is shown in the following figure.
```

pattern(antenna,fc,'Type','powerdb');

```


The radar transmits linear FM pulses. The transmitter and receiver specifications are:
```

wav = phased.LinearFMWaveform('SampleRate',fs,...
'PulseWidth', 10e-5, 'SweepBandwidth', 1e5,'PRF',4000,...
'FrequencyOffsetSource','Input port');
tx = phased.Transmitter('Gain',20,'PeakPower',500);
txArray = phased.WidebandRadiator('SampleRate', fs,...
'Sensor',antenna,'CarrierFrequency', fc);
rxArray = phased.WidebandCollector('SampleRate', fs,...
'Sensor',antenna,'CarrierFrequency', fc);
rxPreamp = phased.ReceiverPreamp('Gain',10,'NoiseFigure',5,...
'SampleRate', fs);

```

The environment and target are described below. Wideband propagation channels are used to allow us to propagate waveforms with different carrier frequencies.
```

target = phased.RadarTarget('MeanRCS',100,'OperatingFrequency',fc);
target_pos = [8000;1000;1000];
target_vel = [100;0;0];
% Outgoing and incoming channel
envout = phased.WidebandFreeSpace('TwoWayPropagation',false,...
'SampleRate', fs,'OperatingFrequency',fc,'PropagationSpeed',c);
envin = phased.WidebandFreeSpace('TwoWayPropagation',false,...
'SampleRate', fs,'OperatingFrequency',fc,'PropagationSpeed',c);

```

In this example, two one-way propagation channels are used because the jamming signal only propagates through the return channel.

The received echo can be simulated as
```

rng(2017);
[tgtRng, tgtAng] = rangeangle(target_pos, radar_pos);
x = wav(0); % waveform
xt = tx(x); % transmit
xtarray = txArray(xt, tgtAng); % radiate
yp = envout(xtarray,radar_pos,target_pos,radar_vel,target_vel); % propagate
yr = target(yp); % reflect
ye = envin(yr,target_pos,radar_pos,target_vel,radar_vel); % propagate
yt = rxArray(ye,tgtAng); % collect
yt = rxPreamp(yt); % receive

```

We can perform a direction of arrival estimate using a 2D beam scan and used the estimated azimuth and elevation angles to direct the beamformer.
```

estimator = phased.BeamscanEstimator2D('SensorArray',antenna,...
'DOAOutputPort',true,...
'OperatingFrequency', fc,...
'NumSignals',1,...
'AzimuthScanAngles',-40:40,...
'ElevationScanAngles',-60:60);
[~,doa] = estimator(yt);
beamformer = phased.SubbandPhaseShiftBeamformer('SensorArray',antenna,...
'OperatingFrequency',fc,'DirectionSource','Input port',...
'SampleRate',fs, 'WeightsOutputPort',true);
[ybf,~] = beamformer(yt,doa);

```

The beamformed signal can then be passed through matched filter and detector.
```

mfcoeff1 = getMatchedFilter(wav);
mf1 = phased.MatchedFilter('Coefficients',mfcoeff1);
y1 = mf1(ybf);
nSamples = wav.SampleRate/wav.PRF;
t = ((0:nSamples-1)-(numel(mfcoeff1)-1))/fs;
r = t*c/2;
plot(r/1000,abs(y1),'-'); grid on;
xlabel('Range (km)');
ylabel('Pulse Compressed Signal Magnitude');

```


The figure shows that the target produces a dominant peak in the received signal.

\section*{Signal Analysis at the Target/Jammer}

The radar works very well in the above example. However, in a complex environment, interferences can affect the radar performance. The interferences may be from other systems, such as wireless communication signals, or jamming signals. Modern radar systems must be able to operate in such environments.

A phased array radar can filter out interference using spatial processing. If the target and the jamming source are not closely located in angular space, beamforming may be an effective way to suppress the jammer. More details can be found in the "Array Pattern Synthesis" on page 17-11 example.

This example focuses on the situation where the target and the interference are closely located so that the spatial processing cannot be used to separate the two. Consider the case where the target aircraft can determine the characteristics of the signal transmitted from the radar and use that information to generate a pulse that will confuse the radar receiver. This is a common technique used in jamming or spoofing to draw the radar away from the true target.

The detected signal characteristics are displayed below
```

pw = (pulsewidth(abs(yp), fs));
prf = round(1/pulseperiod(abs([yp;yp]), fs));
bw= obw(yp,fs,[],95);
fprintf('Waveform Characteristics:\n');

```
```

Waveform Characteristics:
fprintf('Pulse width:\t\t%f\n',pw);
Pulse width: 0.000100
fprintf('PRF:\t\t\t%f\n',prf);
PRF: 4000.000000
fprintf('Sweep bandwidth:\t%f\n',bw);
Sweep bandwidth: 112041.098255

```

The jammer needs some time to do these analysis and prepare for the jamming signal so it is hard to create an effective spoofing signal right away, but generally within several pulses intervals the jamming signal is ready and the jammer can put it within arbitrary position in a pulse to make the spoofing target look closer or father compared to the true target. It is also worth noting that with the latest hardware, the time needed to estimate the characteristics of the signal decreases dramatically.

Assume the jammer wants to put the signal at about 5.5 km out, the jammer could transmit the jamming signal at the right moment to introduce the corresponding delay. In addition, because this is a one way propagation from the jammer to the radar, the required power is much smaller. This is indeed what makes jamming very effective as it does not require much power to blind the radar.
```

jwav = phased.LinearFMWaveform('SampleRate',fs,...
'PulseWidth',pw,'SweepBandwidth',bw,'PRF',prf);
xj = jwav();
Npad = ceil(5500/(c/fs));
xj = circshift(xj,Npad); % pad zero to introduce corresponding delay
txjam = phased.Transmitter('Gain',0,'PeakPower',5);
xj = txjam(xj);
ye = envin(yr+xj,target_pos,radar_pos,target_vel,radar_vel);
yt = rxArray(ye,tgtAng);
yt = rxPreamp(yt);
ybfj = beamformer(yt,doa);
ylj = mfl(ybfj); % Jammer plus target return
plot(r/1000,abs(y1j)); grid on;
xlabel('Range (km)');
ylabel('Magnitude');
title('Pulse Compressed Return From Target And Jammer');

```


The received signal now contains both the desired target return and the jamming signal. In addition, the jamming signal appears to be closer. Therefore, the radar is more likely to lock on to the closest target thinking that one is the most prominent threat and spend less resource on the true target.

\section*{Frequency Agility to Counter Interference}

One possible approach to mitigate the jamming effect at the radar receiver is to adopt a predefined frequency hopping schedule. In this case, the waveform transmitted from radar may change carrier frequency from time to time. Since the hopping sequence is only known to the radar, the jammer would not be able to follow the change right away. Instead, it needs to take more time to acquire the correct carrier frequency before a new jamming signal can be generated. It also requires more advanced hardware on jammer to be able to handle transmission of signals over a broader bandwidth. Thus, the frequency hop can create a time interval that radar operates without being affected by the spoofing signal. In addition, the radar can hop again before the jammer can effectively generate the spoofing signal.

In the following situation, assume that the transmitted signal hops 500 kHz from the original carrier frequency of 10 GHz . Therefore, the new waveform signal becomes
```

deltaf = fs/4;
xh = wav(deltaf); % hopped signal

```

The figure below shows the spectrogram of both the original signal and the hopped signal. Note that the hopped signal is a shift in the frequency domain compared to the original signal.
pspectrum( \(x+x h, f s\), 'spectrogram')


Using similar approach outlined in earlier sections, the radar echo can be simulated using the new waveform. Note that since jammer is not aware of this hop, the jamming signal is still the same.
```

xth = tx(xh);
xtharray = txArray(xth, tgtAng);
yph = envout(xtharray,radar_pos,target_pos,radar_vel,target_vel);
yrh = target(yph);
yeh = envin(yrh+xj,target_pos,radar_pos,target_vel,radar_vel);
yth = rxArray(yeh,tgtAng);
yth = rxPreamp(yth);
ybfh = beamformer(yth,doa);

```

Because the hopping schedule is known to the radar, the signal processing algorithm could use that information to extract only the frequency band that around the current carrier frequency. This helps reject the interference at other bands and also improves the SNR since the noise from other bands are suppressed. In addition, when the waveform hops, the matched filter needs to be updated accordingly.

Let us now apply the corresponding bandpass filters and matched filters to the received signal.
First, create a bandpass filter using the signal's bandwidth.
buttercoef = butter(9,bw/fs);
Then, we can modulate the resulting bandpass filter with a carrier to obtain the bandpass filter around that carrier frequency.
```

bf2 = buttercoef.*exp(1i*2*pi*deltaf*(0:numel(buttercoef)-1)/fs);

```

Similarly, the matched filter coefficient needs to be modulated too.
```

mfcoeff2 = getMatchedFilter(wav,'Frequency0ffset',deltaf);
mf2 = phased.MatchedFilter('Coefficients',mfcoeff2);
% extract bands and apply matched filters
yb2 = mf2(filter(bf2(:),1,ybfh));
% plot the matched filtered signal
plot(r/1000,abs(yb2)); grid on;
xlabel('Range (km)'); ylabel('Magnitude');
title('Pulse Compressed Signal');

```


The figure shows that with the adoption of frequency hopping, the target echo and the jamming signal can be separated. Since the jammer is still in the original band, only the true target echo appears in the new frequency band where the waveform currently occupies, thus suppressing the impact of the jammer.

\section*{Summary}

This example shows that adopting frequency agility can help counter the jamming effect in a complex RF environment. The example simulates a system with frequency hopping waveform and verifies that this technique helps the radar system to identify the true target echo without being confused by the jamming signal.

\section*{Simultaneous Range and Speed Estimation Using MFSK Waveform}

This example compares triangle sweep FMCW and MFSK waveforms used for simultaneous range and speed estimation for multiple targets. The MFSK waveform is specifically designed for automotive radar systems used in advanced driver assistance systems (ADAS). It is particularly appealing in multi-target scenarios because it does not introduce ghost targets.

\section*{Triangle Sweep FMCW Waveform}

In example "Automotive Adaptive Cruise Control Using FMCW Technology" on page 17-367, an automotive radar system is designed to perform range estimation for an automatic cruise control system. In the latter part of that example, a triangle sweep FMCW waveform is used to simultaneously estimating range and speed of the target vehicle.

Although the triangle sweep FMCW waveform solves the range-Doppler coupling issue elegantly for a single target, its processing becomes complicated in multi-target situations. Next section shows how a triangle sweep FMCW waveform behaves when two targets are present.

The scene includes a car 50 meters away from the radar, traveling at \(96 \mathrm{~km} / \mathrm{h}\) along the same direction as the radar and a truck at 55 meters away, traveling at \(70 \mathrm{~km} / \mathrm{h}\) in the opposite direction. The radar itself is traveling at \(60 \mathrm{~km} / \mathrm{h}\).
```

rng(2015);

```
[ fmcwwaveform, target, tgtmotion, channel, transmitter, receiver, ...
    sensormotion, c,fc,lambda,fs,maxbeatfreq] = helperMFSKSystemSetup;

Next, simulate the radar echo from the two vehicles. The FMCW waveform has a sweep bandwidth of 150 MHz so the range resolution is 1 meter. Each up or down sweep takes 1 milliseconds so each triangle sweep takes 2 milliseconds. Note that only one triangle sweep is needed to perform the joint range and speed estimation.
```

Nsweep = 2;
xr = helperFMCWSimulate(Nsweep,fmcwwaveform,sensormotion,tgtmotion,...
transmitter,channel,target,receiver);

```

Although the system needs a 150 MHz bandwidth, the maximum beat frequency is much less. This means that at the processing side, one can decimate the signal to a lower frequency to ease the hardware requirements. The beat frequencies are then estimated using the decimated signal.
```

dfactor = ceil(fs/maxbeatfreq)/2;
fs_d = fs/dfactor;
fbu_rng = rootmusic(decimate(xr(:,1),dfactor),2,fs_d);
fbd_rng = rootmusic(decimate(xr(:,2),dfactor),2,fs_d);

```

Now there are two beat frequencies from the up sweep and two beat frequencies from the down sweeps. Since any pair of beat frequencies from an up sweep and a down sweep can define a target, there are four possible combinations of range and Doppler estimates yet only two of them are associated with the real targets.
```

sweep_slope = fmcwwaveform.SweepBandwidth/fmcwwaveform.SweepTime;
rng_est = beat2range([fbu_rng fbd_rng;fbu_rng flipud(fbd_rng)],...
sweep_slope,c)

```
rng_est \(=4 \times 1\)
49.9802
54.9406
64.2998
40.6210

The remaining two are what often referred to as the ghost targets. The relationship between real targets and ghost targets can be better explained using time-frequency representation.


As shown in the figure, each intersection of a up sweep return and a down sweep return indicates a possible target. So it is critical to distinguish between the true targets and the ghost targets. To solve this ambiguity, one can transmit additional FMCW signals with different sweep slopes. Since only the true targets will occupy the same intersection in the time frequency domain, the ambiguity is resolved. However, this approach significantly increases the processing complexity as well as the processing time needed to obtain the valid estimates.

\section*{MFSK Waveform}

Multiple frequency shift keying (MFSK) waveform [1] is designed for automotive radar to achieve simultaneous range and Doppler estimation under multiple targets situation without falling into the trap of ghost targets. Its time frequency representation is shown in the following figure.

\section*{Frequency \(\uparrow\)}

The figure indicates that the MFSK waveform is a combination of two linear FMCW waveforms with a fixed frequency offset. Unlike the regular FMCW waveforms, MFSK sweeps the entire bandwidth at discrete steps. Within each step, a single frequency continuous wave signal is transmitted. Because there are two tones within each step, it can be considered as a frequency shift keying (FSK) waveform. Thus, there is one set of range and Doppler relation from FMCW waveform and another set of range and Doppler relation from FSK. Combining two sets of relations together can help resolve the coupling between range and Doppler regardless the number of targets present in the scene.

The following sections simulates the previous example again, but uses an MFSK waveform instead.

\section*{End-to-end Radar System Simulation Using MFSK Waveform}

First, parameterize the MFSK waveform to satisfy the system requirement specified in [1]. Because the range resolution is 1 meter, the sweep bandwidth is set at 150 MHz . In addition, the frequency offset is set at -294 kHz as specified in [1]. Each step lasts about 2 microseconds and the entire sweep has 1024 steps. Thus, each FMCW sweep takes 512 steps and the total sweep time is a little over 2 ms. Note that the sweep time is comparable to the FMCW signal used in previous sections.
```

mfskwaveform = phased.MFSKWaveform(...
'SampleRate',151e6,...
'SweepBandwidth',150e6,...
'StepTime',2e-6,...
'StepsPerSweep',1024,...
'Frequency0ffset',-294e3,...
'OutputFormat','Sweeps',...
'NumSweeps',1);

```

The figure below shows the spectrogram of the waveform. It is zoomed into a small interval to better reveal the time frequency characteristics of the waveform.
```

numsamp_step = round(mfskwaveform.SampleRate*mfskwaveform.StepTime);
sig_display = mfskwaveform();
spectrogram(sig_display(1:8192),kaiser(3*numsamp_step,100),...

```
```

ceil(2*numsamp_step),linspace(0,4e6,2048),mfskwaveform.SampleRate,...

```
    'yaxis','reassīgned','minthreshold',-60)


Next, simulate the return of the system. Again, only 1 sweep is needed to estimate the range and Doppler.

Nsweep \(=1\);
release(channel);
channel.SampleRate = mfskwaveform.SampleRate;
release(receiver);
receiver.SampleRate \(=\) mfskwaveform. SampleRate;
xr = helperFMCWSimulate(Nsweep,mfskwaveform, sensormotion,tgtmotion,...
transmitter, channel,target, receiver);
The subsequent processing samples the return echo at the end of each step and group the sampled signals into two sequences corresponding to two sweeps. Note that the sampling frequency of the resulting sequence is now proportional to the time at each step, which is much less compared the original sample rate.
x_dechirp = reshape(xr(numsamp_step:numsamp_step:end),2,[]).';
fs_dechirp = 1/(2*mfskwaveform. StepTime);
As in the case of FMCW signals, the MFSK waveform is processed in the frequency domain. Next figures shows the frequency spectrums of the received echos corresponding to the two sweeps.
```

xf_dechirp = fft(x_dechirp);
num_xf_samp = size(xf_dechirp,1);

```
```

beatfreq_vec = (0:num_xf_samp-1).'/num_xf_samp*fs_dechirp;
clf;
subplot(211),plot(beatfreq_vec/le3,abs(xf_dechirp(:,1)));grid on;
ylabel('Magnitude');
title('Frequency spectrum for sweep 1');
subplot(212),plot(beatfreq_vec/1e3,abs(xf_dechirp(:,2)));grid on;
ylabel('Magnitude');
title('Frequency spectrum for sweep 2');
xlabel('Frequency (kHz)')

```


Note that there are two peaks in each frequency spectrum indicating two targets. In addition, the peaks are at the identical locations in both returns so there is no ghost targets.

To detect the peaks, one can use a CFAR detector. Once detected, the beat frequencies as well as the phase differences between two spectra are computed at the peak locations.
```

cfar = phased.CFARDetector('ProbabilityFalseAlarm',1e-2,...
'NumTrainingCells',8);
peakidx = cfar(abs(xf_dechirp(:,1)),1:num_xf_samp);
Fbeat = beatfreq_vec(peakidx);
phi = angle(xf_dechirp(peakidx,2))-angle(xf_dechirp(peakidx,1));

```

Finally, the beat frequencies and phase differences are used to estimate the range and speed. Depending on how one constructs the phase difference, the equations are slightly different. For the
approach shown in this example, it can be shown that the range and speed satisfies the following relation:
\[
\begin{aligned}
& f_{b}=-\frac{2 v}{\lambda}+\frac{2 \beta R}{c} \\
& \Delta \phi=-\frac{4 \pi T_{s} v}{\lambda}+\frac{4 \pi f_{o f f s e t} R}{C}
\end{aligned}
\]
where \(f_{b}\) is the beat frequency, \(\Delta \phi\) is the phase difference, \(\lambda\) is the wavelength, \(c\) is the propagation speed, \(T_{s}\) is the step time, \(f_{\text {offset }}\) is the frequency offset, \(\beta\) is the sweep slope, \(R\) is the range, and \(v\) is the speed. Based on the equation, the range and speed are estimated below:
```

sweep_slope = mfskwaveform.SweepBandwidth/...
(mfskwaveform.StepsPerSweep*mfskwaveform.StepTime);
temp = ...
[1 sweep_slope;mfskwaveform.StepTime mfskwaveform.Frequency0ffset]\...
[Fbeat phi/(2*pi)].';
r_est = c*temp(2,:)/2
r_est = 1\times2
54.8564 49.6452
v_est = lambda*temp(1,:)/(-2)
v_est = 1\times2
36.0089 -9.8495

```

The estimated range and speed match the true range and speed values, as tabulated below, very well.
- Car: \(\mathrm{r}=50 \mathrm{~m}, \mathrm{v}=-10 \mathrm{~m} / \mathrm{s}\)
- Truck: \(\mathrm{r}=55 \mathrm{~m}, \mathrm{v}=36 \mathrm{~m} / \mathrm{s}\)

\section*{Summary}

This example shows two simultaneous range and speed estimation approaches, using either a triangle sweep FMCW waveform or an MFSK waveform. It is shown that MFSK waveform have an advantage over FMCW waveform when multiple targets are present since it does not introduce ghost targets during the processing.

\section*{References}
[1] Rohling, H. and M. Meinecke. Waveform Design Principle for Automotive Radar Systems, Proceedings of CIE International Conference on Radar, 2001.

\section*{Waveform Analysis Using the Ambiguity Function}

This example illustrates how to use the ambiguity function to analyze waveforms. It compares the range and Doppler capability of several basic waveforms, e.g., the rectangular waveform and the linear and stepped FM waveform.

In a radar system, the choice of a radar waveform plays an important role in enabling the system to separate two closely located targets, in either range or speed. Therefore, it is often necessary to examine a waveform and understand its resolution and ambiguity in both range and speed domains. In radar, the range is measured using the delay and the speed is measured using the Doppler shift. Thus, the range and the speed are used interchangeably with the delay and the Doppler.

\section*{Introduction}

To improve the signal to noise ratio (SNR), modern radar systems often employ the matched filter in the receiver chain. The ambiguity function of a waveform represents exactly the output of the matched filter when the specified waveform is used as the filter input. This exact representation makes the ambiguity function a popular tool for designing and analyzing waveforms. This approach provides the insight of the resolution capability in both delay and Doppler domains for a given waveform. Based on this analysis, one can then determine whether a waveform is suitable for a particular application.

The following sections use the ambiguity function to explore the range-Doppler relationship for several popular waveforms. To establish a comparison baseline, assume that the design specification of the radar system requires a maximum unambiguous range of 15 km and a range resolution of 1.5 km . For the sake of simplicity, also use \(3 \mathrm{e} 8 \mathrm{~m} / \mathrm{s}\) as the speed of light.
```

Rmax = 15e3;
Rres = 1500;
c = 3e8;

```

Based on the design specifications already mentioned, the pulse repetition frequency (PRF) and the bandwidth of the waveform can be computed as follows.
```

prf = c/(2*Rmax);
bw = c/(2*Rres);

```

Choose a sampling frequency that is twice of the bandwidth.
```

fs = 2*bw;

```

\section*{Rectangular Pulse Waveform}

The simplest waveform for a radar system is probably a rectangular waveform, sometimes also referred to as single frequency waveform. For the rectangular waveform, the pulse width is the reciprocal of the bandwidth.

A rectangular waveform can be created as follows.
```

rectwaveform = phased.RectangularWaveform('SampleRate',fs,...
'PRF',prf,'PulseWidth',1/bw)
rectwaveform =
phased.RectangularWaveform with properties:
SampleRate: 200000

```
```

DurationSpecification: 'Pulse width'
PulseWidth: 1.0000e-05
PRF: 10000
PRFSelectionInputPort: false
FrequencyOffsetSource: 'Property'
FrequencyOffset: 0
OutputFormat: 'Pulses'
NumPulses: 1
PRFOutputPort: false
CoefficientsOutputPort: false

```

Because the analysis of a waveform is always performed on full pulses, keep the OutputFormat property as 'Pulses'. One can also check the bandwidth of the waveform using the bandwidth method.
```

bw_rect = bandwidth(rectwaveform)
bw_rect = 1.0000e+05

```

The resulting bandwidth matches the requirement. Now, generate one pulse of the waveform, and then examine it using the ambiguity function.
wav = rectwaveform(); ambgfun(wav, rectwaveform.SampleRate, rectwaveform.PRF);

Ambiguity Function


In the figure, notice that the nonzero response is occupying only about \(10 \%\) of all delays, focusing in a narrow strip around delay 0 . This occurs because the waveform has a duty cycle of 0.1.
```

dc_rect = dutycycle(rectwaveform.PulseWidth,rectwaveform.PRF)
dc_rect = 0.1000

```

When investigating a waveform's resolution capability, the zero delay cut and the zero Doppler cut of the waveform ambiguity function are often of interest.

The zero Doppler cut of the ambiguity function returns the auto-correlation function (ACF) of the rectangular waveform. The cut can be plotted using the following command.
ambgfun(wav, rectwaveform. SampleRate, rectwaveform. PRF, 'Cut', 'Doppler');


The zero Doppler cut of the ambiguity function depicts the matched filter response of a target when the target is stationary. From the plot, one can see that the first null response appears at 10 microseconds, which means that this waveform could resolve two targets that are at least 10 microseconds, or 1.5 km apart. Hence, the response matches the requirement in the design specification.

The zero delay cut can be plotted using similar syntax.
ambgfun(wav, rectwaveform.SampleRate,rectwaveform.PRF,'Cut','Delay');


Notice that the returned zero delay response is fairly broad. The first null does not appear till at the edge, which corresponds to a Doppler shift of 100 kHz . Thus, if the two targets are at the same range, they need to have a difference of 100 kHz in the Doppler domain to be separated. Assuming the radar is working at 1 GHz , according to the computation below, such a separation corresponds to a speed difference of \(30 \mathrm{~km} / \mathrm{s}\). Because this number is so large, essentially one cannot separate two targets in the Doppler domain using this system.
```

fc = 1e9;
deltav_rect = dop2speed(100e3,c/fc)
deltav_rect = 30000

```

At this point it may be worth to mention another issue with the rectangular waveform. For a rectangular waveform, the range resolution is determined by the pulse width. Thus, to achieve good range resolution, the system needs to adopt very small pulse width. At the same time, the system also needs to be able to send out enough energy to the space so that the returned echo can be reliably detected. Hence, a narrow pulse width requires very high peak power at the transmitter. In practice, producing such power can be very costly.

\section*{Linear FM Pulse Waveform}

One can see from the previous section that the Doppler resolution for a single rectangular pulse is fairly poor. In fact, the Doppler resolution for a single rectangular pulse is given by the reciprocal of its pulse width. Recall that the delay resolution of a rectangular waveform is given by its pulse width. Apparently, there exists a conflict of interest between range and Doppler resolutions of a rectangular waveform.

The root issue here is that both the delay and the Doppler resolution depend on the pulse width in opposite ways. Therefore, one way to solve this issue is to come up a waveform that decouples this dependency. One can then improve the resolution in both domains simultaneously.

Linear FM waveform is just such a waveform. The range resolution of a linear FM waveform is no longer depending on the pulse width. Instead, the range resolution is determined by the sweep bandwidth.

In linear FM waveform, because the range resolution is now determined by the sweep bandwidth, the system can afford a longer pulse width. Hence, the power requirement is alleviated. Meanwhile, because of the longer pulse width, the Doppler resolution improves. This improvement occurs even though the Doppler resolution of a linear FM waveform is still given by the reciprocal of the pulse width.

Now, explore the linear FM waveform in detail. The linear FM waveform that provides the desired range resolution can be constructed as follows.
```

lfmwaveform = phased.LinearFMWaveform('SampleRate',fs,...
'SweepBandwidth',bw,'PRF',prf,'PulseWidth',5/bw)
lfmwaveform =
phased.LinearFMWaveform with properties:
SampleRate: 200000
DurationSpecification: 'Pulse width'
PulseWidth: 5.0000e-05
PRF: 10000
PRFSelectionInputPort: false
SweepBandwidth: 100000
SweepDirection: 'Up'
SweepInterval: 'Positive'
Envelope: 'Rectangular'
FrequencyOffsetSource: 'Property'
FrequencyOffset: 0
OutputFormat: 'Pulses'
NumPulses: 1
PRFOutputPort: false
CoefficientsOutputPort: false

```

The pulse width is 5 times longer than that of the rectangular waveform used in the earlier sections of this example. Notice that the bandwidth of the linear FM waveform is the same as the rectangular waveform.
```

bw_lfm = bandwidth(lfmwaveform)
bw_lfm = 100000

```

The zero Doppler cut of the linear FM waveform appears in the next plot.
```

wav = lfmwaveform();
ambgfun(wav,lfmwaveform.SampleRate,lfmwaveform.PRF,'Cut','Doppler');

```


From the preceding figure, one can see that even though the response now has sidelobes, the first null still appears at 10 microseconds, so the range resolution is preserved.

One can also plot the zero delay cut of the linear FM waveform. Observe that the first null in Doppler domain is now at around 20 kHz , which is \(1 / 5\) of the original rectangular waveform.
```

ambgfun(wav,lfmwaveform.SampleRate,lfmwaveform.PRF,'Cut','Delay');

```


Following the same procedure as for the rectangular waveform in the earlier sections of this example, one can calculate that the 20 kHz Doppler separation translates to a speed difference of \(6 \mathrm{~km} / \mathrm{s}\). This resolution is 5 times better than the rectangular waveform. Unfortunately, such resolution is still inadequate.
```

deltav_lfm = dop2speed(20e3,c/fc)
deltav_lfm = 6000

```

One may also be interested in seeing the 3-D plot of the ambiguity function for the linear FM waveform. If you want to see a 3-D plot other than the contour format, you can just get the returned ambiguity function and then plot is using your favorite format. For example, the following snippet generates the surface plot of the linear FM waveform ambiguity function.
```

[afmag lfm,delay lfm,doppler lfm] = ambgfun(wav,lfmwaveform.SampleRate,...
lfmwaveform.PRF);
surf(delay_lfm*le6,doppler_lfm/le3,afmag_lfm,'LineStyle','none');
axis tight; grid on; view([140,35]); colorbar;
xlabel('Delay \tau (us)');ylabel('Doppler f_d (kHz)');
title('Linear FM Pulse Waveform Ambiguity Function');

```

\section*{Linear FM Pulse Waveform Ambiguity Function}


Notice that compared to the ambiguity function of the rectangular waveform, the ambiguity function of the linear FM waveform is slightly tilted. The tilt provides the improved resolution in the zero delay cut. The ambiguity function of both rectangular waveform and linear FM waveform have the shape of a long, narrow edge. This kind of ambiguity function is often termed as "knife edge" ambiguity function.

Before proceeding to improve further the Doppler resolution, it is worth looking at an important figure of merit used in waveform analysis. The product of the pulse width and the bandwidth of a waveform is called the waveform's time bandwidth product. For a rectangular waveform, the time bandwidth product is always 1 . For a linear FM waveform, because of the decoupling of the bandwidth and the pulse width, the time bandwidth can be larger than 1 . The waveform just used has a time bandwidth product of 5 . Recall that by preserving the same range resolution as the rectangular waveform, the linear FM waveform achieves a Doppler resolution that is 5 times better.

\section*{Coherent Pulse Train}

As of the previous section, the Doppler resolution of the linear FM waveform is still fairly poor. One way to improve this resolution is to further extend the pulse width. However, this approach will not work for two reasons:
- The duty cycle of the waveform is already \(50 \%\), which is close to the practical limit. (Even if one could, say, use a \(100 \%\) duty cycle, it is still only a factor of 2 improvement, which is far from being able to resolve the issue.)
- Longer pulse width means large minimum detectable range, which is also undesirable.

If one cannot extend the pulse width within one pulse, one has to look beyond this boundary. Indeed, in modern radar systems, the Doppler processing often uses a coherent pulse train. The more pulses in the pulse train, the finer the Doppler resolution.

To illustrate the idea, next, try a five-pulse burst.
```

release(lfmwaveform);
lfmwaveform.NumPulses = 5;
wav = lfmwaveform();

```

First, plot the zero Doppler cut of the ambiguity function.
```

ambgfun(wav,lfmwaveform.SampleRate,lfmwaveform.PRF,'Cut','Doppler');

```


Notice that for the zero Doppler cut, the first null is still around 10 microseconds, so the range resolution is the same. One should see immediately the presence of many range domain sidelobes. These sidelobes are the tradeoff for using a pulse train. The distance between the mainlobe and the first sidelobe is the length of one entire pulse, i.e., the reciprocal of the PRF. As one can see, this value corresponds to the maximum unambiguous range.

T_max = 1/prf
T_max = 1.0000e-04
The zero delay cut also has sidelobes because of the pulse train. The distance between the mainlobe and the first sidelobe is the PRF. Thus, this value is the maximum unambiguous Doppler the radar system can detect. One can also calculate the corresponding maximum unambiguous speed.
```

ambgfun(wav,lfmwaveform.SampleRate,lfmwaveform.PRF,'Cut','Delay');

```


However, notice that the mainlobe is now much sharper. Careful examination reveals that the first null is at about 2 kHz . This Doppler resolution can actually be obtained by the following equation,
```

deltaf_train = lfmwaveform.PRF/5
deltaf_train = 2000

```
i.e., the resolution is now determined by the length of our entire pulse train, not the pulse width of a single pulse. The corresponding speed resolution is now
deltav_train = dop2speed(deltaf_train, c/fc)
deltav_train = 600
which is significantly better. More importantly, to get even finer speed resolution, one can simply increase the number of pulses included in the pulse train. Of course the number of pulses one can have in a burst depends on whether one can preserve the coherence for the entire duration, but that discussion is out of the scope of this example.

One may notice that in the zero delay cut, the distance between the peaks are no longer constant, especially for farther out sidelobes. This lack of constancy occurs because the linear FM waveform's ambiguity function is tilted. Hence, judging the separation of sidelobes in zero delay cut can be
misleading. The ambiguity caused by the pulse train is probably best viewed in the contoured form, as the next code example shows. Notice that along the edge of the ambiguity function, those sidelobes are indeed evenly spaced.
```

ambgfun(wav,lfmwaveform.SampleRate,lfmwaveform.PRF);

```


Because of all the sidelobes, this kind of ambiguity function is called bed of nails ambiguity function.

\section*{Stepped FM Waveform}

The linear FM waveform is very widely used in radar systems. However, it does present some challenges to the hardware. For one thing, the hardware has to be able to sweep the entire frequency range in one pulse. Using this waveform also makes it harder to build the receiver because it has to accommodate the entire bandwidth.

To avoid these issues, you can use a stepped FM waveform instead. A stepped FM waveform consists of multiple contiguous CW pulses. Each pulse has a different frequency and together, all pulses occupy the entire bandwidth. Hence, there is no more sweep within the pulse, and the receiver only needs to accommodate the bandwidth that is the reciprocal of the pulse width of a single pulse.

Next, set up such a stepped FM waveform.
```

stepfmwaveform = phased.SteppedFMWaveform('SampleRate', fs,...
'PulseWidth',5/bw,'PRF',prf,'NumSteps',5,'FrequencyStep',bw/5,...
'NumPulses',5)
stepfmwaveform =
phased.SteppedFMWaveform with properties:

```
```

 SampleRate: 200000
 DurationSpecification: 'Pulse width'
 PulseWidth: 5.0000e-05
 PRF: 10000
 PRFSelectionInputPort: false
 FrequencyStep: 20000
 NumSteps: 5
 Frequency0ffsetSource: 'Property'
 FrequencyOffset: 0
 OutputFormat: 'Pulses'
 NumPulses: 5
 PRFOutputPort: false
 CoefficientsOutputPort: false
wav = stepfmwaveform();

```

The zero Doppler cut, zero delay cut, and contour plot of the ambiguity function are shown below. ambgfun(wav,stepfmwaveform.SampleRate,stepfmwaveform.PRF,'Cut','Doppler');

ambgfun(wav,stepfmwaveform. SampleRate,stepfmwaveform. PRF, 'Cut', 'Delay');

ambgfun(wav,stepfmwaveform.SampleRate,stepfmwaveform. PRF);

Ambiguity Function


From these figures, one can make the following observations:
- The first null in delay is still at 10 microseconds, so the range resolution is preserved. Notice that because each pulse is different, the sidelobes in the range domain disappear.
- The first null in Doppler is still at 2 kHz , so it has the same Doppler resolution as the 5-pulse linear FM pulse train. The sidelobes in the Doppler domain still present as in the linear FM pulse train case.
- The contour plot of the stepped FM waveform is also of type bed of nails. Although the unambiguous range is greatly extended, the unambiguous Doppler is still confined by the waveform's PRF.

As to the disadvantage of a stepped FM waveform, the processing becomes more complicated.

\section*{Barker-Coded Waveform}

Another important group of waveforms is phase-coded waveforms, among which the popularly used ones are Barker codes, Frank codes, and Zadoff-Chu codes. In a phase-coded waveform, a pulse is divided into multiple subpulses, often referred to as chips, and each chip is modulated with a given phase. All phase-coded waveforms have good autocorrelation properties which make them good candidates for pulse compression. Thus, if a phase-coded waveform is adopted, it could lower the probability of interception as the energy is spread into chips. At the receiver, a properly configured matched filter could suppress the noise and achieve good range resolution.

Barker code is probably the most well known phase-coded waveform. A Barker-coded waveform can be constructed using the following command.
```

barkerwaveform = phased.PhaseCodedWaveform('Code','Barker','NumChips',7,...
'SampleRate', fs,'ChipWidth',1/bw,'PRF',prf)
barkerwaveform =
phased.PhaseCodedWaveform with properties:
SampleRate: 200000
Code: 'Barker'
ChipWidth: 1.0000e-05
NumChips: 7
PRF: 10000
PRFSelectionInputPort: false
FrequencyOffsetSource: 'Property'
FrequencyOffset: 0
OutputFormat: 'Pulses'
NumPulses: 1
PRFOutputPort: false
CoefficientsOutputPort: false
wav = barkerwaveform();

```

This Barker code consists of 7 chips. Its zero Doppler cut of the ambiguity function is given by ambgfun(wav, barkerwaveform.SampleRate, barkerwaveform.PRF,'Cut','Doppler');


From the figure, one can see that the zero Doppler cut of a Barker code's ambiguity function has an interesting property. All its sidelobes have the same height and are exactly \(1 / 7\) of the mainlobe. In
fact, a length-N Barker code can provide a peak-to-peak suppression of N , which helps distinguish closely located targets in range. This is the most important property of the Barker code. The range resolution is approximately 10 microseconds, the same as the chip width.

There are two issues associated with a Barker code. First, there are only seven known Barker codes. Their lengths are \(2,3,4,5,7,11\) and 13 . It is believed that there are no other Barker codes. Second, the Doppler performance of the Barker code is fairly poor. Although the ambiguity function has good shape at the zero Doppler cut, once there is some Doppler shift, the sidelobe level increases significantly. The increase can be seen in the following contour plot.
ambgfun(wav, barkerwaveform. SampleRate, barkerwaveform. PRF) ;


\section*{Summary}

This example compared several popular waveforms including the rectangular waveform, the linear FM waveform, the stepped FM waveform and the Barker-coded waveform. It also showed how to use the ambiguity function to analyze these waveforms and determine their resolution capabilities.

\section*{Reference}
[1] Nadav Levanon and Eli Mozeson, Radar Signals, Wiley-IEEE Press, 2004.
[2] Mark Richards, Fundamentals of Radar Signal Processing, McGraw Hill, 2005.

\section*{Waveform Design to Improve Performance of an Existing Radar System}

This example shows how waveform type affects radar detection performance. The example considers the situation where a new performance goal is set for an existing radar system design. Since the old design can no longer achieve the desired performance, a new waveform is adopted. The example also shows how to model Swerling targets, simulate the return, and then detect the target ranges.

\section*{Design Specification Change}

A monostatic pulse radar is designed in the example "Designing a Basic Monostatic Pulse Radar" on page 17-449 to achieve the following goal:

1 minimum target radar cross section (RCS): \(1 \mathrm{~m}^{2}\), nonfluctuating;
2 maximum unambiguous range: 5 km ;
3 probability of detection: 0.9;
4 probability of false alarm: \(1 \mathrm{e}-6\).
load BasicMonostaticRadarExampleData;

\section*{New Performance Requirement}

After system deployment, two new requirements arise:
1 the maximum unambiguous range needs to be extended to 8 km
2 the system also needs to be able to detect Swerling case 2 targets.
Can the existing design be modified to achieve the new performance goal? To answer this question, we need to recalculate the parameters affected by these new requirements.

The first affected parameter is the pulse repetition frequency (PRF). It needs to be recalculated based on the new maximum unambiguous range.
```

prop_speed = radiator.PropagationSpeed;
max_range = 8000;
prf=}= prop_speed/(2*max_range)

```

Compared to the 30 kHz PRF of the existing design, the new PRF, 18.737 kHz , is smaller. Hence the pulse interval is longer. Note that this is a trivial change in the radar software and is fairly cheap in hardware cost.
```

waveform.PRF = prf;

```

Next, because the target is described using a Swerling case 2 model, we need to use Shnidman's equation, instead of Albersheim's equation, to calculate the required SNR to achieve the designated Pd and Pfa. Shnidman's equation assumes noncoherent integration and a square law detector. The number of pulses to integrate is 10 .
```

num_pulse_int = 10;
pfa= = le-
snr_min = shnidman(0.9,pfa,num_pulse_int,2)
snr_min = 6.1583

```

\section*{Waveform Selection}

If we were to use the same rectangular waveform in the existing design, the pulse width would remain the same because it is determined by the range resolution. However, because our maximum range has increased from 5 km to 8 km and the target model switched from nonfluctuating to Swerling case 2 , we need to recalculate the required peak transmit power.
```

fc = radiator.OperatingFrequency;
lambda = prop_speed/fc;
peak_power = _
'RCS',1,'Gain',transmitter.Gain)
peak_power = 4.4821e+04

```

The peak power is roughly eight times larger than the previous requirement. This is no longer a trivial modification because (1) the existing radar hardware is designed to produce a pulse with peak power of about 5200 w . Although most designs will leave some margin above the required power, it is unlikely that an existing system can accommodate eight times more power; (2) it is very expensive to replace the hardware to output such high power. Therefore, the current design needs to be modified to accommodate the new goal by using more sophisticated signal processing techniques.

\section*{Linear FM Waveform}

One approach to reduce the power requirement is to use a waveform other than the rectangular waveform. For example, a linear FM waveform can use a longer pulse than a rectangular waveform. As a result, the required peak transmit power drops.

Let us examine the details of the linear FM waveform's configuration.
The desired range resolution determines the waveform bandwidth. For a linear FM waveform, the bandwidth is equal to its sweep bandwidth. However, the pulse width is no longer restricted to the reciprocal of the pulse bandwidth, so a much longer pulse width can be used. We use a pulse width that is 20 times longer and set the sample rate to be twice the pulse bandwidth.
```

range_res = 50;
pulse_bw = prop_speed/(2*range_res);
pulse_width = 2\overline{0}/pulse_bw;
fs = \overline{2}}\mathrm{ *pulse_bw;
waveform = phased.LinearFMWaveform(...
'SweepBandwidth',pulse_bw,...
'PulseWidth',pulse_wid\overline{th},...
'PRF',prf,...
'SampleRate',fs);

```

We now determine the new required transmit power needed to achieve the design requirements
```

peak_power = radareqpow(lambda,max_range,snr_min,pulse_width,...
'RCS',1,'Gain',transmitter.Gain}
peak_power = 2.2411e+03

```

This transmit power is well within the capability of our existing radar system. We have achieved a peak transmit power that can meet the new requirements without modifying the existing hardware.
```

transmitter.PeakPower = peak_power;

```

\section*{System Simulation}

Now that we have defined the radar to meet the design specifications, we setup the targets and the environment to simulate the entire system.

\section*{Targets}

As in the case with the aforementioned example, we assume that there are 3 targets in a free space environment. However, now the target model is Swerling case 2, the target positions and the mean radar cross sections are specified as follows:
```

tgtpos = [[2024.66; 0; 0],[6518.63; 0; 0],[6845.04; 0; 0]];
tgtvel = [[0;0;0],[0;0;0],[0;0;0]];
tgtmotion = phased.Platform('InitialPosition',tgtpos,'Velocity',tgtvel);
tgtrcs = [2.2 1.1 1.05];
fc = radiator.OperatingFrequency;
target = phased.RadarTarget(...
'Model','Swerling2',...
'MeanRCS',tgtrcs,...
'OperatingFrequency',fc);

```

We set the seed for generating the rcs in the targets so that we can reproduce the same results.
```

target.SeedSource = 'Property';
target.Seed = 2007;

```

\section*{Propagation Environments}

We also set up the propagation channel between the radar and each target.
```

channel = phased.FreeSpace(...
'SampleRate',waveform. SampleRate,...
'TwoWayPropagation',true,...
'OperatingFrequency',fc);

```

\section*{Signal Synthesis}

We set the seed for the noise generation in the receiver so that we can reproduce the same results.
```

receiver.SeedSource = 'Property';
receiver.Seed = 2007;
fast_time_grid = unigrid(0,1/fs,1/prf,'[)');
slow_time_grid = (0:num_pulse_int-1)/prf;
rxpulses = zeros(numel(fast_time_grid),num_pulse_int); % pre-allocate
for m = 1:num_pulse_int
% Update sensor and target positions
[sensorpos,sensorvel] = sensormotion(1/prf);
[tgtpos,tgtvel] = tgtmotion(1/prf);
% Calculate the target angles as seen by the sensor
[tgtrng,tgtang] = rangeangle(tgtpos,sensorpos);
% Simulate propagation of pulse in direction of targets

```
```

 pulse = waveform();
 [txsig,txstatus] = transmitter(pulse);
 txsig = radiator(txsig,tgtang);
 txsig = channel(txsig,sensorpos,tgtpos,sensorvel,tgtvel);
 % Reflect pulse off of targets
 tgtsig = target(txsig,true);
 % Receive target returns at sensor
 rxsig = collector(tgtsig,tgtang);
 rxpulses(:,m) = receiver(rxsig,~(txstatus>0));
 end

```

\section*{Range Detection}

\section*{Detection Threshold}

The detection threshold is calculated using the noise information, taking into consideration the pulse integration. Note that in the loaded system, as outlined in the aforementioned example, the noise bandwidth is half of the sample rate. We plot the threshold together with the first two pulses.
```

noise_bw = receiver.SampleRate/2;
npower = noisepow(noise_bw,...
receiver.NoiseFigure,receiver.ReferenceTemperature);
threshold = npower * db2pow(npwgnthresh(pfa,num_pulse_int,'noncoherent'));
pulseplotnum = 2;
helperRadarPulsePlot(rxpulses,threshold,...
fast_time_grid,slow_time_grid,pulseplotnum);

```


The figure shows that the pulses are very wide which may result in poor range resolution. In addition, the second and third targets are completely masked by the noise.

\section*{Matched Filter}

As in the case of rectangular waveform, the received pulses are first passed through a matched filter to improve the SNR. The matched filter offers a processing gain which further improves the detection threshold. In addition, the added benefit of the matched filter of a linear FM waveform is that it compresses the waveform in the time domain so that the filtered pulse becomes much narrower, which translates to better range resolution.
```

matchingcoeff = getMatchedFilter(waveform);
matchedfilter = phased.MatchedFilter(...
'CoefficientsSource','Property',...
'Coefficients',matchingcoeff,...
'GainOutputPort',true);
[rxpulses, mfgain] = matchedfilter(rxpulses);
threshold = threshold * db2pow(mfgain);

```

Compensate for the matched filter delay
```

matchingdelay = size(matchingcoeff,1)-1;

```
rxpulses = buffer(rxpulses(matchingdelay+1:end),size(rxpulses,1));

A time varying gain is then applied to the signal so that a constant threshold can be used across the entire detectable range.
```

range_gates = prop_speed*fast_time_grid/2;
lambda = prop_spee\overline{d}/fc;
tvg = phased.TimeVaryingGain(...
'RangeLoss',2*fspl(range_gates,lambda),...
'ReferenceLoss',2*fspl(max_range,lambda));
rxpulses = tvg(rxpulses);

```

\section*{Noncoherent Integration}

We now integrate the receive pulses noncoherently to further improve the SNR. This operation is also referred to as video integration.
```

rxpulses = pulsint(rxpulses,'noncoherent');
helperRadarPulsePlot(rxpulses,threshold,fast_time_grid,slow_time_grid,1);

```


After video integration, the data is ready for the final detection stage. From the plot above, we see that there are no false alarms.

\section*{Range Detection}

Finally, threshold detection is performed on the integrated pulses. The detection scheme identifies the peaks and then translates their positions into the ranges of the targets.
```

[~,range_detect] = findpeaks(rxpulses,'MinPeakHeight',sqrt(threshold));

```

The true ranges and the estimated ranges are
```

true_range = round(tgtrng)
true_range = 1×3
2025 6519 6845
range_estimates = round(range_gates(range_detect))
range estimates = 1\times3
2025 6525 6850

```

Note that these range estimates are only accurate up to the range resolution that can be achieved by the radar system, which is 50 m in this example.

\section*{Summary}

In this example, we used the chirp waveform for range detection. By using the chirp waveform, we were able to reduce the required peak transmit power, thus achieving a larger detectable range of 8 km for Swerling case 2 targets.

\section*{Acoustic Beamforming Using a Microphone Array}

This example illustrates microphone array beamforming to extract desired speech signals in an interference-dominant, noisy environment. Such operations are useful to enhance speech signal quality for perception or further processing. For example, the noisy environment can be a trading room, and the microphone array can be mounted on the monitor of a trading computer. If the trading computer must accept speech commands from a trader, the beamformer operation is crucial to enhance the received speech quality and achieve the designed speech recognition accuracy.

This example shows two types of time domain beamformers: the time delay beamformer and the Frost beamformer. It illustrates how one can use diagonal loading to improve the robustness of the Frost beamformer. You can listen to the speech signals at each processing step if your system has sound support.

\section*{Define a Uniform Linear Array}

First, we define a uniform linear array (ULA) to receive the signal. The array contains 10 omnidirectional microphones and the element spacing is 5 cm .
```

microphone = ...
phased.OmnidirectionalMicrophoneElement('FrequencyRange',[20 20e3]);
Nele = 10;
ula = phased.ULA(Nele,0.05,'Element',microphone);
c = 340; % sound speed, in m/s

```

\section*{Simulate the Received Signals}

Next, we simulate the multichannel signals received by the microphone array. We begin by loading two recorded speeches and one laughter recording. We also load the laughter audio segment as interference. The sampling frequency of the audio signals is 8 kHz .

Because the audio signal is usually large, it is often not practical to read the entire signal into the memory. Therefore, in this example, we will simulate and process the signal in a streaming fashion, i.e., breaking the signal into small blocks at the input, processing each block, and then assembling them at the output.

The incident direction of the first speech signal is -30 degrees in azimuth and 0 degrees in elevation. The direction of the second speech signal is -10 degrees in azimuth and 10 degrees in elevation. The interference comes from 20 degrees in azimuth and 0 degrees in elevation.
```

ang_dft = [-30; 0];
ang_cleanspeech = [-10; 10];
ang_laughter = [20; 0];

```

Now we can use a wideband collector to simulate a 3 -second multichannel signal received by the array. Notice that this approach assumes that each input single-channel signal is received at the origin of the array by a single microphone.
```

fs = 8000;
collector = phased.WidebandCollector('Sensor',ula,'PropagationSpeed',c,...
'SampleRate',fs,'NumSubbands',1000,'ModulatedInput', false);
t_duration = 3; % 3 seconds
t-= 0:1/fs:t_duration-1/fs;

```

We generate a white noise signal with a power of \(1 \mathrm{e}-4\) watts to represent the thermal noise for each sensor. A local random number stream ensures reproducible results.
```

prevS = rng(2008);
noisePwr = 1e-4; % noise power

```

We now start the simulation. At the output, the received signal is stored in a 10 -column matrix. Each column of the matrix represents the signal collected by one microphone. Note that we are also playing back the audio using the streaming approach during the simulation.
```

% preallocate
NSampPerFrame = 1000;
NTSample = t_duration*fs;
sigArray = zeros(NTSample,Nele);
voice dft = zeros(NTSample,1);
voice_cleanspeech = zeros(NTSample,1);
voice_laugh = zeros(NTSample,1);
% set up audio device writer
audioWriter = audioDeviceWriter('SampleRate',fs, ...
'SupportVariableSizeInput', true);
isAudioSupported = (length(getAudioDevices(audioWriter))>1);
dftFileReader = dsp.AudioFileReader('dft_voice_8kHz.wav',...
'SamplesPerFrame',NSampPerFrame);
speechFileReader = dsp.AudioFileReader('cleanspeech_voice_8kHz.wav',...
'SamplesPerFrame',NSampPerFrame);
laughterFileReader = dsp.AudioFileReader('laughter_8kHz.wav',...
'SamplesPerFrame',NSampPerFrame);
% simulate
for m = 1:NSampPerFrame:NTSample
sig_idx = m:m+NSampPerFrame-1;
x1 = dftFileReader();
x2 = speechFileReader();
x3 = 2*laughterFileReader();
temp = collector([x1 x2 x3],...
[ang_dft ang_cleanspeech ang_laughter]) + ...
sqrt(noisePwr)*randn(NSampPerFrame,Nele);
if isAudioSupported
play(audioWriter,0.5*temp(:,3));
end
sigArray(sig_idx,:) = temp;
voice_dft(sig_idx) = x1;
voice_cleanspeech(sig_idx) = x2;
voice_laugh(sig_idx) = x3;
end

```

Notice that the laughter masks the speech signals, rendering them unintelligible. We can plot the signal in channel 3 as follows:
```

plot(t,sigArray(:,3));
xlabel('Time (sec)'); ylabel ('Amplitude (V)');
title('Signal Received at Channel 3'); ylim([-3 3]);

```


\section*{Process with a Time Delay Beamformer}

The time delay beamformer compensates for the arrival time differences across the array for a signal coming from a specific direction. The time aligned multichannel signals are coherently averaged to improve the signal-to-noise ratio (SNR). Now, define a steering angle corresponding to the incident direction of the first speech signal and construct a time delay beamformer.
```

angSteer = ang_dft;
beamformer = phased.TimeDelayBeamformer('SensorArray',ula,...
'SampleRate',fs,'Direction',angSteer,'PropagationSpeed',c)
beamformer =
phased.TimeDelayBeamformer with properties:

```
```

 SensorArray: [1x1 phased.ULA]
    ```
            SensorArray: [1x1 phased.ULA]
        PropagationSpeed: 340
        PropagationSpeed: 340
            SampleRate: 8000
            SampleRate: 8000
        DirectionSource: 'Property'
        DirectionSource: 'Property'
                        Direction: [2x1 double]
                        Direction: [2x1 double]
        WeightsOutputPort: false
```

 WeightsOutputPort: false
    ```

Next, we process the synthesized signal, plot and listen to the output of the conventional beamformer. Again, we play back the beamformed audio signal during the processing.
```

signalsource = dsp.SignalSource('Signal',sigArray,...

```
    'SamplesPerFrame',NSampPerFrame);
```

cbfOut = zeros(NTSample,1);
for m = 1:NSampPerFrame:NTSample
temp = beamformer(signalsource());
if isAudioSupported
play(audioWriter,temp);
end
cbfOut(m:m+NSampPerFrame-1,:) = temp;
end
plot(t,cbf0ut);
xlabel('Time (Sec)'); ylabel ('Amplitude (V)');
title('Time Delay Beamformer Output'); ylim([-3 3]);

```

Time Delay Beamformer Output


One can measure the speech enhancement by the array gain, which is the ratio of output signal-to-interference-plus-noise ratio (SINR) to input SINR.
agCbf = pow2db(mean((voice_cleanspeech+voice_laugh).^2+noisePwr)/...
mean((cbf0ut - voice_dft).^2))
\(a g C b f=9.5022\)
The first speech signal begins to emerge in the time delay beamformer output. We obtain an SINR improvement of 9.4 dB . However, the background laughter is still comparable to the speech. To obtain better beamformer performance, use a Frost beamformer.

\section*{Process with a Frost Beamformer}

By attaching FIR filters to each sensor, the Frost beamformer has more beamforming weights to suppress the interference. It is an adaptive algorithm that places nulls at learned interference directions to better suppress the interference. In the steering direction, the Frost beamformer uses distortionless constraints to ensure desired signals are not suppressed. Let us create a Frost beamformer with a 20-tap FIR after each sensor.
```

frostbeamformer = ...
phased.FrostBeamformer('SensorArray',ula,'SampleRate',fs,...
'PropagationSpeed',c,'FilterLength',20,'DirectionSource','Input port');

```

Next, process the synthesized signal using the Frost beamformer.
```

reset(signalsource);
FrostOut = zeros(NTSample,1);
for m = 1:NSampPerFrame:NTSample
FrostOut(m:m+NSampPerFrame-1,:) = ...
frostbeamformer(signalsource(),ang_dft);
end

```

We can play and plot the entire audio signal once it is processed.
```

if isAudioSupported
play(audioWriter,Frost0ut);
end
plot(t,FrostOut);
xlabel('Time (sec)'); ylabel ('Amplitude (V)');
title('Frost Beamformer Output'); ylim([-3 3]);

```

```

% Calculate the array gain
agFrost = pow2db(mean((voice_cleanspeech+voice_laugh).^2+noisePwr)/...
mean((FrostOut - voice_dft).^2))
agFrost = 14.4385

```

Notice that the interference is now canceled. The Frost beamformer has an array gain of 14 dB , which is 4.5 dB higher than that of the time delay beamformer. The performance improvement is impressive, but has a high computational cost. In the preceding example, an FIR filter of order 20 is used for each microphone. With all 10 sensors, one needs to invert a 200 -by- 200 matrix, which may be expensive in real-time processing.

\section*{Use Diagonal Loading to Improve Robustness of the Frost Beamformer}

Next, we want to steer the array in the direction of the second speech signal. Suppose we do not know the exact direction of the second speech signal except a rough estimate of azimuth -5 degrees and elevation 5 degrees.
```

release(frostbeamformer);
ang_cleanspeech_est = [-5; 5]; % Estimated steering direction
reset(signalsource);
FrostOut2 = zeros(NTSample,1);
for m = 1:NSampPerFrame:NTSample
FrostOut2(m:m+NSampPerFrame-1,:) = frostbeamformer(signalsource(),...
ang_cleanspeech_est);

```
```

end
if isAudioSupported
play(audioWriter,Frost0ut2);
end
plot(t,Frost0ut2);
xlabel('Time (sec)'); ylabel ('Amplitude (V)');
title('Frost Beamformer Output'); ylim([-3 3]);

```

Frost Beamformer Output

```

% Calculate the array gain
agFrost2 = pow2db(mean((voice_dft+voice_laugh).^2+noisePwr)/...
mean((FrostOut2 - voice_cleanspeech).^2))
agFrost2 = 6.1927

```

The speech is barely audible. Despite the 6.1 dB gain from the beamformer, performance suffers from the inaccurate steering direction. One way to improve the robustness of the Frost beamformer is to use diagonal loading. This approach adds a small quantity to the diagonal elements of the estimated covariance matrix. Here we use a diagonal value of \(1 \mathrm{e}-3\).
```

% Specify diagonal loading value
release(frostbeamformer);
frostbeamformer.DiagonalLoadingFactor = 1e-3;
reset(signalsource);
FrostOut2_dl = zeros(NTSample,1);

```
```

for m = 1:NSampPerFrame:NTSample
FrostOut2_dl(m:m+NSampPerFrame-1,:) = ...
frost\overline{b}eamformer(signalsource(),ang_cleanspeech_est);
end
if isAudioSupported
play(audioWriter,Frost0ut2_dl);
end
plot(t,Frost0ut2_dl);
xlabel('Time (sec)'); ylabel ('Amplitude (V)');
title('Frost Beamformer Output'); ylim([-3 3]);

```

Frost Beamformer Output

```

% Calculate the array gain
agFrost2_dl = pow2db(mean((voice_dft+voice_laugh).^2+noisePwr)/...
mean((FrostOut2_dl - voice_cleanspeech).^2))
agFrost2_dl = 6.4788

```

Now the output speech signal is improved and we obtain a 0.3 dB gain improvement from the diagonal loading technique.
```

release(frostbeamformer);
release(signalsource);
if isAudioSupported
pause(3); % flush out AudioPlayer buffer
release(audioWriter);

```
```

end
rng(prevS);

```

\section*{Summary}

This example shows how to use time domain beamformers to retrieve speech signals from noisy microphone array measurements. The example also shows how to simulate an interference-dominant signal received by a microphone array. The example used both time delay and the Frost beamformers and compared their performance. The Frost beamformer has a better interference suppression capability. The example also illustrates the use of diagonal loading to improve the robustness of the Frost beamformer.

\section*{Reference}
[1] O. L. Frost III, An algorithm for linear constrained adaptive array processing, Proceedings of the IEEE, Vol. 60, Number 8, Aug. 1972, pp. 925-935.

\section*{Beamforming for MIMO-OFDM Systems}

This example shows how to model a point-to-point MIMO-OFDM system with beamforming. The combination of multiple-input-multiple-output (MIMO) and orthogonal frequency division multiplexing (OFDM) techniques have been adopted in recent wireless standards, such as 802.11 x families, to provide higher data rate. Because MIMO uses antenna arrays, beamforming can be adopted to improve the received signal to noise ratio (SNR) which in turn reduces the bit error rate (BER).

This example requires Communications Toolbox \({ }^{\mathrm{TM}}\).

\section*{Introduction}

The term MIMO is used to describe a system where multiple transmitters or multiple receivers are present. In practice the system can take many different forms, such as single-input-multiple-output (SIMO) or multiple-input-single-output (MISO) system. This example illustrates a downlink MISO system. An 8 -element ULA is deployed at the base station as the transmitter while the mobile unit is the receiver with a single antenna.

The rest of the system is configured as follows. The transmitter power is 8 watts and the transmit gain is -8 dB . The mobile receiver is stationary and located at 2750 meters away, and is 3 degrees off the transmitter's boresight. An interferer with a power of 1 watt and a gain of -20 dB is located at 9000 meters, 20 degrees off the transmitter's boresight.
```

% Initialize system constants
rng(2014);
gc = helperGetDesignSpecsParameters();
% Tunable parameters
tp.txPower = 9; % watt
tp.txGain = -8; % dB
tp.mobileRange = 2750; % m
tp.mobileAngle = 3; % degrees
tp.interfPower = 1; % watt
tp.interfGain = - 20; % dB
tp.interfRange = 9000; %m
tp.interfAngle = 20; % degrees
tp.numTXElements = 8;
tp.steeringAngle = 0; % degrees
tp.rxGain = 108.8320 - tp.txGain; % dB
numTx= tp.numTXElements;

```

The entire scene can be depicted in the figure below.
```

helperPlotMIMOEnvironment(gc, tp);

```


\section*{Signal Transmission}

First, configure the system's transmitter.
```

[encoder,scrambler,modulator0FDM,steeringvec,transmitter,...
radiator,pilots,numDataSymbols,frmSz] = helperMIMOTxSetup(gc,tp);

```

There are many components in the transmitter subsystem, such as the convolutional encoder, the scrambler, the QAM modulator, the OFDM modulator, and so on. The message is first converted to an information bit stream and then passed through source coding and modulation stages to prepare for the radiation.
```

txBits = randi([0, 1], frmSz,1);
coded = encoder(txBits);
bitsS = scrambler(coded);
tx = qammod(bitsS,gc.modMode,'InputType','bit','UnitAveragePower',true);

```

In an OFDM system, the data is carried by multiple sub-carriers that are orthogonal to each other.
```

ofdm1 = reshape(tx, gc.numCarriers,numDataSymbols);

```

Then, the data stream is duplicated to all radiating elements in the transmitting array
```

ofdmData = repmat(ofdm1,[1, 1, numTx]);
txOFDM = modulatorOFDM(ofdmData, pilots);
%scale
tx0FDM = txOFDM * ...
(gc.FFTLength/sqrt(gc.FFTLength-sum(gc.NumGuardBandCarriers)-1));
% Amplify to achieve peak TX power for each channel
for n = 1:numTx
txOFDM(:,n) = transmitter(tx0FDM(:,n));
end

```

In a MIMO system, it is also possible to separate multiple users spatial division multiplexing (SDMA). In these situations, the data stream is often modulated by a weight corresponding to the desired direction so that once radiated, the signal is maximized in that direction. Because in a MIMO channel, the signal radiated from different elements in an array may go through different propagation
environments, the signal radiated from each antenna should be propagated individually. This can be achieved by setting CombineRadiatedSignals to false on the phased.Radiator component.
```

radiator.CombineRadiatedSignals = false;

```

To achieve precoding, the data stream radiated from each antenna in the array is modulated by a phase shift corresponding to its radiating direction. The goal of this precoding is to ensure these data streams add in phase if the array is steered toward that direction. Precoding can be specified as weights used at the radiator.
\(w R=\) steeringvec(gc.fc,[-tp.mobileAngle;0]);
Meanwhile, the array is also steered toward a given steering angle, so the total weights are a combination of both precoding and the steering weights.
```

wT = steeringvec(gc.fc,[tp.steeringAngle;0]);
weight = wT.* wR;

```

The transmitted signal is thus given by
```

txOFDM = radiator(tx0FDM,repmat([tp.mobileAngle;0],1,numTx),conj(weight));

```

Note that the transmitted signal, txOFDM, is a matrix whose columns represent data streams radiated from the corresponding elements in the transmit array.

\section*{Signal Propagation}

Next, the signal propagates through a MIMO channel. In general, there are two propagation effects on the received signal strength that are of interest: one of them is the spreading loss due to the propagation distance, often termed as the free space path loss; and the other is the fading due to multipath. This example models both effects.
```

[channel,interferenceTransmitter,toRxAng,spLoss] = ...
helperMIMOEnvSetup(gc,tp);
[sigFade, chPathG] = channel(tx0FDM);
sigLoss = sigFade/sqrt(db2pow(spLoss(1)));

```

To simulate a more realistic mobile environment, next section also inserts an interference source. Note that in a wireless communication system, the interference is often a different mobile user.
```

% Generate interference and apply gain and propagation loss
numBits = size(sigFade,1);
interfSymbols = wgn(numBits,1,1,'linear','complex');
interfSymbols = interferenceTransmitter(interfSymbols);
interfLoss = interfSymbols/sqrt(db2pow(spLoss(2)));

```

\section*{Signal Reception}

The receiving antenna collects both the propagated signal as well as the interference and passes them to the receiver to recover the original information embedded in the signal. Just like the transmit end of the system, the receiver used in a MIMO-OFDM system also contains many stages, including OFDM demodulator, QAM demodulator, descrambler, equalizer, and Viterbi decoder.
```

[collector,receiver,demodulator0FDM,descrambler,decoder] = ...
helperMIMORxSetup(gc,tp,numDataSymbols);
rxSig = collector([sigLoss interfLoss],toRxAng);

```
```

% Front-end amplifier gain and thermal noise
rxSig = receiver(rxSig);
rxOFDM = rxSig * ...
(sqrt(gc.FFTLength-sum(gc.NumGuardBandCarriers)-1)) / (gc.FFTLength);
% OFDM Demodulation
rx0FDM = demodulator0FDM(rx0FDM);
% Channel estimation
hD = helperIdealChannelEstimation(gc, numDataSymbols, chPathG);
% Equalization
rxEq = helperEqualizer(rx0FDM, hD, numTx);
% Collapse OFDM matrix
rxSymbs = rxEq(:);
rxBitsS = qamdemod(rxSymbs,gc.modMode,'UnitAveragePower',true,...
'OutputType','bit');
rxCoded = descrambler(rxBitsS);
rxDeCoded = decoder(rxCoded);
rxBits = rxDeCoded(1:frmSz);

```

A comparison of the decoded output with the original message stream suggests that the resulting BER is too high for a communication system. The constellation diagram is also shown below
```

ber = comm.ErrorRate;
measures = ber(txBits, rxBits);
fprintf('BER = %.2f%%; No. of Bits = %d; No. of errors = %d\n', ...
measures(1)*100,measures(3), measures(2));
BER = 32.07%; No. of Bits = 30714; No. of errors = 9850
constdiag = comm.ConstellationDiagram('SamplesPerSymbol', 1,...
'ReferenceConstellation', [], 'ColorFading',true,...
'Position', gc.constPlotPosition);
% Display received constellation
constdiag(rxSymbs);

```


The high BER is mainly due to the mobile being off the steering direction of the base station array. If the mobile is aligned with the steering direction, the BER is greatly improved.
```

tp.steeringAngle = tp.mobileAngle;
% Steer the transmitter main lobe
wT = steeringvec(gc.fc,[tp.steeringAngle;0]);
[txBits, rxBits,rxSymbs] = helperRerunMIMOBeamformingExample(gc,tp,wT);
reset(ber);
measures = ber(txBits, rxBits);
fprintf('BER = %.2f%%; No. of Bits = %d; No. of errors = %d\n', ...
measures(1)*100,measures(3), measures(2));
BER = 0.02%; No. of Bits = 30714; No. of errors = 5
constdiag(rxSymbs);

```


Therefore, the system is very sensitive to the steering error. On the other hand, it is this kind of spatial sensitivity makes SDMA possible to distinguish multiple users in space.

\section*{Phase Shifter Quantization Effect}

The discussion so far assumes that the beam can be steered toward the exact desired direction. In reality, however, this is often not true, especially when the analog phase shifters are used. Analog phase shifters have only limited precision and are categorized by the number of bits used in phase shifts. For example, a 3 -bit phase shifter can only represent 8 different angles within 360 degrees. Thus, if such quantization is included in the simulation, the system performance degrades, which can be observed from the constellation plot.
```

% analog phase shifter with quantization effect
release(steeringvec);
steeringvec.NumPhaseShifterBits = 4;
wTq = steeringvec(gc.fc,[tp.steeringAngle;0]);
[txBits, rxBits,rxSymbs] = helperRerunMIMOBeamformingExample(gc,tp,wTq);
reset(ber);
measures = ber(txBits, rxBits);
fprintf('BER = %.2f%%; No. of Bits = %d; No. of errors = %d\n', ...
measures(1)*100,measures(3), measures(2));

```
```

constdiag = comm.ConstellationDiagram('SamplesPerSymbol', 1,...
'ReferenceConstellation', [], 'ColorFading',true,...
'Position', gc.constPlotPosition);
constdiag(rxSymbs);
BER = 0.02%; No. of Bits = 30714; No. of errors = 7

```


\section*{Summary}

This example shows a system level simulation of a point-to-point MIMO-OFDM system employing beamforming. The simulation models many system components such as encoding, transmit beamforming, precoding, multipath fading, channel estimation, equalization, and decoding.

\section*{Reference}
[1] Houman Zarrinkoub, Understanding LTE with MATLAB, Wiley, 2014
[2] Theodore S. Rappaport et al. Millimeter Wave Wireless Communications, Prentice Hall, 2014

\section*{See Also}
phased.Radiator

\section*{Conventional and Adaptive Beamformers}

This example illustrates how to apply digital beamforming to a narrowband signal received by an antenna array. Three beamforming algorithms are illustrated: the phase shift beamformer (PhaseShift), the minimum variance distortionless response (MVDR) beamformer, and the linearly constrained minimum variance (LCMV) beamformer.

\section*{Simulating the Received Signal}

First, we define the incoming signal. The signal's baseband representation is a simple rectangular pulse as defined below:
```

t = 0:0.001:0.3; % Time, sampling frequency is 1kHz
s = zeros(size(t));
s = s(:); %Signal in column vector
s(201:205) = s(201:205) + 1; % Define the pulse
plot(t,s);
title('Pulse');xlabel('Time (s)');ylabel('Amplitude (V)');

```


For this example, we also assume that the signal's carrier frequency is 100 MHz .
```

carrierFreq = 100e6;
wavelength = physconst('LightSpeed')/carrierFreq;

```

We now define the uniform linear array (ULA) used to receive the signal. The array contains 10 isotropic antennas. The element spacing is half of the incoming wave's wavelength.
```

ula = phased.ULA('NumElements',10,'ElementSpacing',wavelength/2);
ula.Element.FrequencyRange = [90e5 110e6];

```

Then we use the collectPlaneWave method of the array object to simulate the received signal at the array. Assume the signal arrives at the array from 45 degrees in azimuth and 0 degrees in elevation, the received signal can be modeled as
```

inputAngle = [45; 0];
x = collectPlaneWave(ula,s,inputAngle,carrierFreq);

```

The received signal often includes some thermal noise. The noise can be modeled as complex, Gaussian distributed random numbers. In this example, we assume that the noise power is 0.5 watts, which corresponds to a 3 dB signal-to-noise ratio (SNR) at each antenna element.
```

% Create and reset a local random number generator so the result is the
% same every time.
rs = RandStream.create('mt19937ar','Seed',2008);
noisePwr = .5; % noise power
noise = sqrt(noisePwr/2)*(randn(rs,size(x))+li*randn(rs,size(x)));

```

The total return is the received signal plus the thermal noise.
```

rxSignal = x + noise;

```

The total return has ten columns, where each column corresponds to one antenna element. The plot below shows the magnitude plot of the signal for the first two channels
```

subplot(211);
plot(t,abs(rxSignal(:,1)));axis tight;
title('Pulse at Antenna l');xlabel('Time (s)');ylabel('Magnitude (V)');
subplot(212);
plot(t,abs(rxSignal(:,2)));axis tight;
title('Pulse at Antenna 2');xlabel('Time (s)');ylabel('Magnitude (V)');

```


\section*{Phase Shift Beamformer}

A beamformer can be considered a spatial filter that suppresses the signal from all directions, except the desired ones. A conventional beamformer simply delays the received signal at each antenna so that the signals are aligned as if they arrive at all the antennas at the same time. In the narrowband case, this is equivalent to multiplying the signal received at each antenna by a phase factor. To define a phase shift beamformer pointing to the signal's incoming direction, we use
```

psbeamformer = phased.PhaseShiftBeamformer('SensorArray',ula,...
'OperatingFrequency',carrierFreq,'Direction',inputAngle,...
'WeightsOutputPort', true);

```

We can now obtain the output signal and weighting coefficients from the beamformer.
```

[yCbf,w] = psbeamformer(rxSignal);
% Plot the output
clf;
plot(t,abs(yCbf)); axis tight;
title('Output of Phase Shift Beamformer');
xlabel('Time (s)');ylabel('Magnitude (V)');

```


From the figure, we can see that the signal becomes much stronger compared to the noise. The output SNR is approximately 10 times stronger than that of the received signal on a single antenna, because a 10 -element array produces an array gain of 10 .

To see the beam pattern of the beamformer, we plot the array response along 0 degrees elevation with the weights applied. Since the array is a ULA with isotropic elements, it has ambiguity in front and back of the array. Therefore, we only plot between -90 and 90 degrees in azimuth.
```

% Plot array response with weighting
pattern(ula,carrierFreq,-180:180,0,'Weights',w,'Type','powerdb',...
'PropagationSpeed',physconst('LightSpeed'),'Normalize',false,...
'CoordinateSystem','rectangular');
axis([-90 90 -60 0]);

```


You can see that the main beam of the beamformer is pointing in the desired direction ( 45 degrees), as expected.

Next, we use the beamformer to enhance the received signal under interference conditions. In the presence of strong interference, the target signal may be masked by the interference signal. For example, interference from a nearby radio tower can blind the antenna array in that direction. If the radio signal is strong enough, it can blind the radar in multiple directions, especially when the desired signal is received by a sidelobe. Such scenarios are very challenging for a phase shift beamformer, and therefore, adaptive beamformers are introduced to address this problem.

\section*{Modeling the Interference Signals}

We model two interference signals arriving from 30 degrees and 50 degrees in azimuth. The interference amplitudes are much higher than the desired signal shown in the previous scenario.
```

nSamp = length(t);
s1 = 10*randn(rs,nSamp,1);
s2 = 10*randn(rs,nSamp,1);
% interference at 30 degrees and 50 degrees
interference = collectPlaneWave(ula,[s1 s2],[30 50; 0 0],carrierFreq);

```

To illustrate the effect of interference, we'll reduce the noise level to a minimal level. For the rest of the example, let us assume a high SNR value of 50 dB at each antenna. We'll see that even though there is almost no noise, the interference alone can make a phase shift beamformer fail.
```

noisePwr = 0.00001; % noise power, 50dB SNR
noise = sqrt(noisePwr/2)*(randn(rs,size(x))+li*randn(rs,size(x)));

```
```

rxInt = interference + noise; % total interference + noise
rxSignal = x + rxInt; % total received Signal

```

First, we'll try to apply the phase shift beamformer to retrieve the signal along the incoming direction.
```

yCbf = psbeamformer(rxSignal);

```
plot(t,abs(yCbf)); axis tight;
title('Output of Phase Shift Beamformer With Presence of Interference');
xlabel('Time (s)');ylabel('Magnitude (V)');


From the figure, we can see that, because the interference signals are much stronger than the target signal, we cannot extract the signal content.

\section*{MVDR Beamformer}

To overcome the interference problem, we can use the MVDR beamformer, a popular adaptive beamformer. The MVDR beamformer preserves the signal arriving along a desired direction, while trying to suppress signals coming from other directions. In this case, the desired signal is at the direction 45 degrees in azimuth.
```

% Define the MVDR beamformer
mvdrbeamformer = phased.MVDRBeamformer('SensorArray',ula,...
'Direction',inputAngle,'OperatingFrequency',carrierFreq,...
'WeightsOutputPort',true);

```

When we have access to target-free data, we can provide such information to the MVDR beamformer by setting the TrainingInputPort property to true.
```

mvdrbeamformer.TrainingInputPort = true;

```

We apply the MVDR beamformer to the received signal. The plot shows the MVDR beamformer output signal. You can see that the target signal can now be recovered.
```

[yMVDR, wMVDR] = mvdrbeamformer(rxSignal,rxInt);

```
plot(t,abs(yMVDR)); axis tight;
title('Output of MVDR Beamformer With Presence of Interference');
xlabel('Time (s)');ylabel('Magnitude (V)');


Looking at the response pattern of the beamformer, we see two deep nulls along the interference directions, ( 30 and 50 degrees). The beamformer also has a gain of 0 dB along the target direction of 45 degrees. Thus, the MVDR beamformer preserves the target signal and suppresses the interference signals.
```

pattern(ula,carrierFreq,-180:180,0,'Weights',wMVDR,'Type','powerdb',...
'PropagationSpeed',physconst('LightSpeed'),'Normalize',false,...
'CoordinateSystem','rectangular');
axis([-90 90 -80 20]);
hold on; % compare to PhaseShift
pattern(ula,carrierFreq,-180:180,0,'Weights',w,...
'PropagationSpeed',physconst('LightSpeed'),'Normalize',false,...

```
```

 'Type','powerdb','CoordinateSystem','rectangular');
 hold off;
legend('MVDR','PhaseShift')

```


Also shown in the figure is the response pattern from PhaseShift. We can see that the PhaseShift pattern does not null out the interference at all.

\section*{Self Nulling Issue in MVDR}

On many occasions, we may not be able to separate the interference from the target signal, and therefore, the MVDR beamformer has to calculate weights using data that includes the target signal. In this case, if the target signal is received along a direction slightly different from the desired one, the MVDR beamformer suppresses it. This occurs because the MVDR beamformer treats all the signals, except the one along the desired direction, as undesired interferences. This effect is sometimes referred to as "signal self nulling".

To illustrate this self nulling effect, we define an MVDR beamformer and set the TrainingInputPort property to false.
```

mvdrbeamformer_selfnull = phased.MVDRBeamformer('SensorArray',ula,...
'Direction',inputAngle,'OperatingFrequency',carrierFreq,...
'WeightsOutputPort',true,'TrainingInputPort',false);

```

We then create a direction mismatch between the incoming signal direction and the desired direction.
Recall that the signal is impinging from 45 degrees in azimuth. If, with some a priori information, we expect the signal to be arriving from 43 degrees in azimuth, then we use 43 degrees in azimuth as the
desired direction in the MVDR beamformer. However, since the real signal is arriving at 45 degrees in azimuth, there is a slight mismatch in the signal direction.
```

expDir = [43; 0];
mvdrbeamformer_selfnull.Direction = expDir;

```

When we apply the MVDR beamformer to the received signal, we see that the receiver cannot differentiate the target signal and the interference.
```

[ySn, wSn] = mvdrbeamformer_selfnull(rxSignal);
plot(t,abs(ySn)); axis tight;
title('Output of MVDR Beamformer With Signal Direction Mismatch');
xlabel('Time (s)');ylabel('Magnitude (V)');

```


When we look at the beamformer response pattern, we see that the MVDR beamformer tries to suppress the signal arriving along 45 degrees because it is treated like an interference signal. The MVDR beamformer is very sensitive to signal-steering vector mismatch, especially when we cannot provide interference information.
```

pattern(ula,carrierFreq,-180:180,0,'Weights',wSn,'Type','powerdb',...
'PropagationSpeed',physconst('LightSpeed'),'Normalize',false,...
'CoordinateSystem','rectangular');
axis([-90 90 -40 25]);

```


\section*{LCMV Beamformer}

To prevent signal self-nulling, we can use an LCMV beamformer, which allows us to put multiple constraints along the target direction (steering vector). It reduces the chance that the target signal will be suppressed when it arrives at a slightly different angle from the desired direction. First we create an LCMV beamformer:
lcmvbeamformer = phased.LCMVBeamformer('Weights0utputPort',true);
Now we need to create several constraints. To specify a constraint, we put corresponding entries in both the constraint matrix, Constraint, and the desired response vector, DesiredResponse. Each column in Constraint is a set of weights we can apply to the array and the corresponding entry in DesiredResponse is the desired response we want to achieve when the weights are applied. For example, to avoid self nulling in this example, we may want to add the following constraints to the beamformer:
- Preserve the incoming signal from the expected direction (43 degrees in azimuth).
- To avoid self nulling, ensure that the response of the beamformer will not decline at \(+/-2\) degrees of the expected direction.

For all the constraints, the weights are given by the steering vectors that steer the array toward those directions:
```

steeringvec = phased.SteeringVector('SensorArray',ula);
stv = steeringvec(carrierFreq,[43 41 45]);

```

The desired responses should be 1 for all three directions. The Constraint matrix and DesiredResponse are given by:
```

lcmvbeamformer.Constraint = stv;
lcmvbeamformer.DesiredResponse = [1; 1; 1];

```

Then we apply the beamformer to the received signal. The plot below shows that the target signal can be detected again even though there is the mismatch between the desired and the true signal arriving direction.
```

[yLCMV,wLCMV] = lcmvbeamformer(rxSignal);
plot(t,abs(yLCMV)); axis tight;
title('Output of LCMV Beamformer With Signal Direction Mismatch');
xlabel('Time (s)');ylabel('Magnitude (V)');

```

Output of LCMV Beamformer With Signal Direction Mismatch


The LCMV response pattern shows that the beamformer puts the constraints along the specified directions, while nulling the interference signals along 30 and 50 degrees. Here we only show the pattern between 0 and 90 degrees in azimuth so that we can see the behavior of the response pattern at the signal and interference directions better.
```

pattern(ula,carrierFreq,-180:180,0,'Weights',wLCMV,'Type','powerdb',...
'PropagationSpeed',physconst('LightSpeed'),'Normalize',false,...
'CoordinateSystem','rectangular');
axis([0 90 -40 35]);
hold on; % compare to MVDR

```
```

pattern(ula,carrierFreq,-180:180,0,'Weights',wSn,...
'PropagationSpeed',physconst('LightSpeed'),'Normalize',false,...
'Type','powerdb','CoordinateSystem','rectangular');
hold off;
legend('LCMV','MVDR');

```


The effect of constraints can be better seen when comparing the LCMV beamformer's response pattern to the MVDR beamformer's response pattern. Notice how the LCMV beamformer is able to maintain a flat response region around the 45 degrees in azimuth, while the MVDR beamformer creates a null.

\section*{2D Array Beamforming}

In this section, we illustrate the use of a beamformer with a uniform rectangular array (URA). The beamformer can be applied to a URA in the same way as to the ULA. We only illustrate the MVDR beamformer for the URA in this example. The usages of other algorithms are similar.

First, we define a URA. The URA consists of 10 rows and 5 columns of isotropic antenna elements. The spacing between the rows and the columns are 0.4 and 0.5 wavelength, respectively.
```

colSp = 0.5*wavelength;
rowSp = 0.4*wavelength;
ura = phased.URA('Size',[10 5],'ElementSpacing',[rowSp colSp]);
ura.Element.FrequencyRange = [90e5 110e6];

```

Consider the same source signal as was used in the previous sections. The source signal arrives at the URA from 45 degrees in azimuth and 0 degrees in elevation. The received signal, including the noise at the array, can be modeled as
```

x = collectPlaneWave(ura,s,inputAngle,carrierFreq);
noise = sqrt(noisePwr/2)*(randn(rs,size(x))+li*randn(rs,size(x)));

```

Unlike a ULA, which can only differentiate the angles in azimuth direction, a URA can also differentiate angles in elevation direction. Therefore, we specify two interference signals arriving along the directions \([30 ; 10]\) and [50;-5] degrees, respectively.
```

s1 = 10*randn(rs,nSamp,1);
s2 = 10*randn(rs,nSamp,1);
%interference at [30; 10] and at [50; -5]
interference = collectPlaneWave(ura,[s1 s2],[30 50; 10 -5],carrierFreq);
rxInt = interference + noise; % total interference + noise
rxSignal = x + rxInt; % total received signal

```

We now create an MVDR beamformer pointing to the target signal direction.
```

mvdrbeamformer = phased.MVDRBeamformer('SensorArray',ura,...
'Direction',inputAngle,'OperatingFrequency',carrierFreq,...
'TrainingInputPort',true,'WeightsOutputPort',true);

```

Finally, we apply the MVDR beamformer to the received signal and plot its output.
```

[yURA,w]= mvdrbeamformer(rxSignal,rxInt);
plot(t,abs(yURA)); axis tight;
title('Output of MVDR Beamformer for URA');
xlabel('Time (s)');ylabel('Magnitude (V)');

```

Output of MVDR Beamformer for URA


To see clearly that the beamformer puts the nulls along the interference directions, we'll plot the beamformer response pattern of the array along -5 degrees and 10 degrees in elevation, respectively. The figure shows that the beamformer suppresses the interference signals along [30 10] and [50-5] directions.
```

subplot(2,1,1);
pattern(ura,carrierFreq,-180:180,-5,'Weights',w,'Type',' powerdb',...
'PropagationSpeed',physconst('LightSpeed'),'Normalize',false,...
'CoordinateSystem','rectangular');
title('Response Pattern at -5 Degrees Elevation');
axis([-90 90 -60 -5]);
subplot(2,1,2);
pattern(ura,carrierFreq,-180:180,10,'Weights',w,'Type','powerdb',...
'PropagationSpeed',physconst('LightSpeed'),'Normalize',false,...
'CoordinateSystem','rectangular');
title('Response Pattern at 10 Degrees Elevation');
axis([-90 90 -60 -5]);

```


\section*{Summary}

In this example, we illustrated how to use a beamformer to retrieve the signal from a particular direction using a ULA or a URA. The choice of the beamformer depends on the operating environment. Adaptive beamformers provides superior interference rejection compared to that offered by conventional beamformers. When the knowledge about the target direction is not accurate, the LCMV beamformer is preferable because it prevents signal self-nulling.

\section*{Direction of Arrival Estimation with Beamscan, MVDR, and MUSIC}

This example illustrates using beamscan, MVDR, and MUSIC for direction of arrival (DOA) estimation. Beamscan is a technique that forms a conventional beam and scans it over directions of interest to obtain a spatial spectrum. Minimum variance distortionless response (MVDR) is similar to beamscan but uses an MVDR beam. Multiple signal classification (MUSIC) is a subspace method that provides high resolution DOA estimates. For all three methods, the peaks of the output spatial spectrum indicate the DOAs of the received signals. In this example, we illustrate the use of beamscan, MVDR, and MUSIC to estimate broadside angles with a uniform linear array (ULA) and azimuth and elevation angles with a uniform rectangular array (URA).

\section*{Modeling ULA's Received Signal}

First, model a uniform linear array (ULA) containing 10 isotropic antennas spaced 0.5 meters apart.
```

ula = phased.ULA('NumElements',10,'ElementSpacing',0.5);

```

Assume that two narrowband signals impinge on the array. The first signal arrives from \(40^{\circ}\) in azimuth and \(0^{\circ}\) in elevation, while the second signal arrives from \(-20^{\circ}\) in azimuth and \(0^{\circ}\) in elevation. The operating frequency of the system is 300 MHz .
```

ang1 = [40; 0]; % First signal
ang2 = [-20; 0]; % Second signal
angs = [ang1 ang2];
c = physconst('LightSpeed');
fc = 300e6; % Operating frequency
lambda = c/fc;
pos = getElementPosition(ula)/lambda;
Nsamp = 1000;

```

Also, assume that the thermal noise power at each antenna is 0.01 Watts.
```

nPower = 0.01;

```

Generate the multichannel signal received by the ULA.
```

rs = rng(2007);
signal = sensorsig(pos,Nsamp,angs,nPower);

```

\section*{Beamscan DOA Estimation with a ULA}

We want to estimate the two DOAs using the received signal. Because the signal is received by a ULA, which is symmetric around its axis, we cannot obtain both azimuth and elevation at the same time. Instead, we can estimate the broadside angle, which is measured from the broadside of the ULA. The relationship between these angles is illustrated in the following figure:


The broadside angles corresponding to the two incident directions are:
```

broadsideAngle = az2broadside(angs(1,:),angs(2,:))
broadsideAngle =
40.0000-20.0000

```

We can see that the two broadside angles are the same as the azimuth angles. In general, when the elevation angle is zero and the azimuth angle is within [-90 90], the broadside angle is the same as the azimuth angle. In the following we only perform the conversion when they are not equal.

The beamscan algorithm scans a conventional beam through a predefined scan region. Here we set the scanning region to [-90 90] to cover all 180 degrees.
```

spatialspectrum = phased.BeamscanEstimator('SensorArray',ula,...
'OperatingFrequency',fc,'ScanAngles',-90:90);

```

By default, the beamscan estimator only produces a spatial spectrum across the scan region. Set the DOAOutputPort property to true to obtain DOA estimates. Set the NumSignals property to 2 to find the locations of the top two peaks.
```

spatialspectrum.DOAOutputPort = true;
spatialspectrum.NumSignals = 2;

```

We now obtain the spatial spectrum and the DOAs. The estimated DOAs show the correct values, which are \(40^{\circ}\) and \(-20^{\circ}\).
[~,ang] = spatialspectrum(signal)
ang =
\(40-20\)

Plot the spatial spectrum of the beamscan output.
plotSpectrum(spatialspectrum);


\section*{Improving Resolution Using MVDR and MUSIC Estimators}

The conventional beam cannot resolve two closely-spaced signals. When two signals arrive from directions separated by less than the beamwidth, beamscan will fail to estimate the directions of the signals. To illustrate this limitation, we simulate two received signals from \(30^{\circ}\) and \(40^{\circ}\) in azimuth.
```

ang1 = [30; 0]; ang2 = [40; 0];
signal = sensorsig(pos,Nsamp,[ang1 ang2],nPower);
[~,ang] = spatialspectrum(signal)
ang =

```

The results differ from the true azimuth angles. Let's take a look at the output spectrum. plotSpectrum(spatialspectrum);


The output spatial spectrum has only one dominant peak. Therefore, it cannot resolve these two closely-spaced signals. When we try to estimate the DOA from the peaks of the beamscan output, we get incorrect estimates. The beamscan object returns two maximum peaks as the estimated DOAs no matter how different the peaks are. In this case, the beamscan returns the small peak at \(71^{\circ}\) as the second estimate.

To resolve closely-spaced signals, we can use the minimum variance distortionless response (MVDR) algorithm or the multiple signal classification (MUSIC) algorithm. First, we will examine the MVDR estimator, which scans an MVDR beam over the specified region. Because an MVDR beam has a smaller beamwidth, it has higher resolution.
```

mvdrspatialspect = phased.MVDREstimator('SensorArray',ula,...
'OperatingFrequency',fc,'ScanAngles',-90:90,...
'DOAOutputPort',true,'NumSignals',2);
[~,ang] = mvdrspatialspect(signal)
plotSpectrum(mvdrspatialspect);
ang =

```

\section*{MVDR Spatial Spectrum}


The MVDR algorithm correctly estimates the DOAs that are unresolvable by beamscan. The improved resolution comes with a price. The MVDR is more sensitive to sensor position errors. In circumstances where sensor positions are inaccurate, MVDR could produce a worse spatial spectrum than beamscan. Moreover, if we further reduce the difference of two signal directions to a level that is smaller than the beamwidth of an MVDR beam, the MVDR estimator will also fail.

The MUSIC algorithm can also be used to resolve these closely-spaced signals. Estimate the directions of arrival of the two sources and compare the spatial spectrum of MVDR to the spatial spectrum of MUSIC.
```

musicspatialspect = phased.MUSICEstimator('SensorArray',ula,...
'OperatingFrequency',fc,'ScanAngles',-90:90,...
'DOAOutputPort',true,'NumSignalsSource','Property','NumSignals',2);
[~,ang] = musicspatialspect(signal)
ymvdr = mvdrspatialspect(signal);
ymusic = musicspatialspect(signal);
helperPlotDOASpectra(mvdrspatialspect.ScanAngles,...
musicspatialspect.ScanAngles,ymvdr,ymusic,'ULA')
ang =

```

DOA Spatial Spectra


The directions of arrival using MUSIC are correct, and MUSIC provides even better spatial resolution than MVDR. MUSIC, like MVDR, is sensitive to sensor position errors. In addition, the number of sources must be known or accurately estimated. When the number of sources specified is incorrect, MVDR and Beamscan may simply return insignificant peaks from the correct spatial spectrum. In contrast, the MUSIC spatial spectrum itself may be inaccurate when the number of sources is not specified correctly. In addition, the amplitudes of MUSIC spectral peaks cannot be interpreted as the power of the sources.

For a ULA, additional high resolution algorithms can further exploit the special geometry of the ULA. See "High Resolution Direction of Arrival Estimation" on page 17-214.

\section*{Converting Broadside Angles to Azimuth}

Although we can only estimate broadside angles using a ULA, we can convert the estimated broadside angles to azimuth angles if we know their incoming elevations. We now model two signals coming from \(35^{\circ}\) in elevation and estimate their corresponding broadside angles.
```

ang1 = [40; 35]; ang2 = [15; 35];
signal = sensorsig(pos,Nsamp,[ang1 ang2],nPower);
[~,ang] = mvdrspatialspect(signal)
ang =

```

The resulting broadside angles are different from either the azimuth or elevation angles. We can convert the broadside angles to the azimuth angles if we know the elevation.
```

ang = broadside2az(ang,35)
ang =
40.3092 14.7033

```

\section*{Beamscan DOA Estimation with a URA}

Next, we illustrate DOA estimation using a 10-by-5 uniform rectangular array (URA). A URA can estimate both azimuth and elevation angles. The element spacing is 0.3 meters between each row, and 0.5 meters between each column.
```

ura = phased.URA('Size',[10 5],'ElementSpacing',[0.3 0.5]);

```

Assume that two signals impinge on the URA. The first signal arrives from \(40^{\circ}\) in azimuth and \(45^{\circ}\) in elevation, while the second signal arrives from \(-20^{\circ}\) in azimuth and \(20^{\circ}\) in elevation.
```

ang1 = [40; 45]; % First signal
ang2 = [-20; 20]; % Second signal
signal = sensorsig(getElementPosition(ura)/lambda,Nsamp, ...
[ang1 ang2],nPower);
rng(rs); % Restore random number generator

```

Create a 2-D beamscan estimator object from the URA. This object uses the same algorithm as the 1D case except that it scans over both azimuth and elevation instead of broadside angles.

The scanning region is specified by the property 'AzimuthScanAngles' and 'ElevationScanAngles'. To reduce computational complexity, we assume some a priori knowledge about the incoming signal directions. We restrict the azimuth scan region to [-45 45] and the elevation scan region to [10 60].
```

azelspectrum = phased.BeamscanEstimator2D('SensorArray',ura,...
'OperatingFrequency',fc,...
'AzimuthScanAngles',-45:45,'ElevationScanAngles',10:60,...
'DOAOutputPort',true,'NumSignals',2);

```

The DOA output is a 2 -by- N matrix where N is the number of signal directions. The first row contains azimuth angles while the second row contains elevation angles.
```

[~,ang] = azelspectrum(signal)
ang =
40-20
45 20

```

Plot a 3-D spectrum in azimuth and elevation.
plotSpectrum(azelspectrum);


\section*{MVDR DOA Estimation with a URA}

Similar to the ULA case, we use a 2-D version of the MVDR algorithm. Since our knowledge of the sensor positions is perfect, we expect the MVDR spectrum to have a better resolution than beamscan.
```

mvdrazelspectrum = phased.MVDREstimator2D('SensorArray',ura,...
'OperatingFrequency',fc,...
'AzimuthScanAngles',-45:45,'ElevationScanAngles',10:60,...
'D0AOutputPort',true,'NumSignals',2);
[~,ang] = mvdrazelspectrum(signal)
plotSpectrum(mvdrazelspectrum);
ang =
-20 40
20 45

```

\section*{2-D MVDR Spatial Spectrum}


\section*{MUSIC DOA Estimation with a URA}

We can also use the MUSIC algorithm to estimate the directions of arrival of the two sources.
```

musicazelspectrum = phased.MUSICEstimator2D('SensorArray',ura,...
'OperatingFrequency',fc,...
'AzimuthScanAngles',-45:45,'ElevationScanAngles',10:60,...
'D0AOutputPort',true,'NumSignalsSource','Property','NumSignals', 2) ;
[~,ang] = musicazelspectrum(signal)
plotSpectrum(musicazelspectrum);
ang =
-20 40
20 45

```

\section*{2-D MUSIC Spatial Spectrum}


To compare MVDR and MUSIC estimators, let's consider sources located even closer together. Using MVDR and MUSIC, compute the spatial spectrum of two sources located at \(10^{\circ}\) in azimuth and separated by \(3^{\circ}\) in elevation.
```

ang1 = [10; 20]; % First signal
ang2 = [10; 23]; % Second signal
signal = sensorsig(getElementPosition(ura)/lambda,Nsamp, ...
[ang1 ang2],nPower);
[~,angmvdr] = mvdrazelspectrum(signal)
[~,angmusic] = musicazelspectrum(signal)
angmvdr =
10-27
22 21
angmusic =
10 10
23 20

```

In this case, only MUSIC correctly estimates to directions of arrival for the two sources. To see why, plot an elevation cut of each spatial spectrum at \(10^{\circ}\) azimuth.
```

ymvdr = mvdrazelspectrum(signal);
ymusic = musicazelspectrum(signal);
helperPlotDOASpectra(mvdrazelspectrum.ElevationScanAngles,...
musicazelspectrum.ElevationScanAngles,ymvdr(:,56),ymusic(:,56),'URA')

```

DOA Spectra at 10 Degrees Azimuth


Since the MUSIC spectrum has better spatial resolution than MVDR, MUSIC correctly identifies the sources while MVDR fails to do so.

\section*{Summary}

In this example, we showed how to apply the beamscan, MVDR, and MUSIC techniques to the DOA estimation problem. We used both techniques to estimate broadside angles for the signals received by a ULA. The MVDR algorithm has better resolution than beamscan when there is no sensor position error. MUSIC has even better resolution than MVDR, but the number of sources must be known. We also illustrated how to convert between azimuth and broadside angles. Next, we applied beamscan, MVDR, and MUSIC to estimate both azimuth and elevation angles using a URA. In all of these cases, we plotted the output spatial spectrum, and found again that MUSIC had the best spatial resolution. Beamscan, MVDR, and MUSIC are techniques that can be applied to any type of array, but for ULAs and URAs there are additional high resolution techniques that can further exploit the array geometry.

\section*{High Resolution Direction of Arrival Estimation}

This example illustrates several high-resolution direction of arrival (DOA) estimation techniques. It introduces variants of the MUSIC, root-MUSIC, ESPRIT and root-WSF algorithms and discusses their respective merits in the context of far-field, narrowband signal sources received by a uniform linear array (ULA) antenna.

\section*{Modeling the Received Array Signals}

Define a uniform linear array (ULA) composed of 10 isotropic antennas. The array element spacing is 0.5 meters.
```

N = 10;
ula = phased.ULA('NumElements',N,'ElementSpacing',0.5)
ula =
phased.ULA with properties:
Element: [1x1 phased.IsotropicAntennaElement]
NumElements: 10
ElementSpacing: 0.5000
ArrayAxis: 'y'
Taper: 1

```

Simulate the array output for two incident signals. Both signals are incident from \(90^{\circ}\) in azimuth. Their elevation angles are \(73^{\circ}\) and \(68^{\circ}\) respectively. In this example, we assume that these two directions are unknown and need to be estimated. Simulate the baseband received signal at the array demodulated from an operating frequency of 300 MHz .
```

fc = 300e6; % Operating frequency
fs = 8192; % Sampling frequency
lambda = physconst('LightSpeed')/fc; % Wavelength
pos = getElementPosition(ula)/lambda; % Element position in wavelengths
ang1 = [90;73]; ang2 = [90;68]; % Direction of the signals
angs = [ang1 ang2];
Nsamp = 1024; % Number of snapshots
noisePwr = 0.01; % Noise power
rs = rng(2012); % Set random number generator
signal = sensorsig(pos,Nsamp,angs,noisePwr);

```

Because a ULA is symmetric around its axis, a DOA algorithm cannot uniquely determine azimuth and elevation. Therefore, the results returned by these high-resolution DOA estimators are in the form of broadside angles. An illustration of broadside angles can be found in the following figure.


Calculate the broadside angles corresponding to the two incident angles.
```

ang_true = az2broadside(angs(1,:),angs(2,:))
ang_true = 1\times2
17.0000 22.0000

```

The broadside angles are \(17^{\circ}\) and \(22^{\circ}\).

\section*{Estimating the Direction of Arrival (DOA)}

Assume that we know a priori that there are two sources. To estimate the DOA, use the root-MUSIC technique. Construct a DOA estimator using the root-MUSIC algorithm.
```

rootmusicangle = phased.RootMUSICEstimator('SensorArray',ula,...
'OperatingFrequency',fc,...
'NumSignalsSource','Property','NumSignals',2)
rootmusicangle =
phased.RootMUSICEstimator with properties:

```
```

 SensorArray: [1x1 phased.ULA]
 PropagationSpeed: 299792458
 OperatingFrequency: 300000000
 NumSignalsSource: 'Property'
 NumSignals: 2
 ForwardBackwardAveraging: false
SpatialSmoothing: 0

```

Because the array response vector of a ULA is conjugate symmetric, we can use forward-backward (FB) averaging to perform computations with real matrices and reduce computational complexity. FBbased estimators also have a lower variance and reduce the correlation between signals.

To apply forward-backward averaging, set the ForwardBackwardAveraging property of the rootMUSIC DOA estimator to true. In this case, the root-MUSIC algorithm is also called the unitary rootMUSIC algorithm.
```

rootmusicangle.ForwardBackwardAveraging = true;

```

Perform the DOA estimation:
```

ang = rootmusicangle(signal)
ang = 1\times2

```
\[
16.9960 \quad 21.9964
\]

We can also use an ESPRIT DOA estimator. As in the case of root-MUSIC, set the ForwardBackwardAveraging property to true. This algorithm is also called unitary ESPRIT.
```

espritangle = phased.ESPRITEstimator('SensorArray',ula,...
'OperatingFrequency',fc,'ForwardBackwardAveraging',true,...
'NumSignalsSource','Property','NumSignals',2)
espritangle =
phased.ESPRITEstimator with properties:
SensorArray: [1x1 phased.ULA]
PropagationSpeed: 299792458
OperatingFrequency: 300000000
NumSignalsSource: 'Property'
NumSignals: 2
SpatialSmoothing: 0
Method: 'TLS'
ForwardBackwardAveraging: true
RowWeighting: 1
ang = espritangle(signal)
ang = 1\times2
21.9988 16.9748

```

Finally, use the MUSIC DOA estimator. MUSIC also supports forward-backward averaging. Unlike ESPRIT and root-MUSIC, MUSIC computes a spatial spectrum for specified broadside scan angles. Directions of arrival correspond to peaks in the MUSIC spatial spectrum.
```

musicangle = phased.MUSICEstimator('SensorArray',ula,...
'OperatingFrequency',fc,'ForwardBackwardAveraging',true,...
'NumSignalsSource','Property','NumSignals',2,...
'DOAOutputPort',true)
musicangle =
phased.MUSICEstimator with properties:
SensorArray: [1x1 phased.ULA]
PropagationSpeed: 299792458
OperatingFrequency: 300000000
ForwardBackwardAveraging: true
SpatialSmoothing: 0
ScanAngles: [1x181 double]
DOAOutputPort: true
NumSignals: 2
NumSignalsSource: 'Property'
[~,ang] = musicangle(signal)
ang = 1\times2
17 22
plotSpectrum(musicangle)

```

MUSIC Spatial Spectrum


Directions of arrival for MUSIC are limited to the scan angles in the ScanAngles property. Because the true directions of arrival in this example coincide with the search angles in ScanAngles, MUSIC provides precise DOA angle estimates. In practice, root-MUSIC provides superior resolution to MUSIC. However, the MUSIC algorithm can also be used for DOA estimation in both azimuth and elevation using a 2-D array. See "Direction of Arrival Estimation with Beamscan, MVDR, and MUSIC" on page 17-203.

\section*{Estimating the Number of Signal Sources}

In practice, you generally do not know the number of signal sources, and need to estimate the number of sources from the received signal. You can estimate the number of signal sources by specifying 'Auto' for the NumSignalsSource property and choosing either 'AIC' or 'MDL' for the NumSignalsMethod property. For AIC, the Akaike information criterion (AIC) is used, and for MDL, the minimum description length (MDL) criterion is used.

Before you can set NumSignalsSource, you must release the DOA object because it is locked to improve efficiency during processing.
```

release(espritangle);
espritangle.NumSignalsSource = 'Auto';
espritangle.NumSignalsMethod = 'AIC';
ang = espritangle(signal)
ang = 1\times2
21.9988 16.9748

```

\section*{Reducing Computational Complexity}

In addition to forward-backward averaging, other methods can reduce computational complexity. One of these approaches is to solve an equivalent problem with reduced dimensions in beamspace. While the ESPRIT algorithm performs the eigenvalue decomposition (EVD) of a \(10 \times 10\) real matrix in our example, the beamspace version can reduce the problem to the EVD of a \(3 x 3\) real matrix. This technique uses a priori knowledge of the sector where the signals are located to position the center of the beam fan. In this example, point the beam fan to \(20^{\circ}\) in azimuth.
```

bsespritangle = phased.BeamspaceESPRITEstimator('SensorArray',ula,...
'OperatingFrequency',fc,...
'NumBeamsSource',''Property','NumBeams',3,...
'BeamFanCenter',20);
ang = bsespritangle(signal)
ang = 1×2
21.9875 16.9943

```

Another technique is the root-weighted subspace fitting (WSF) algorithm. This algorithm is iterative and the most demanding in terms of computational complexity. You can set the maximum number of iterations by specifying the MaximumIterationCount property to maintain the cost below a specific limit.
```

rootwsfangle = phased.RootWSFEstimator('SensorArray',ula,...
'OperatingFrequency',fc,'MaximumIterationCount',2);
ang = rootwsfangle(signal)
ang = 1\times2
16.9961 21.9962

```

\section*{Optimizing Performance}

In addition to FB averaging, you can use row weighting to improve the statistical performance of the element-space ESPRIT estimator. Row weighting is a technique that applies different weights to the rows of the signal subspace matrix. The row weighting parameter determines the maximum weight. In most cases, it is chosen to be as large as possible. However, its value can never be greater than ( \(\mathrm{N}-1\) )/2, where N is the number of elements of the array.
```

release(espritangle);
espritangle.RowWeighting = 4
espritangle =
phased.ESPRITEstimator with properties:
SensorArray: [1x1 phased.ULA]
PropagationSpeed: 299792458
OperatingFrequency: 300000000
NumSignalsSource: 'Auto'
NumSignalsMethod: 'AIC'
SpatialSmoothing: 0
Method: 'TLS'
ForwardBackwardAveraging: true
RowWeighting: 4

```
```

ang = espritangle(signal)
ang = 1\times2
21.9884 17.0003

```

\section*{Estimating Coherent Sources in Multipath Environments}

If several sources are correlated or coherent (as in multipath environments), the spatial covariance matrix becomes rank deficient and subspace-based DOA estimation methods may fail. To show this, model a received signal composed of 4 narrowband components. Assume that 2 of the first 3 signals are multipath reflections of the first source, having magnitudes equal to \(1 / 4\) and \(1 / 2\) that of the first source, respectively.
```

scov = eye(4);
magratio = [1;0.25;0.5];
scov(1:3,1:3) = magratio*magratio';

```

All signals are incident at \(0^{\circ}\) elevation, with azimuth incident angles of \(-23^{\circ}, 0^{\circ}, 12^{\circ}\), and \(40^{\circ}\).
```

% Incident azimuth
az_ang = [-23 0 12 40];
% When the elevation is zero, the azimuth within [-90 90] is the same as
% the broadside angle.
el_ang = zeros(1,4);
% The received signals
signal = sensorsig(pos,Nsamp,[az_ang; el_ang],noisePwr,scov);
rng(rs); % Restore random numbe\overline{r}}\mathrm{ generator

```

Compare the performance of the DOA algorithm when sources are coherent. To simplify the example, run only one trial per algorithm. Given the high SNR, the results will be a good indicator of estimation accuracy.

First, verify that the AIC criterion underestimates the number of sources, causing the unitary ESPRIT algorithm to give incorrect estimates. The AIC estimates the number of sources as two because three sources are correlated.
```

release(espritangle);
espritangle.NumSignalsSource = 'Auto';
espritangle.NumSignalsMethod = 'AIC';
ang = espritangle(signal)
ang = 1\times2
-15.3535 40.0024

```

The root-WSF algorithm is robust in the context of correlated signals. With the correct number of sources as an input, the algorithm correctly estimates the directions of arrival.
```

release(rootwsfangle);
rootwsfangle.NumSignalsSource = 'Property';
rootwsfangle.NumSignals = 4;
ang = rootwsfangle(signal)

```
```

ang = 1\times4
40.0016 -22.9919 12.0693 0.0737

```

ESPRIT, root-MUSIC, and MUSIC, however, fail to estimate the correct directions of arrival, even if we specify the number of sources and use the unitary implementations.
```

release(rootmusicangle);
rootmusicangle.NumSignalsSource = 'Property';
rootmusicangle.NumSignals = 4;
rootmusicangle.ForwardBackwardAveraging = true;
ang = rootmusicangle(signal)
ang = 1\times4
40.0077 -22.8313 4.4976 -11.9038

```

You can apply spatial smoothing to estimate the DOAs of correlated signals. Using spatial smoothing, however, decreases the effective aperture of the array. Therefore, the variance of the estimators increases because the subarrays are smaller than the original array.
```

release(rootmusicangle);
Nr = 2; % Number of multipath reflections
rootmusicangle.SpatialSmoothing = Nr
rootmusicangle =
phased.RootMUSICEstimator with properties:
SensorArray: [1x1 phased.ULA]
PropagationSpeed: 299792458
OperatingFrequency: 300000000
NumSignalsSource: 'Property'
NumSignals: 4
ForwardBackwardAveraging: true
SpatialSmoothing: 2
ang = rootmusicangle(signal)
ang = 1\times4
40.0010 -22.9959 12.1376 0.1843

```

\section*{Comparison of DOA Algorithms}

In summary, ESPRIT, MUSIC, root-MUSIC, and root-WSF are important DOA algorithms that provide good performance and reasonable computational complexity for ULAs. Unitary ESPRIT, unitary rootMUSIC, and beamspace unitary ESPRIT provide ways to significantly reduce the computational cost of the estimators, while also improving their performance. root-WSF is particularly attractive in the context of correlated sources because, contrary to the other methods, it does not require spatial smoothing to properly estimate the DOAs when the number of sources is known.

\section*{Increasing Angular Resolution with MIMO Radars}

This example introduces how forming a virtual array in MIMO radars can help increase angular resolution. It shows how to simulate a coherent MIMO radar signal processing chain using Phased Array System Toolbox \({ }^{\mathrm{TM}}\).

\section*{Introduction}

There are two categories of multiple input multiple output (MIMO) radars. Multistatic radars form the first category. They are often referred to as statistical MIMO radars. Coherent MIMO radars form the second category and are the focus of this example. A benefit of coherent MIMO radar signal processing is the ability to increase the angular resolution of the physical antenna array by forming a virtual array.

\section*{Virtual Array}

A virtual array can be created by quasi-monostatic MIMO radars, where the transmit and receive arrays are closely located. To better understand the virtual array concept, first look at the two-way pattern of a conventional phased array radar. The two-way pattern of a phased array radar is the product of its transmit array pattern and receive array pattern. For example, consider a 77 GHz millimeter wave radar with a 2 -element transmit array and a 4 -element receive array.
```

fc = 77e9;
c = 3e8;
lambda = c/fc;
Nt = 2;
Nr = 4;

```

If both arrays have half-wavelength spacing, which are sometimes referred to as full arrays, then the two-way pattern is close to the receive array pattern.
```

dt = lambda/2;
dr = lambda/2;
txarray = phased.ULA(Nt,dt);
rxarray = phased.ULA(Nr,dr);
ang = -90:90;
pattx = pattern(txarray,fc,ang,0,'Type','powerdb');
patrx = pattern(rxarray,fc,ang,0,'Type','powerdb');
pat2way = pattx+patrx;
helperPlotMultipledBPattern(ang,[pat2way pattx patrx],[-30 0],...
{'Two-way Pattern','Tx Pattern','Rx Pattern'},...
'Patterns of full/full arrays - 2Tx, 4Rx',...
{'-','--','-.'});

```


If the full transmit array is replaced with a thin array, meaning the element spacing is wider than half wavelength, then the two-way pattern has a narrower beamwidth. Notice that even though the thin transmit array has grating lobes, those grating lobes are not present in the two-way pattern.
```

dt = Nr*lambda/2;
txarray = phased.ULA(Nt,dt);
pattx = pattern(txarray,fc,ang,0,'Type','powerdb');
pat2way = pattx+patrx;
helperPlotMultipledBPattern(ang,[pat2way pattx patrx],[-30 0],...
{'Two-way Pattern','Tx Pattern','Rx Pattern'},...
'Patterns of thin/full arrays - 2Tx, 4Rx',...
{'-','--','-.'});

```


The two-way pattern of this system corresponds to the pattern of a virtual receive array with \(2 \times 4=\) 8 elements. Thus, by carefully choosing the geometry of the transmit and the receive arrays, we can increase the angular resolution of the system without adding more antennas to the arrays.

\title{
TX Array \(2 \lambda\) spacing \\ RX Array \(0.5 \lambda\) spacing \\ Virtual Array \(0.5 \lambda\) spacing
}
```

varray = phased.ULA(Nt*Nr,dr);
patv = pattern(varray,fc,ang,0,'Type','powerdb');
helperPlotMultipledBPattern(ang,[pat2way patv],[-30 0],...
{'Two-way Pattern','Virtual Array Pattern'},...
'Patterns of thin/full arrays and virtual array',...
{'-','--'},[1 2]);

```


\section*{Virtual Array in MIMO Radars}

In a coherent MIMO radar system, each antenna of the transmit array transmits an orthogonal waveform. Because of this orthogonality, it is possible to recover the transmitted signals at the receive array. The measurements at the physical receive array corresponding to each orthogonal waveform can then be stacked to form the measurements of the virtual array.


Note that since each element in the transmit array radiates independently, there is no transmit beamforming, so the transmit pattern is broad and covers a large field of view (FOV). This allows the simultaneous illumination of all targets in the FOV. The receive array can then generate multiple beams to process all target echoes. Compared to conventional phased array radars that need successive scans to cover the entire FOV, this is another advantage of MIMO radars for applications that require fast reaction time.

\section*{TDM-MIMO Radar Simulation}

Time division multiplexing (TDM) is one way to achieve orthogonality among transmit channels. The remainder of this example shows how to model and simulate a TDM-MIMO frequency-modulated
continuous wave (FMCW) automotive radar system. The waveform characteristics are adopted from the "Automotive Adaptive Cruise Control Using FMCW Technology" on page 17-367 example.
```

waveform = helperDesignFMCWWaveform(c,lambda);
fs = waveform.SampleRate;

```

Imagine that there are two cars in the FOV with a separation of 20 degrees. As seen in the earlier array pattern plots of this example, the 3 dB beamwidth of a 4 -element receive array is around 30 degrees so conventional processing would not be able to separate the two targets in the angular domain. The radar sensor parameters are as follows:
```

transmitter = phased.Transmitter('PeakPower',0.001,'Gain',36);
receiver = phased.ReceiverPreamp('Gain',40,'NoiseFigure',4.5,'SampleRate',fs);
txradiator = phased.Radiator('Sensor',txarray,'OperatingFrequency',fc,...
'PropagationSpeed',c,'WeightsInputPort',true);
rxcollector = phased.Collector('Sensor',rxarray,'OperatingFrequency',fc,...
'PropagationSpeed ',c);

```

Define the position and motion of the ego vehicle and the two cars in the FOV.
```

radar_speed = 100*1000/3600; % Ego vehicle speed 100 km/h
radarmotion = phased.Platform('InitialPosition',[0;0;0.5],'Velocity',[radar_speed;0;0]);
car_dist = [40 50]; % Distance between sensor and cars (meters)
car_speed = [-80 96]*1000/3600; % km/h -> m/s
car_az = [-10 10];
car_rcs = [20 40];
car_pos = [car_dist.*cosd(car_az);car_dist.*sind(car_az);0.5 0.5];
cars = phased.RadarTarget('MeanRCS',car_rcs,'PropagationSpeed',c,'OperatingFrequency',fc);
carmotion = phased.Platform('InitialPosition',car_pos,'Velocity',[car_speed;0 0;0 0]);

```

The propagation model is assumed to be free space.
```

channel = phased.FreeSpace('PropagationSpeed',c,...
'OperatingFrequency',fc,'SampleRate',fs,'TwoWayPropagation',true);

```

The raw data cube received by the physical array of the TDM MIMO radar can then be simulated as follows:
```

rng(2017);
Nsweep = 64;
Dn = 2; % Decimation factor
fs = fs/Dn;
xr = complex(zeros(fs*waveform.SweepTime,Nr,Nsweep));
w0 = [0;1]; % weights to enable/disable radiating elements
for m = 1:Nsweep
% Update radar and target positions
[radar_pos,radar_vel] = radarmotion(waveform.SweepTime);
[tgt_pos,tgt_vel\overline{] = carmotion(waveform.SweepTime);}
[~,tg}t_ang] = rangeangle(tgt_pos,radar_pos)
% Transmit FMCW waveform
sig = waveform();

```
```

 txsig = transmitter(sig);
 % Toggle transmit element
 w0 = 1-w0;
 txsig = txradiator(txsig,tgt_ang,w0);
 % Propagate the signal and reflect off the target
 txsig = channel(txsig,radar_pos,tgt_pos,radar_vel,tgt_vel);
 txsig = cars(txsig);
 % Dechirp the received radar return
 rxsig = rxcollector(txsig,tgt_ang);
 rxsig = receiver(rxsig);
 dechirpsig = dechirp(rxsig,sig);
 % Decimate the return to reduce computation requirements
 for n = size(xr,2):-1:1
 xr(:,n,m) = decimate(dechirpsig(:,n),Dn,'FIR');
 end
    ```
end

\section*{Virtual Array Processing}

The data cube received by the physical array must be processed to form the virtual array data cube. For the TDM-MIMO radar system used in this example, the measurements corresponding to the two transmit antenna elements can be recovered from two consecutive sweeps by taking every other page of the data cube.
```

Nvsweep = Nsweep/2;
xr1 = xr(:,:,1:2:end);
xr2 = xr(:,:,2:2:end);

```

Now the data cube in xrl contains the return corresponding to the first transmit antenna element, and the data cube in xr2 contains the return corresponding to the second transmit antenna element. Hence, the data cube from the virtual array can be formed as:
```

xrv = cat(2,xr1,xr2);

```

Next, perform range-Doppler processing on the virtual data cube. Because the range-Doppler processing is linear, the phase information is preserved. Therefore, the resulting response can be used later to perform further spatial processing on the virtual aperture.
```

nfft_r = 2^nextpow2(size(xrv,1));
nfft_d = 2^nextpow2(size(xrv,3));
rngdop = phased.RangeDopplerResponse('PropagationSpeed',c,...
'DopplerOutput','Speed','OperatingFrequency',fc,'SampleRate',fs,...
'RangeMethod','FFT','PRFSource','Property',...
'RangeWindow','Hann','PRF',1/(Nt*waveform.SweepTime), .. .
'SweepSlope',waveform.SweepBandwidth/waveform.SweepTime, ...
'RangeFFTLengthSource','Property','RangeFFTLength',nfft_r,...
'DopplerFFTLengthSource','Property','DopplerFFTLength',nfft_d,...
'DopplerWindow','Hann');
[resp,r,sp] = rngdop(xrv);

```

The resulting resp is a data cube containing the range-Doppler response for each element in the virtual array. As an illustration, the range-Doppler map for the first element in the virtual array is shown.
plotResponse(rngdop, squeeze(xrv(:,1,:)));


The detection can be performed on the range-Doppler map from each pair of transmit and receive element to identify the targets in scene. In this example, a simple threshold-based detection is performed on the map obtained between the first transmit element and the first receive element, which corresponds to the measurement at the first element in the virtual array. Based on the rangeDoppler map shown in the previous figure, the threshold is set at 10 dB below the maximum peak.
```

respmap = squeeze(mag2db(abs(resp(:,1,:))));
ridx = helperRDDetection(respmap,-10);

```

Based on the detected range of the targets, the corresponding range cuts can be extracted from the virtual array data cube to perform further spatial processing. To verify that the virtual array provides a higher resolution compared to the physical array, the code below extracts the range cuts for both targets and combines them into a single data matrix. The beamscan algorithm is then performed over these virtual array measurements to estimate the directions of the targets.
```

xv = squeeze(sum(resp(ridx,:,:),1))';
doa = phased.BeamscanEstimator('SensorArray',varray,'PropagationSpeed',c,...
'OperatingFrequency',fc,'D0A0utputPort',true,'NumSignals',2,'ScanAngles',ang);
[Pdoav,target_az_est] = doa(xv);

```
```

fprintf('target_az_est = [%s]\n',num2str(target_az_est));
target_az_est = [-6 10]

```

The two targets are successfully separated. The actual angles for the two cars are -10 and 10 degrees.

The next figure compares the spatial spectrums from the virtual and the physical receive array.
```

doarx = phased.BeamscanEstimator('SensorArray',rxarray,'PropagationSpeed',c,...
'OperatingFrequency',fc,'DOA0utputPort',true,'ScanAngles',ang);
Pdoarx = doarx(xr);
helperPlotMultipledBPattern(ang,mag2db(abs([Pdoav Pdoarx])),[-30 0],...
{'Virtual Array','Physical Array'},...
'Spatial spectrum for virtual array and physical array',{'-','--'});

```


In this example, the detection is performed on the range-Doppler map without spatial processing of the virtual array data cube. This works because the SNR is high. If the SNR is low, it is also possible to process the virtual array blindly across the entire range-Doppler map to maximize the SNR before the detection.

\section*{Phase-coded MIMO Radars}

Although a TDM-MIMO radar's processing chain is relatively simple, it uses only one transmit antenna at a time. Therefore, it does not take advantage of the full capacity of the transmit array. To improve the efficiency, there are other orthogonal waveforms that can be used in a MIMO radar.

Using the same configuration as the example, one scheme to achieve orthogonality is to have one element always transmit the same FMCW waveform, while the second transmit element reverses the phase of the FMCW waveform for each sweep. This way both transmit elements are active in all sweeps. For the first sweep, the two elements transmit the same waveform, and for the second sweep, the two elements transmit the waveform with opposite phase, and so on. This is essentially coding the consecutive sweeps from different elements with a Hadamard code. It is similar to the Alamouti codes used in MIMO communication systems.

MIMO radars can also adopt phase-coded waveforms in MIMO radar. In this case, each radiating element can transmit a uniquely coded waveform, and the receiver can then have a matched filter bank corresponding to each of those phase coded waveform. The signals can then be recovered and processed to form the virtual array.

\section*{Summary}

In this example, we gave a brief introduction to coherent MIMO radar and the virtual array concept. We simulated the return of a MIMO radar with a 2 -element transmit array and a 4 -element receive array and performed direction of arrival estimation of the simulated echos of two closely spaced targets using an 8 -element virtual array.

\section*{References}
[1] Frank Robey, et al. MIMO Radar Theory and Experimental Results, Conference Record of the Thirty Eighth Asilomar Conference on Signals, Systems and Computers, California, pp. 300-304, 2004.
[2] Eli Brookner, MIMO Radars and Their Conventional Equivalents, IEEE Radar Conference, 2015.
[3] Sandeep Rao, MIMO Radar, Texas Instruments Application Report SWRA554, May 2017.
[4] Jian Li and Peter Stoica, MIMO Radar Signal Processing, John Wiley \& Sons, 2009.

\section*{Introduction to Space-Time Adaptive Processing}

This example gives a brief introduction to space-time adaptive processing (STAP) techniques and illustrates how to use Phased Array System Toolbox \({ }^{T \mathrm{TM}}\) to apply STAP algorithms to the received pulses. STAP is a technique used in airborne radar systems to suppress clutter and jammer interference.

\section*{Introduction}

In a ground moving target indicator (GMTI) system, an airborne radar collects the returned echo from the moving target on the ground. However, the received signal contains not only the reflected echo from the target, but also the returns from the illuminated ground surface. The return from the ground is generally referred to as clutter.

The clutter return comes from all the areas illuminated by the radar beam, so it occupies all range bins and all directions. The total clutter return is often much stronger than the returned signal echo, which poses a great challenge to target detection. Clutter filtering, therefore, is a critical part of a GMTI system.

In traditional MTI systems, clutter filtering often takes advantage of the fact that the ground does not move. Thus, the clutter occupies the zero Doppler bin in the Doppler spectrum. This principle leads to many Doppler-based clutter filtering techniques, such as pulse canceller. Interested readers can refer to "Ground Clutter Mitigation with Moving Target Indication (MTI) Radar" on page 17-461 for a detailed example of the pulse canceller. When the radar platform itself is also moving, such as in a plane, the Doppler component from the ground return is no longer zero. In addition, the Doppler components of clutter returns are angle dependent. In this case, the clutter return is likely to have energy across the Doppler spectrum. Therefore, the clutter cannot be filtered only with respect to Doppler frequency.

Jamming is another significant interference source that is often present in the received signal. The simplest form of jamming is a barrage jammer, which is strong, continuous white noise directed toward the radar receiver so that the receiver cannot easily detect the target return. The jammer is usually at a specific location, and the jamming signal is therefore associated with a specific direction. However, because of the white noise nature of the jammer, the received jamming signal occupies the entire Doppler band.

STAP techniques filter the signal in both the angular and Doppler domains (thus, the name "spacetime adaptive processing") to suppress the clutter and jammer returns. In the following sections, we simulate returns from target, clutter, and jammer and illustrate how STAP techniques filter the interference from the received signal.

\section*{System Setup}

We first define a radar system, starting from the system built in the example "Designing a Basic Monostatic Pulse Radar" on page 17-449.
load BasicMonostaticRadarExampleData.mat; \% Load monostatic pulse radar

\section*{Antenna Definition}

Assume that the antenna element has an isotropic response in the front hemisphere and all zeros in the back hemisphere. The operating frequency range is set to 8 to 12 GHz to match the 10 GHz operating frequency of the system.
```

antenna = phased.IsotropicAntennaElement...
('FrequencyRange',[8e9 12e9],'BackBaffled',true); % Baffled Isotropic

```

Define a 6-element ULA with a custom element pattern. The element spacing is assumed to be one half the wavelength of the waveform.
```

fc = radiator.OperatingFrequency;
c = radiator.PropagationSpeed;
lambda = c/fc;
ula = phased.ULA('Element',antenna,'NumElements',6,...
'ElementSpacing', lambda/2);
pattern(ula,fc,'PropagationSpeed',c,'Type','powerdb')
title('6-element Baffled ULA Response Pattern')
view(60,50)

```

\section*{6-element Baffled ULA Response Pattern}


\section*{Radar Setup}

Next, mount the antenna array on the radiator/collector. Then, define the radar motion. The radar system is mounted on a plane that flies 1000 meters above the ground. The plane is flying along the array axis of the ULA at a speed such that it travels a half element spacing of the array during one pulse interval. (An explanation of such a setting is provided in the DPCA technique section that follows.)
```

radiator.Sensor = ula;
collector.Sensor = ula;
sensormotion = phased.Platform('InitialPosition',[0; 0; 1000]);

```
```

arrayAxis = [0; 1; 0];
prf = waveform.PRF;
vr = ula.ElementSpacing*prf; % in [m/s]
sensormotion.Velocity = vr/2*arrayAxis;

```

\section*{Target}

Next, define a nonfluctuating target with a radar cross section of 1 square meter moving on the ground.
```

target = phased.RadarTarget('Model','Nonfluctuating','MeanRCS',1, ...
'OperatingFrequency', fc);
tgtmotion = phased.Platform('InitialPosition',[1000; 1000; 0],...
'Velocity',[30; 30; 0]);

```

\section*{Jammer}

The target returns the desired signal; however, several interferences are also present in the received signal. This section focuses on the jammer. Define a simple barrage jammer with an effective radiated power of 100 watts.
```

jammer = phased.BarrageJammer('ERP',100);
Fs = waveform.SampleRate;
rngbin = c/2*(0:1/Fs:1/prf-1/Fs).';
jammer.SamplesPerFrame = numel(rngbin);
jammermotion = phased.Platform('InitialPosition',[1000; 1732; 1000]);

```

\section*{Clutter}

In this example we simulate the clutter using the constant gamma model with a gamma value of - 15 dB. Literature shows that such a gamma value can be used to model terrain covered by woods. For each range, the clutter return can be thought of as a combination of the returns from many small clutter patches on that range ring. Since the antenna is back baffled, the clutter contribution is only from the front. To simplify the computation, use an azimuth width of 10 degrees for each patch.
```

clutter = phased.ConstantGammaClutter('Sensor',ula,'SampleRate',Fs,...
'Gamma', -15,'PlatformHeight ', 1000, .. .
'OperatingFrequency',fc,...
'PropagationSpeed',c,...
'PRF',prf,...
'TransmitERP',transmitter.PeakPower*db2pow(transmitter.Gain),...
'PlatformSpeed',norm(sensormotion.Velocity),...
'PlatformDirection',[90;0],...
'BroadsideDepressionAngle',0,...
'MaximumRange',5000,...
'AzimuthCoverage',180,...
'PatchAzimuthWidth',10,...
'OutputFormat','Pulses');

```

\section*{Propagation Paths}

Finally, create a free space environment to represent the target and jammer paths. Because we are using a monostatic radar system, the target channel is set to simulate two-way propagation delays. The jammer path computes only one-way propagation delays.
```

tgtchannel = phased.FreeSpace('TwoWayPropagation',true,'SampleRate',Fs,...
'OperatingFrequency', fc);

```
```

jammerchannel = phased.FreeSpace('TwoWayPropagation',false,...
'SampleRate',Fs,'OperatingFrequency', fc);

```

\section*{Simulation Loop}

We are now ready to simulate the returns. Collect 10 pulses before processing. The seed of the random number generator from the jammer model is set to a constant to get reproducible results.
```

jammer.SeedSource = 'Property';
jammer.Seed = 5;
clutter.SeedSource = 'Property';
clutter.Seed = 5;
numpulse = 10; % Number of pulses
tsig = zeros(size(rngbin,1), ula.NumElements, numpulse);
jsig = tsig; tjcsig = tsig; tcsig = tsig; csig = tsig;
for m = 1:numpulse
% Update sensor, target and jammer positions
[sensorpos,sensorvel] = sensormotion(1/prf);
[tgtpos,tgtvel] = tgtmotion(1/prf);
[jampos,jamvel] = jammermotion(1/prf);
% Calculate the target and jammer angles as seen by the sensor
[~,tgtang] = rangeangle(tgtpos,sensorpos);
[~,jamang] = rangeangle(jampos,sensorpos);
% Simulate propagation of pulse in direction of targets
pulse = waveform();
[pulse,txstatus] = transmitter(pulse);
pulse = radiator(pulse,tgtang);
pulse = tgtchannel(pulse,sensorpos,tgtpos,sensorvel,tgtvel);
% Collect target returns at sensor
pulse = target(pulse);
tsig(:,:,m) = collector(pulse,tgtang);
% Collect jammer signal at sensor
jamsig = jammer();
jamsig = jammerchannel(jamsig,jampos,sensorpos,jamvel,sensorvel);
jsig(:,:,m) = collector(jamsig,jamang);
% Collect clutter signal at sensor
csig(:,:,m) = clutter();
% Receive collected signals
tjcsig(:,:,m) = receiver(tsig(:,:,m)+jsig(:,:,m)+csig(:,:,m),...
~(txstatus>0)); % Target + jammer + clutter
tcsig(:,:,m) = receiver(tsig(:,:,m)+csig(:,:,m),...
~(txstatus>0)); % Target + clutter
tsig(:,:,m) = receiver(tsig(:,:,m),...
~(txstatus>0)); % Target echo only
end

```

\section*{True Target Range, Angle and Doppler}

The target azimuth angle is 45 degrees, and the elevation angle is about - 35.27 degrees.
```

tgtLocation = global2localcoord(tgtpos,'rs',sensorpos);
tgtAzAngle = tgtLocation(1)
tgtAzAngle = 44.9981
tgtElAngle = tgtLocation(2)
tgtElAngle = -35.2651

```

The target range is 1732 m .
```

tgtRng = tgtLocation(3)
tgtRng = 1.7320e+03

```

The target Doppler normalized frequency is about 0.21 .
```

sp = radialspeed(tgtpos, tgtmotion.Velocity, ...
sensorpos, sensormotion.Velocity);
tgtDp = 2*speed2dop(sp,lambda); % Round trip Doppler
tgtDp/prf
ans = 0.2116

```

The total received signal contains returns from the target, clutter and jammer combined. The signal is a data cube with three dimensions (range bins \(x\) number of elements \(x\) number of pulses). Notice that the clutter return dominates the total return and masks the target return. We cannot detect the target (blue vertical line) without further processing at this stage.
```

ReceivePulse = tjcsig;
plot([tgtRng tgtRng],[0 0.01],rngbin,abs(ReceivePulse(:,:,1)));
xlabel('Range (m)'), ylabel('Magnitude');
title('Signals collected by the ULA within the first pulse interval')

```

Signals collected by the ULA within the first pulse interval


Now, examine the returns in 2-D angle Doppler (or space-time) domain. In general, the response is generated by scanning all ranges and azimuth angles for a given elevation angle. Because we know exactly where the target is, we can calculate its range and elevation angle with respect to the antenna array.
```

tgtCellIdx = val2ind(tgtRng,c/(2*Fs));
snapshot = shiftdim(ReceivePulse(tgtCellIdx,:,:)); % Remove singleton dim
angdopresp = phased.AngleDopplerResponse('SensorArray',ula,...
'OperatingFrequency',fc, 'PropagationSpeed',c,...
'PRF',prf, 'ElevationAngle',tgtElAngle);
plotResponse(angdopresp,snapshot,'NormalizeDoppler',true);
text(tgtAzAngle,tgtDp/prf,'+ Target')

```


If we look at the angle Doppler response which is dominated by the clutter return, we see that the clutter return occupies not only the zero Doppler, but also other Doppler bins. The Doppler of the clutter return is also a function of the angle. The clutter return looks like a diagonal line in the entire angle Doppler space. Such a line is often referred to as clutter ridge. The received jammer signal is white noise, which spreads over the entire Doppler spectrum at a particular angle, around 60 degrees.

\section*{Clutter Suppression with a DPCA Canceller}

The displaced phase center antenna (DPCA) algorithm is often considered to be the first STAP algorithm. This algorithm uses the shifted aperture to compensate for the platform motion so that the clutter return does not change from pulse to pulse. Thus, this algorithm can remove the clutter via a simple subtraction of two consecutive pulses.

A DPCA canceller is often used on ULAs but requires special platform motion conditions. The platform must move along the antenna's array axis and at a speed such that during one pulse interval, the platform travels exactly half of the element spacing. The system used here is set up, as described in earlier sections, to meet these conditions.

Assume that N is the number of ULA elements. The clutter return received at antenna 1 through antenna N-1 during the first pulse is the same as the clutter return received at antenna 2 through antenna N during the second pulse. By subtracting the pulses received at these two subarrays during the two pulse intervals, the clutter can be cancelled out. The cost of this method is an aperture that is one element smaller than the original array.

Now, define a DPCA canceller. The algorithm may need to search through all combinations of angle and Doppler to locate a target, but for the example, because we know exactly where the target is, we can direct our processor to that point.
```

rxmainlobedir = [0; 0];
stapdpca = phased.DPCACanceller('SensorArray',ula,'PRF',prf,...
'PropagationSpeed',c,'OperatingFrequency',fc,...
'Direction',rxmainlobedir,'Doppler',tgtDp,...
'WeightsOutputPort',true)
stapdpca =
phased.DPCACanceller with properties:
SensorArray: [1×1 phased.ULA]
PropagationSpeed: 299792458
OperatingFrequency: 1.0000e+10
PRFSource: 'Property'
PRF: 2.9979e+04
DirectionSource: 'Property'
Direction: [2×1 double]
NumPhaseShifterBits: 0
DopplerSource: 'Property'
Doppler: 6.3429e+03
WeightsOutputPort: true
PreDopplerOutput: false

```

First, apply the DPCA canceller to both the target return and the clutter return.
```

ReceivePulse = tcsig;
[y,w] = stapdpca(ReceivePulse,tgtCellIdx);

```

The processed data combines all information in space and across the pulses to become a single pulse. Next, examine the processed signal in the time domain.
```

plot([tgtRng tgtRng],[0 1.2e-5],rngbin,abs(y));
xlabel('Range (m)'), ylabel('Magnitude');
title('DPCA Canceller Output (no Jammer)')

```


The signal now is clearly distinguishable from the noise and the clutter has been filtered out. From the angle Doppler response of the DPCA processor weights below, we can also see that the weights produce a deep null along the clutter ridge.
angdopresp.ElevationAngle \(=0\);
plotResponse(angdopresp,w,'NormalizeDoppler',true);
title('DPCA Weights Angle Doppler Response at 0 degrees Elevation')


Although the results obtained by DPCA are very good, the radar platform has to satisfy very strict requirements in its movement to use this technique. Also, the DPCA technique cannot suppress the jammer interference.

Applying DPCA processing to the total signal produces the result shown in the following figure. We can see that DPCA cannot filter the jammer from the signal. The resulting angle Doppler pattern of the weights is the same as before. Thus, the processor cannot adapt to the newly added jammer interference.
```

ReceivePulse = tjcsig;
[y,w] = stapdpca(ReceivePulse,tgtCellIdx);
plot([tgtRng tgtRng],[0 8e-4],rngbin,abs(y));
xlabel('Range (m)'), ylabel('Magnitude');
title('DPCA Canceller Output (with Jammer)')

```

plotResponse(angdopresp,w, 'NormalizeDoppler',true); title('DPCA Weights Angle Doppler Response at 0 degrees Elevation')


\section*{Clutter and Jammer Suppression with an SMI Beamformer}

To suppress the clutter and jammer simultaneously, we need a more sophisticated algorithm. The optimum receiver weights, when the interference is Gaussian-distributed, are given by [1]
\[
\mathbf{w}=k \mathbf{R}^{-1} \mathbf{s}
\]
where \(k\) is a scalar factor, \(\mathbf{R}\) is the space-time covariance matrix of the interference signal, and \(\mathbf{s}\) is the desired space-time steering vector. The exact information of \(\mathbf{R}\) is often unavailable, so we will use the sample matrix inversion (SMI) algorithm. The algorithm estimates \(\mathbf{R}\) from training-cell samples and then uses it in the aforementioned equation.

Now, define an SMI beamformer and apply it to the signal. In addition to the information needed in DPCA, the SMI beamformer needs to know the number of guard cells and the number of training cells. The algorithm uses the samples in the training cells to estimate the interference. Thus, we should not use the cells that are close to the target cell for the estimates because they may contain some target information, i.e., we should define guard cells. The number of guard cells must be an even number to be split equally in front of and behind the target cell. The number of training cells also must be an even number and split equally in front of and behind the target. Normally, the larger the number of training cells, the better the interference estimate.
```

tgtAngle = [tgtAzAngle; tgtElAngle];
stapsmi = phased.STAPSMIBeamformer('SensorArray', ula, 'PRF', prf, ...
'PropagationSpeed', c, 'OperatingFrequency', fc, ...
'Direction', tgtAngle, 'Doppler', tgtDp, ...

```
```

 'Weights0utputPort', true,...
 'NumGuardCells', 4, 'NumTrainingCells', 100)
 stapsmi =
phased.STAPSMIBeamformer with properties:
SensorArray: [1×1 phased.ULA]
PropagationSpeed: 299792458
OperatingFrequency: 1.0000e+10
PRFSource: 'Property'
PRF: 2.9979e+04
DirectionSource: 'Property'
Direction: [2×1 double]
NumPhaseShifterBits: 0
DopplerSource: 'Property'
Doppler: 6.3429e+03
NumGuardCells: 4
NumTrainingCells: 100
WeightsOutputPort: true
[y,w] = stapsmi(ReceivePulse,tgtCellIdx);
plot([tgtRng tgtRng],[0 2e-6],rngbin,abs(y));
xlabel('Range (m)'), ylabel('Magnitude');
title('SMI Beamformer Output (with Jammer)')

```

plotResponse(angdopresp,w,'NormalizeDoppler',true);
title('SMI Weights Angle Doppler Response at 0 degrees Elevation')

SMI Weights Angle Doppler Response at \(\mathbf{0}\) degrees Elevation


The result shows that an SMI beamformer can distinguish signals from both the clutter and the jammer. The angle Doppler pattern of the SMI weights shows a deep null along the jammer direction.

SMI provides the maximum degrees of freedom, and hence, the maximum gain among all STAP algorithms. It is often used as a baseline for comparing different STAP algorithms.

\section*{Reducing the Computation Cost with an ADPCA Canceller}

Although SMI is the optimum STAP algorithm, it has several innate drawbacks, including a high computation cost because it uses the full dimension data of each cell. More importantly, SMI requires a stationary environment across many pulses. This kind of environment is not often found in real applications. Therefore, many reduced dimension STAP algorithms have been proposed.

An adaptive DPCA (ADPCA) canceller filters out the clutter in the same manner as DPCA, but it also has the capability to suppress the jammer as it estimates the interference covariance matrix using two consecutive pulses. Because there are only two pulses involved, the computation is greatly reduced. In addition, because the algorithm is adapted to the interference, it can also tolerate some motion disturbance.

Now, define an ADPCA canceller, and then apply it to the received signal.
```

stapadpca = phased.ADPCACanceller('SensorArray', ula, 'PRF', prf, ...
'PropagationSpeed', c, 'OperatingFrequency', fc, ...
'Direction', rxmainlobedir, 'Doppler', tgtDp, ...
'Weights0utputPort', true,...
'NumGuardCells', 4, 'NumTrainingCells', 100)

```
```

stapadpca =
phased.ADPCACanceller with properties:
SensorArray: [1×1 phased.ULA]
PropagationSpeed: 299792458
OperatingFrequency: 1.0000e+10
PRFSource: 'Property'
PRF: 2.9979e+04
DirectionSource: 'Property'
Direction: [2\times1 double]
NumPhaseShifterBits: 0
DopplerSource: 'Property'
Doppler: 6.3429e+03
NumGuardCells: 4
NumTrainingCells: 100
WeightsOutputPort: true
PreDopplerOutput: false

```
[y,w] = stapadpca(ReceivePulse,tgtCellIdx);
plot([tgtRng tgtRng],[0 2e-6],rngbin,abs(y));
xlabel('Range (m)'), ylabel('Magnitude');
title('ADPCA Canceller Output (with Jammer)')

plotResponse(angdopresp,w, 'NormalizeDoppler',true); title('ADPCA Weights Angle Doppler Response at 0 degrees Elevation')


The time domain plot shows that the signal is successfully recovered. The angle Doppler response of the ADPCA weights is similar to the one produced by the SMI weights.

\section*{Summary}

This example presented a brief introduction to space-time adaptive processing and illustrated how to use different STAP algorithms, namely, SMI, DPCA, and ADPCA, to suppress clutter and jammer interference in the received pulses.

\section*{Reference}
[1] J. R. Guerci, Space-Time Adaptive Processing for Radar, Artech House, 2003

\section*{Source Localization Using Generalized Cross Correlation}

This example shows how to determine the position of the source of a wideband signal using generalized cross-correlation (GCC) and triangulation. For simplicity, this example is confined to a two-dimensional scenario consisting of one source and two receiving sensor arrays. You can extend this approach to more than two sensors or sensor arrays and to three dimensions.

\section*{Introduction}

Source localization differs from direction-of-arrival (DOA) estimation. DOA estimation seeks to determine only the direction of a source from a sensor. Source localization determines its position. In this example, source localization consists of two steps, the first of which is DOA estimation.

1 Estimate the direction of the source from each sensor array using a DOA estimation algorithm. For wideband signals, many well-known direction of arrival estimation algorithms, such as Capon's method or MUSIC, cannot be applied because they employ the phase difference between elements, making them suitable only for narrowband signals. In the wideband case, instead of phase information, you can use the difference in the signal's time-of-arrival among elements. To compute the time-of-arrival differences, this example uses the generalized cross-correlation with phase transformation (GCC-PHAT) algorithm. From the differences in time-of-arrival, you can compute the DOA. (For another example of narrowband DOA estimation algorithms, see "High Resolution Direction of Arrival Estimation" on page 17-214).
2 Calculate the source position by triangulation. First, draw straight lines from the arrays along the directions-of-arrival. Then, compute the intersection of these two lines. This is the source location. Source localization requires knowledge of the position and orientation of the receiving sensors or sensor arrays.

\section*{Triangulation Formula}

The triangulation algorithm is based on simple trigonometric formulas. Assume that the sensor arrays are located at the 2-D coordinates ( 0,0 ) and ( \(L, 0\) ) and the unknown source location is ( \(x, y\) ). From knowledge of the sensor arrays positions and the two directions-of-arrival at the arrays, \(\theta_{1}\) and \(\theta_{2}\), you can compute the ( \(x, y\) ) coordinates from
\[
L=y \tan \theta_{1}+y \tan \theta_{2}
\]
which you can solve for \(y\)
\[
y=L /\left(\tan \theta_{1}+\tan \theta_{2}\right)
\]
and then for \(x\)
\[
x=y \tan \theta_{1}
\]

The remainder of this example shows how you can use the functions and System objects of the Phased Array System Toolbox \({ }^{\text {TM }}\) to compute source position.

\section*{Source and Sensor Geometry}

Set up two receiving 4 -element ULAs aligned along the \(x\)-axis of the global coordinate system and spaced 50 meters apart. The phase center of the first array is \((0,0,0)\). The phase center of the second array is \((50,0,0)\). The source is located at \((30,100)\) meters. As indicated in the figure, the receiving array gains point in the \(+y\) direction. The source transmits in the \(-y\) direction.


Specify the baseline between sensor arrays.
L = 50;
Create a 4 -element receiver ULA of omnidirectional microphones. You can use the same phased.ULA System object \({ }^{T M}\) for the phased.WidebandCollector and phased.GCCEstimator System objects for both arrays.
```

N = 4;
rxULA = phased.ULA('Element',phased.OmnidirectionalMicrophoneElement,...
'NumElements',N);

```

Specify the position and orientation of the first sensor array. When you create a ULA, the array elements are automatically spaced along the \(y\)-axis. You must rotate the local axes of the array by \(90^{\circ}\) to align the elements along the \(x\)-axis of the global coordinate system.
```

rxpos1 = [0;0;0];
rxvel1 = [0;0;0];
rxax1 = azelaxes(90,0);

```

Specify the position and orientation of the second sensor array. Choose the local axes of the second array to align with the local axes of the first array.
```

rxpos2 = [L;0;0];
rxvel2 = [0;0;0];
rxax2 = rxax1;

```

Specify the signal source as a single omnidirectional transducer.
```

srcpos = [30;100;0];
srcvel = [0;0;0];

```
```

srcax = azelaxes(-90,0);
srcULA = phased.OmnidirectionalMicrophoneElement;

```

\section*{Define Waveform}

Choose the source signal to be a wideband LFM waveform. Assume the operating frequency of the system is 300 kHz and set the bandwidth of the signal to 100 kHz . Assume a maximum operating range of 150 m . Then, you can set the pulse repetition interval (PRI) and the pulse repetition frequency (PRF). Assume a 10\% duty cycle and set the pulse width. Finally, use a speed of sound in an underwater channel of \(1500 \mathrm{~m} / \mathrm{s}\).

Set the LFM waveform parameters and create the phased. LinearFMWaveform System object \({ }^{\mathrm{TM}}\).
```

fc = 300e3; % 300 kHz
c = 1500; % 1500 m/s
dmax = 150; % 150 m
pri = (2*dmax)/c;
prf = 1/pri;
bw = 100.0e3; % 100 kHz
fs = 2*bw;
waveform = phased.LinearFMWaveform('SampleRate',fs,'SweepBandwidth',bw,...
'PRF',prf,'PulseWidth',pri/10);

```

The transmit signal can then be generated as
```

signal = waveform();

```

\section*{Radiate, Propagate, and Collect Signals}

Modeling the radiation and propagation for wideband systems is more complicate than modeling narrowband systems. For example, the attenuation depends on frequency. The Doppler shift as well as the phase shifts among elements due to the signal incoming direction also vary according to the frequency. Thus, it is critical to model those behaviors when dealing with wideband signals. This example uses a subband approach.

Set the number of subbands to 128.
```

nfft = 128;

```

Specify the source radiator and the sensor array collectors.
```

radiator = phased.WidebandRadiator('Sensor',srcULA,...
'PropagationSpeed',c,'SampleRate',fs,...
'CarrierFrequency',fc,'NumSubbands',nfft);
collectorl = phased.WidebandCollector('Sensor',rxULA,...
'PropagationSpeed',c,'SampleRate',fs,...
'CarrierFrequency',fc,'NumSubbands',nfft);
collector2 = phased.WidebandCollector('Sensor',rxULA,...
'PropagationSpeed',c,'SampleRate',fs,...
'CarrierFrequency',fc,'NumSubbands',nfft);

```

Create the wideband signal propagators for the paths from the source to the two sensor arrays.
```

channel1 = phased.WidebandFreeSpace('PropagationSpeed',c,...
'SampleRate',fs,'OperatingFrequency',fc,'NumSubbands',nfft);
channel2 = phased.WidebandFreeSpace('PropagationSpeed',c,...
'SampleRate',fs,'OperatingFrequency',fc,'NumSubbands',nfft);

```

Determine the propagation directions from the source to the sensor arrays. Propagation directions are with respect to the local coordinate system of the source.
```

[~,ang1t] = rangeangle(rxpos1,srcpos,srcax);
[~,ang2t] = rangeangle(rxpos2,srcpos,srcax);

```

Radiate the signal from the source in the directions of the sensor arrays.
```

sigt = radiator(signal,[ang1t ang2t]);

```

Then, propagate the signal to the sensor arrays.
```

sigp1 = channel1(sigt(:,1),srcpos,rxpos1,srcvel,rxvel1);
sigp2 = channel2(sigt(:,2),srcpos,rxpos2,srcvel,rxvel2);

```

Compute the arrival directions of the propagated signal at the sensor arrays. Because the collector response is a function of the directions of arrival in the sensor array local coordinate system, pass the local coordinate axes matrices to the rangeangle function.
```

[~,ang1r] = rangeangle(srcpos,rxpos1,rxax1);
[~,ang2r] = rangeangle(srcpos,rxpos2,rxax2);

```

Collect the signal at the receive sensor arrays.
```

sigr1 = collector1(sigp1,ang1r);
sigr2 = collector2(sigp2,ang2r);

```

\section*{GCC Estimation and Triangulation}

Create the GCC-PHAT estimators.
```

doa1 = phased.GCCEstimator('SensorArray',rxULA,'SampleRate',fs,...
'PropagationSpeed',c);
doa2 = phased.GCCEstimator('SensorArray',rxULA,'SampleRate',fs,...
'PropagationSpeed',c);

```

Estimate the directions of arrival.
```

angest1 = doa1(sigr1);
angest2 = doa2(sigr2);

```

Triangulate the source position use the formulas established previously. Because the scenario is confined to the \(x-y\) plane, set the \(z\)-coordinate to zero.
```

yest = L/(abs(tand(angest1)) + abs(tand(angest2)));
xest = yest*abs(tand(angest1));
zest = 0;
srcpos_est = [xest;yest;zest]
srcpos_est = 3\times1
29.9881
100.5743
0

```

The estimated source location matches the true location to within 30 cm .

\section*{Summary}

This example showed how to perform source localization using triangulation. In particular, the example showed how to simulate, propagate, and process wideband signals. The GCC-PHAT algorithm is used to estimate the direction of arrival of a wideband signal.

\section*{Acoustic Beamforming Using Microphone Arrays}

This example shows how to beamform signals received by an array of microphones to extract a desired speech signal in a noisy environment. This Simulink \({ }^{\circledR}\) example is based on the MATLAB® example "Acoustic Beamforming Using a Microphone Array" on page 17-172 for System objects.

\section*{Structure of the Model}

The model simulates the reception of three audio signals from different directions on a 10 -element uniformly linear microphone array (ULA). After the addition of thermal noise at the receiver, beamforming is applied and the result played on a sound device.

\section*{Acoustic Beamforming using Microphone Arrays}


The model consists of two stages: simulate the received audio signals and beamform the result. The blocks that corresponds to each stage of the model are:

\section*{Received audio simulation}
- Audio Sources - Subsystem reads the audio files and specifies their direction.

- From Multimedia File - Part of the Audio Sources subsystem, each block reads audio from a different wav file, 1000 samples at a time. Three blocks labelled source1, source2 and source3 correspond to the three sources.
- Concatenate - Concatenates the output of the three From Multimedia File blocks into a three column matrix, one column per audio signal.
- source angles - Constant block specifies the incident directions of the audio sources to the Wideband Rx Array block. The block outputs a 2 x 3 matrix. The two rows correspond to the azimuth and elevation angles in degrees of each source, the three columns correspond to the three audio signals.
- Wideband Rx Array-Simulates the audio signals received at the ULA. The first input port to this block is a 1000x3 matrix. Each column corresponds to the received samples of each audio signal. The second input port (Ang) specifies the incident direction of the pulses. The first row of Ang specifies the azimuth angle in degree for each signal and the second row specifies the elevation angle in degree for each signal. The second row is optional. If they not specified, the elevation angles are assumed to be 0 degrees. The output of this block is a 1000 x 10 matrix. Each column corresponds to the audio recorded at each element of the microphone array. The microphone array's configuration is specified in the Sensor Array tab of the block dialog panel. This configuration should match the configuration specified on the block dialog panel of the Frost Beamformer. See the "Conventional and Adaptive Beamformers" on page 17-256 Simulink \({ }^{\circledR}\) example to learn how to use sensor array configuration variables for conveniently sharing the same configuration across several blocks.

\section*{Function Block Parameters: Microphone Array}

\section*{\(x\)}

\section*{Wideband Receive Array}

Receive plane waves incident on the elements of the sensor array. The block first divides the input signal into subbands and then applies a phase shift in each subband according to the incident directions. The resulting subband signals are then combined to form the output.

\section*{Source code}

- Receiver Preamp - Adds white noise to the received signals.

\section*{Beamforming}
- Select beamform angle - Constant block controls the Multi-Port Switch output and specifies which of the three source directions in which to beamform.
- Frost Beamformer - Performs Frost beamforming on the matrix passed via the input port \(X\) along the direction specified via the input port Ang.
- 2-D Selector-Selects the received signal at one of the microphone elements.
- Manual switch - Switches between the non-beamformed and the beamformed audio stream sent to the audio device.

\section*{Exploring the Example}

Click on the Manual switch while running the simulation to toggle between playing the nonbeamformed audio stream and the beamformed stream. Setting a value of 1, 2, or 3 in the Select beamform angle block while running the simulation will beamform along one of the three audio
signals direction. You will notice that the non-beamformed audio sounds garbled while you can clearly hear any one of the selected audio streams after beamforming.

\section*{Conventional and Adaptive Beamformers}

This example shows how to apply conventional and adaptive beamforming in Simulink® to a narrowband signal received by an antenna array. The signal model includes noise and interference. This example is based on the "Conventional and Adaptive Beamformers" on page 17-188 example.

\section*{Available Example Implementations}

This example includes two Simulink® models:
- Conventional Beamforming with Noise: slexBeamformerExample.slx
- Conventional and Adaptive Beamformers with Interference: slexBeamformerInterferenceExample.slx

\section*{Conventional Beamforming with Noise}

The first model simulates the reception of a rectangular pulse with a delay offset on a 10 -element uniformly linear antenna array (ULA). The source of the pulse is located at an azimuth of 45 degrees and an elevation of 0 degrees. Noise with power of 0.5 watts is added to the signal at each element of the array. A phase-shift beamformer is then applied. The example compares the output of the phaseshift beamformer with the signal received at one of the antenna elements.


The model consists of a Signal Simulation stage and a Signal Processing stage. The blocks that corresponds to each stage of the model are:

\section*{Signal simulation}
- Rectangular - Creates rectangular pulses.
- Offset waveform - Delay block delays each pulse by 150 samples.
- Signal direction-Constant block specifies the incident direction of the pulses to the Narrowband Rx Array block.
- Narrowband Rx Array - Simulates the signals received at the ULA. The first input to this block is a column vector which contains the received pulses. The pulses are assumed to be narrowband
with a carrier frequency equal to the operating frequency specified in the block's dialog panel. The second input (Ang) specifies the incident direction of the pulses. The antenna array's configuration is created by a helper script as a variable in the MATLAB® workspace. This variable is referenced by the Sensor Array tab of the block's dialog panel. Using a variable makes it easier to share the antenna array's configuration across several blocks. Each column of the output corresponds to the signal received at each element of the antenna array.
- Receiver Preamp - Adds thermal noise to the received signal.


\section*{Signal processing}
- Angle to beamform-Constant block specifies to the Phase Shift Beamformer the beamforming direction.
- Phase Shift Beamformer - Performs narrowband delay-and-sum beamforming on the matrix passed via the input port X along the direction specified via the input port Ang.
- 2-D Selector - Selects the received signal at one of the antenna elements.

\section*{Exploring the Example}

Several model parameters are calculated by the helper function helperslexBeamformerParam. To open the function from the model, click on Modify Simulation Parameters block. This function is executed once when the model is loaded. It exports to the workspace a structure whose fields are referenced by the model's dialog panels. To modify any parameters, either change the values in the structure from the command prompt or edit the helper function and rerun it to update the parameter structure.

\section*{Results and Displays}

The displays below show the output of a single element (not beamformed) compared to the reference pulse and the output of the beamformer compared to the reference pulse. When the received signal is not beamformed, the pulse cannot be detected due to the noise. The display of the beamformer's output shows that the beamformed signal is much larger than the noise. The output SNR is approximately 10 times larger than that of the received signal on a single antenna, because a 10element array produces an array gain of 10 .



\section*{Conventional and Adaptive Beamformers with Interference}

The second model illustrates beamforming in the presence of two interference signals arriving from 30 degrees and 50 degrees in azimuth. The interference amplitudes are much larger than the pulse amplitude. The noise level is set to -50 dBW to highlight only the effect of interference. Phase shift, MVDR, and LCMV beamformers are applied to the received signal and their results are compared.


Several new blocks are added to the blocks used in the previous model:
- Random Source - Two blocks generate Gaussian vectors to simulate the interference signals (labeled Interference1 and Interference2)
- Concatenate - Concatenates the outputs of the Random Source and the Rectangular blocks into a 3 column matrix.
- Signal direction-Constant block specifies the incident directions of the pulses and interference signals to the Narrowband Rx Array block.
- MVDR Beamformer - Performs MVDR beamforming along the specified direction.
- LCMV Beamformer - Performs LCMV beamforming with the specified constraint matrix and desired response.

\section*{Exploring the Example}

The helper function used for this example is helperslexBeamformerParam. To open the function from the model, click on Modify Simulation Parameters block. The pulse, interference signal and beamforming directions can also be changed at runtime by changing the angles on the Signal directions and the Angle to beamform blocks without stopping the simulation.

\section*{Results and Displays}

The figure below shows the output of the phased-shift beamformer. It is not able to detect the pulses because the interference signals are much stronger than the pulse signal.


The next figure shows the output of the MVDR beamformer. An MVDR beamformer preserves the signal arriving along a desired direction, while trying to suppress signals coming from other directions. In this example, both interference signals were suppressed and the pulse at 45 degrees azimuth was preserved.


The MVDR beamformer is, however, very sensitive to the beamforming direction. If the target signal is received along a direction slightly different from the desired direction, the MVDR beamformer suppresses it. This occurs because the MVDR beamformer treats all the signals, except the one along the desired direction, as undesired interferences. This effect is sometimes referred to as "signal selfnulling". The following display shows what happens if we change the target signal's direction in the Signal directions block to 43 instead of 45 . Notice how the received pulses have been suppressed as compared to the reference pulse.


You can use an LCMV beamformer to prevent signal self-nulling by broadening the region surrounding the signal direction where you want to preserve the signal. In this example, three separate but closely-spaced constraints are imposed that preserve the response in directions corresponding to 43,45 , and 47 degrees in azimuth. The desired responses in these directions are all set to one. As shown in the figure below, the pulse is preserved.


\section*{Direction of Arrival with Beamscan and MVDR}

This example shows how to use beamscan and minimum variance distortionless response (MVDR) techniques for direction of arrival (DOA) estimation in Simulink \({ }^{\circledR}\). It is based on the MATLAB® example "Direction of Arrival Estimation with Beamscan, MVDR, and MUSIC" on page 17-203.

\section*{Available Example Implementations}

This example includes two Simulink® models:
- Beamscan and MVDR Direction of Arrival Estimation on a ULA : slexBeamscanMVDRDOAExample.slx
- Beamscan and MVDR Direction of Arrival Estimation on a URA : slex2DBeamscanMVDRDOAExample.slx

\section*{Beamscan and MVDR Direction of Arrival Estimation on a ULA}

This example simulates the reception of two narrowband incident signals on a 10 -element uniformly linear antenna array (ULA). Both signal sources are located at 0 degrees elevation. One signal source moves from 30 degrees azimuth to 50 degrees and back. The other signal source, with 3 dB less power, moves in the opposite direction. After simulating the reception of the signals and adding noise, the beamscan and MVDR spectra are calculated. Because a ULA is symmetric around its axis, a DOA algorithm cannot uniquely determine azimuth and elevation. Therefore, the results returned by these DOA estimators are in the form of broadside angles. In this example because the elevation of the sources is at 0 degrees and the scanning region is between - 90 to 90 degrees, the broadside and azimuth angles are the same.


The model consists of signal simulation followed by DOA processing. The blocks used in the model are:

\section*{Signal simulation}
- Random Source - The blocks labeled Signal1 and Signal2 generate Gaussian vectors to simulate the transmitted power of the narrowband plane waves. The signals are buffered at 300 samples per frame.
- Concatenate - Concatenates the outputs of the Random Source blocks into a 2 column matrix.
- Signal directions - Signal From Workspace block reads from the workspace, the arrival directions in degrees of each signals. The block outputs a vector of 2 angles, once per frame.
- Narrowband Rx Array - Simulates the signals received at the ULA. The first input to this block is a matrix with 2 columns. Each column corresponds to one of the received plane waves. The second input (Ang) is a 2 -element vector that specifies the incident direction at the antenna array of the corresponding plane waves. The antenna array's configuration is contained in a MATLAB® workspace variable created by a helper script. This variable is used in the Sensor Array tab of the dialog. Using a variable makes it easier to share the antenna array's configuration across several blocks.

- Receiver Preamp - Adds thermal noise to the received signal.

\section*{DOA processing}
- ULA MVDR Spectrum - Calculates the spatial spectrum of the incoming narrowband signals using the MVDR algorithm. This block also calculates the direction of arrivals of the incoming signals.
- ULA Beamscan Spectrum - Calculates the spatial spectrum of the incoming narrowband signals by scanning a region using a narrowband conventional beamformer. This block also calculates the direction of arrivals of the incoming signals.

\section*{Exploring the Example}

Several dialog parameters of the model are calculated by the helper function helperslexBeamscanMVDRDOAParam. To open the function from the model, click on Modify Simulation Parameters block. This function is executed once when the model is loaded. It exports to the workspace a structure whose fields are referenced by the dialogs. To modify any parameters, either change the values in the structure at the command prompt or edit the helper function and rerun it to update the parameter structure.

\section*{Results and Displays}

The beamscan spectrum is updated as the sources move towards each other. The spectrum shows two wide peaks with different magnitudes moving in opposite directions.


When the sources are approximately 10 degrees apart the peaks merge and the DOA of the signals are not clearly distinguished. The calculated DOA will start drifting from the actual values, as shown in the displays. When two signals arrive from directions separated by less than the beamwidth, their DOA's cannot be resolved accurately using the beamscan method.


The MVDR spectrum, on the other hand, has a higher resolution. The peaks in the spectrum are narrower and can be distinguished even when the sources are very close to each other. The MVDR algorithm is very sensitive to the sources' locations. It tries to filter out signals that are not located precisely at one of the scan angles specified on the ULA MVDR Spectrum block. The peaks are greatest when the sources are located at one of the specified scan angles. They will pulsate as the sources move from one of the specified scan angles to another.


\section*{Beamscan and MVDR Direction of Arrival Estimation on a URA}

This example replaces the ULA configuration of the previous example with a 10 by 5 uniformly rectangular antenna array (URA). One signal source moves from 30 degrees azimuth, 10 degrees elevation to 50 degrees azimuth, -5 degrees elevation. The other signal source, with 3 dB less power, moves in the opposite direction. Rectangular arrays allow the DOA estimators to determine both the azimuth and elevation. Matrix viewers are used instead of vector scopes to visualize the 2
dimensional spatial spectrum. Everything else is similar to the previous example.


\section*{Exploring the Example}

The helper function used for this example is helperslex2DBeamscanMVDRDOAParam. To open the function from the model, click on Modify Simulation Parameters block.

\section*{Results and Displays}

The results are similar to the previous example. The beamscan spectrum is updated as the sources move towards each other. The spectrum shows two wide peaks with different magnitudes moving in opposite directions.


When the sources are approximately 10 degrees apart, the peaks merge and the DOA's of the signals are not clearly distinguished.


Here the MVDR spectrum can still distinguish both peaks.


\section*{Clutter and Jammer Mitigation with STAP}

This example shows how to use Simulink \({ }^{\circledR}\) to suppress clutter and jammer interference from the received pulses of a monostatic radar. It illustrates how to model clutter and jammer interference as well as how to use the adaptive displaced phase center array (ADPCA) pulse canceller block in order to suppress the interference. The ADPCA Canceller is one of several space-time adaptive processing (STAP) blocks provided in the Phased Array System Toolbox \({ }^{\mathrm{TM}}\). For more information on modeling an end-to-end monostatic radar in Simulink \({ }^{\circledR}\) please refer to the "End-to-End Monostatic Radar" on page 17-497 example. For an introduction to STAP please refer to the "Introduction to Space-Time Adaptive Processing" on page 17-231 example.

\section*{Structure of the Model}

This example models a monostatic radar with a moving target and a stationary barrage jammer. The jammer transmits interfering signals through free space to the radar. A 6-element uniform linear antenna array (ULA) with back baffled elements then receives the reflected pulse from the target as well as the jammer's interference. A clutter simulator's output is also added to the received signal before being processed. After adding noise, the signal is buffered into a data cube. In this example the cube is processed by the ADPCA Canceller at the target's estimated range, azimuth angle and doppler shift. In practice the ADPCA Canceller will scan several ranges, azimuth angles and doppler shifts since the speed and position of the target is unknown.

Several blocks in this example need to share the same sensor array configuration. This is done by assigning a sensor array configuration object to a MATLAB variable and sharing this variable in the Sensor Array tab of the block's dialog as will be shown later.


In addition to the blocks listed in the "End-to-End Monostatic Radar" on page 17-497 example, there are:
- FreeSpace - Performs two-way propagation of the signal when two-way propagation is selected on the block's dialog panel. This mode allows the use of one block instead of two to model the transmitted and reflected propagation paths of the signal.
- Jammer - Generates a barrage jamming signal. This subsystem also includes a Platform to model the speed and position of the jammer which are needed by the Freespace blocks. The position is also needed to calculate the angle between the target and the jammer.
- Selector - Selects the target's angle from the Range Angle block. This angle is used by the Narrowband Tx Array block.
- Constant Gamma Clutter - Generates clutter with a gamma value of -15 dB . Such a gamma value can be used to model terrain covered by woods.
- Radar Plat form - Updates the position and velocity of the radar.

\section*{STAP}

- Buffer - Buffers 10 pulses of the received signal.
- Matrix to Cube - Reshapes the buffered signal into an MxQxN data cube. M is the number of range bins in fast time (the number of samples in one pulse), Q is the number of antenna elements and N is the number of buffered pulses. In this example the cube has a 200X6X10 dimensions.
- Value to Index-Calculates the index of the estimated target's range bin from the range value.
- ADPCA Canceller - Perform adaptive displaced phase center array (ADPCA) pulse cancelling along the specified range bin. The antenna array configuration of the radar is shared using a variable in the Sensor Array tab of the block's dialog. The output is the received pulse with the clutter and jammer interference suppressed. The adaptive weights of the filter are also produced, enabling them is optional.

- Angle Doppler Slicer - Slices the data cube along the dimension specified by the dialog parameter. This example examines the angle-doppler slice of the cube at the estimated range.
- Visualization - This subsystems displays the clutter interference in the time domain, the angle Doppler response of the received data, the output of the ADPCA Canceller as well as the weights.

\section*{Exploring the Example}

Several dialog parameters of the model are calculated by the helper function helperslexSTAPParam. To open the function from the model, click on Modify Simulation Parameters block. This function is executed once when the model is loaded. It exports to the workspace a structure whose fields are referenced by the dialogs. To modify any parameters, either change the values in the structure at the command prompt or edit the helper function and rerun it to update the parameter structure.

\section*{Results and Displays}

Displays from different stages of the simulation are shown below. The first figure below shows how the signal received at the antenna array is dominated by the clutter return. Because the radar is located 1000 meters above the surface, the clutter returns from the ground start at 1000 meters.


The figure below shows the angle-Doppler response of the return for the estimated range bin. It presents the clutter as a function of angle and Doppler. The clutter return looks like a diagonal line in angle-Doppler space. Such a line is often referred to as clutter ridge. The received jammer signal is white noise, spread over the entire Doppler spectrum at approximately 60 degrees.


As you can see in the next figure, the weights of the ADPCA Canceller produce a deep null along the clutter ridge and also in the direction of the jammer.


The figure below displays the return at the output of the ADPCA Canceller, clearly showing the target's range at 1750 meters. The barrage jammer and clutter have been filtered out.


\section*{Constant False Alarm Rate (CFAR) Detection}

This example introduces constant false alarm rate (CFAR) detection and shows how to use CFARDetector and CFARDetector2D in the Phased Array System Toolbox \({ }^{\text {TM }}\) to perform cell averaging CFAR detection.

\section*{Introduction}

One important task a radar system performs is target detection. The detection itself is fairly straightforward. It compares the signal to a threshold. Therefore, the real work on detection is coming up with an appropriate threshold. In general, the threshold is a function of both the probability of detection and the probability of false alarm.

In many phased array systems, because of the cost associated with a false detection, it is desirable to have a detection threshold that not only maximizes the probability of detection but also keeps the probability of false alarm below a preset level.

There is extensive literature on how to determine the detection threshold. Readers might be interested in the "Signal Detection in White Gaussian Noise" on page 17-307 and "Signal Detection Using Multiple Samples" on page 17-314 examples for some well known results. However, all these classical results are based on theoretical probabilities and are limited to white Gaussian noise with known variance (power). In real applications, the noise is often colored and its power is unknown.

CFAR technology addresses these issues. In CFAR, when the detection is needed for a given cell, often termed as the cell under test (CUT), the noise power is estimated from neighboring cells. Then the detection threshold, \(T\), is given by
\[
T=\alpha P_{n}
\]
where \(P_{n}\) is the noise power estimate and \(\alpha\) is a scaling factor called the threshold factor.
From the equation, it is clear that the threshold adapts to the data. It can be shown that with the appropriate threshold factor, \(\alpha\), the resulting probability of false alarm can be kept at a constant, hence the name CFAR.

\section*{Cell Averaging CFAR Detection}

The cell averaging CFAR detector is probably the most widely used CFAR detector. It is also used as a baseline comparison for other CFAR techniques. In a cell averaging CFAR detector, noise samples are extracted from both leading and lagging cells (called training cells) around the CUT. The noise estimate can be computed as [1]
\[
P_{n}=\frac{1}{N} \sum_{m=1}^{N} x_{m}
\]
where \(N\) is the number of training cells and \(x_{m}\) is the sample in each training cell. If \(x_{m}\) happens to be the output of a square law detector, then \(P_{n}\) represents the estimated noise power. In general, the number of leading and lagging training cells are the same. Guard cells are placed adjacent to the CUT, both and leading and lagging it. The purpose of these guard cells is to avoid signal components from leaking into the training cell, which could adversely affect the noise estimate.

The following figure shows the relation among these cells for the 1-D case.


With the above cell averaging CFAR detector, assuming the data passed into the detector is from a single pulse, i.e., no pulse integration involved, the threshold factor can be written as [1]
\[
\alpha=N\left(P_{f a}^{-1 / N}-1\right)
\]
where \(P_{f a}\) is the desired false alarm rate.

\section*{CFAR Detection Using Automatic Threshold Factor}

In the rest of this example, we show how to use Phased Array System Toolbox to perform a cell averaging CFAR detection. For simplicity and without losing any generality, we still assume that the noise is white Gaussian. This enables the comparison between the CFAR and classical detection theory.

We can instantiate a CFAR detector using the following command
```

cfar = phased.CFARDetector('NumTrainingCells',20,'NumGuardCells',2);

```

In this detector we use 20 training cells and 2 guard cells in total. This means that there are 10 training cells and 1 guard cell on each side of the CUT. As mentioned above, if we assume that the signal is from a square law detector with no pulse integration, the threshold can be calculated based on the number of training cells and the desired probability of false alarm. Assuming the desired false alarm rate is 0.001 , we can configure the CFAR detector as follows so that this calculation can be carried out.
```

exp_pfa = 1e-3;
cfar.ThresholdFactor = 'Auto';
cfar.ProbabilityFalseAlarm = exp_pfa;

```

The configured CFAR detector is shown below.
```

cfar
cfar =
phased.CFARDetector with properties:
Method: 'CA'
NumGuardCells: 2
NumTrainingCells: 20
ThresholdFactor: 'Auto'
ProbabilityFalseAlarm: 1.0000e-03
OutputFormat: 'CUT result'

```
```

 ThresholdOutputPort: false
 NoisePowerOutputPort: false

```

We now simulate the input data. Since the focus is to show that the CFAR detector can keep the false alarm rate under a certain value, we just simulate the noise samples in those cells. Here are the settings:
- The data sequence is 23 samples long, and the CUT is cell 12 . This leaves 10 training cells and 1 guard cell on each side of the CUT.
- The false alarm rate is calculated using 100 thousand Monte Carlo trials
```

rs = RandStream('mt19937ar','Seed',2010);
npower = db2pow(-10); % Assume 10dB SNR ratio
Ntrials = 1e5;
Ncells = 23;
CUTIdx = 12;
% Noise samples after a square law detector
rsamp = randn(rs,Ncells,Ntrials)+li*randn(rs,Ncells,Ntrials);
x = abs(sqrt(npower/2)*rsamp).^2;

```

To perform the detection, pass the data through the detector. In this example, there is only one CUT, so the output is a logical vector containing the detection result for all the trials. If the result is true, it means that a target is present in the corresponding trial. In our example, all detections are false alarms because we are only passing in noise. The resulting false alarm rate can then be calculated based on the number of false alarms and the number of trials.
```

x_detected = cfar(x,CUTIdx);
ac
act_pfa = 9.4000e-04

```

The result shows that the resulting probability of false alarm is below 0.001 , just as we specified.

\section*{CFAR Detection Using Custom Threshold Factor}

As explained in the earlier part of this example, there are only a few cases in which the CFAR detector can automatically compute the appropriate threshold factor. For example, using the previous scenario, if we employ a 10 -pulses noncoherent integration before the data goes into the detector, the automatic threshold can no longer provide the desired false alarm rate.
```

npower = db2pow(-10); % Assume 10dB SNR ratio
xn = 0;
for m = 1:10
rsamp = randn(rs,Ncells,Ntrials)+1i*randn(rs,Ncells,Ntrials);
xn = xn + abs(sqrt(npower/2)*rsamp).^2; % noncoherent integration
end
x_detected = cfar(xn,CUTIdx);
act_pfa = sum(x_detected)/Ntrials
act_pfa = 0

```

One may be puzzled why we think a resulting false alarm rate of 0 is worse than a false alarm rate of 0.001. After all, isn't a false alarm rate of 0 a great thing? The answer to this question lies in the fact that when the probability of false alarm is decreased, so is the probability of detection. In this case,
because the true false alarm rate is far below the allowed value, the detection threshold is set too high. The same probability of detection can be achieved with our desired probability of false alarm at lower cost; for example, with lower transmitter power.

In most cases, the threshold factor needs to be estimated based on the specific environment and system configuration. We can configure the CFAR detector to use a custom threshold factor, as shown below.
```

release(cfar);
cfar.ThresholdFactor = 'Custom';

```

Continuing with the pulse integration example and using empirical data, we found that we can use a custom threshold factor of 2.35 to achieve the desired false alarm rate. Using this threshold, we see that the resulting false alarm rate matches the expected value.
```

cfar.CustomThresholdFactor = 2.35;
x_detected = cfar(xn,CUTIdx);
ac
act_pfa = 9.6000e-04

```

\section*{CFAR Detection Threshold}

A CFAR detection occurs when the input signal level in a cell exceeds the threshold level. The threshold level for each cell depends on the threshold factor and the noise power in that derived from training cells. To maintain a constant false alarm rate, the detection threshold will increase or decrease in proportion to the noise power in the training cells. Configure the CFAR detector to output the threshold used for each detection using the ThresholdOutputPort property. Use an automatic threshold factor and 200 training cells.
```

release(cfar);
cfar.ThresholdOutputPort = true;
cfar.ThresholdFactor = 'Auto';
cfar.NumTrainingCells = 200;

```

Next, create a square-law input signal with increasing noise power.
```

rs = RandStream('mt19937ar','Seed', 2010);
Npoints = 1e4;
rsamp = randn(rs,Npoints,1)+1i*randn(rs,Npoints,1);
ramp = linspace(1,10,Npoints)';
xRamp = abs(sqrt(npower*ramp./2).*rsamp).^2;

```

Compute detections and thresholds for all cells in the signal.
```

[x_detected,th] = cfar(xRamp,1:length(xRamp));

```

Next, compare the CFAR threshold to the input signal.
```

plot(1:length(xRamp),xRamp,1:length(xRamp),th,...
find(x_detected),xRamp(x_detected),'o')
legend('Signal','Threshold','Detections','Location','Northwest')
xlabel('Time Index')
ylabel('Level')

```


Here, the threshold increases with the noise power of the signal to maintain the constant false alarm rate. Detections occur where the signal level exceeds the threshold.

\section*{Comparison Between CFAR and Classical Neyman-Pearson Detector}

In this section, we compare the performance of a CFAR detector with the classical detection theory using the Neyman-Pearson principle. Returning to the first example and assuming the true noise power is known, the theoretical threshold can be calculated as
```

T_ideal = npower*db2pow(npwgnthresh(exp_pfa));

```

The false alarm rate of this classical Neyman-Pearson detector can be calculated using this theoretical threshold.
```

act_Pfa_np = sum(x(CUTIdx,:)>T_ideal)/Ntrials
act_Pfa_np = 9.5000e-04

```

Because we know the noise power, classical detection theory also produces the desired false alarm rate. The false alarm rate achieved by the CFAR detector is similar.
```

release(cfar);
cfar.ThresholdOutputPort = false;
cfar.NumTrainingCells = 20;
x_detected = cfar(x,CUTIdx);
act_pfa = sum(x_detected)/Ntrials
act_pfa = 9.4000e-04

```

Next, assume that both detectors are deployed to the field and that the noise power is 1 dB more than expected. In this case, if we use the theoretical threshold, the resulting probability of false alarm is four times more than what we desire.
```

npower = db2pow(-9); % Assume 9dB SNR ratio
rsamp = randn(rs,Ncells,Ntrials)+1i*randn(rs,Ncells,Ntrials);
x = abs(sqrt(npower/2)*rsamp).^2;
act_Pfa_np = sum(x(CUTIdx,:)>T_ideal)/Ntrials
act_Pfa_np = 0.0041

```

On the contrary, the CFAR detector's performance is not affected.
```

x_detected = cfar(x,CUTIdx);
act_pfa = sum(x_detected)/Ntrials
act_pfa = 0.0011

```

Hence, the CFAR detector is robust to noise power uncertainty and better suited to field applications.
Finally, use a CFAR detection in the presence of colored noise. We first apply the classical detection threshold to the data.
```

npower = db2pow(-10);
fcoeff = maxflat(10,'sym',0.2);
x = abs(sqrt(npower/2)*filter(fcoeff,1,rsamp)).^2; % colored noise
act_Pfa_np = sum(x(CUTIdx,:)>T_ideal)/Ntrials
act_Pfa_np = 0

```

Note that the resulting false alarm rate cannot meet the requirement. However, using the CFAR detector with a custom threshold factor, we can obtain the desired false alarm rate.
```

release(cfar);
cfar.ThresholdFactor = 'Custom';
cfar.CustomThresholdFactor = 12.85;
x_detected = cfar(x,CUTIdx);
act_pfa = sum(x_detected)/Ntrials
act_pfa = 0.0010

```

\section*{CFAR Detection For Range-Doppler Images}

In the previous sections, the noise estimate was computed from training cells leading and lagging the CUT in a single dimension. We can also perform CFAR detection on images. Cells correspond to pixels in the images, and guard cells and training cells are placed in bands around the CUT. The detection threshold is computed from cells in the rectangular training band around the CUT.


In the figure above, the guard band size is [2 2] and the training band size is [4 3]. The size indices refer to the number of cells on each side of the CUT in the row and columns dimensions, respectively. The guard band size can also be defined as 2 , since the size is the same along row and column dimensions.

Next, create a two-dimensional CFAR detector. Use a probability of false alarm of \(1 \mathrm{e}-5\) and specify a guard band size of 5 cells and a training band size of 10 cells.
```

cfar2D = phased.CFARDetector2D('GuardBandSize',5,'TrainingBandSize',10,...
'ProbabilityFalseAlarm',1e-5);

```

Next, load and plot a range-doppler image. The image includes returns from two stationary targets and one target moving away from the radar.
```

[resp,rngGrid,dopGrid] = helperRangeDoppler;

```


Use CFAR to search the range-doppler space for objects, and plot a map of the detections. Search from -10 to 10 kHz and from 1000 to 4000 m . First, define the cells under test for this region.
```

[~,rangeIndx] = min(abs(rngGrid-[1000 4000]));
[~,dopplerIndx] = min(abs(dopGrid-[-1e4 le4]));
[columnInds,rowInds] = meshgrid(dopplerIndx(1):dopplerIndx(2),...
rangeIndx(1):rangeIndx(2));
CUTIdx = [rowInds(:) columnInds(:)]';

```

Compute a detection result for each cell under test. Each pixel in the search region is a cell in this example. Plot a map of the detection results for the range-doppler image.
```

detections = cfar2D(resp,CUTIdx);
helperDetectionsMap(resp,rngGrid,dopGrid,rangeIndx,dopplerIndx,detections)

```


The three objects are detected. A data cube of range-doppler images over time can likewise be provided as the input signal to cfar2D, and detections will be calculated in a single step.

\section*{Summary}

In this example, we presented the basic concepts behind CFAR detectors. In particular, we explored how to use the Phased Array System Toolbox to perform cell averaging CFAR detection on signals and range-doppler images. The comparison between the performance offered by a cell averaging CFAR detector and a detector equipped with the theoretically calculated threshold shows clearly that the CFAR detector is more suitable for real field applications.

\section*{Reference}
[1] Mark Richards, Fundamentals of Radar Signal Processing, McGraw Hill, 2005

\section*{Detector Performance Analysis Using ROC Curves}

This example shows how you can assess the performance of both coherent and noncoherent systems using receiver operating characteristic (ROC) curves. It assumes the detector operates in an additive complex white Gaussian noise environment.

ROC curves are often used to assess the performance of a radar or sonar detector. ROC curves are plots of the probability of detection (Pd) vs. the probability of false alarm (Pfa) for a given signal-tonoise ratio (SNR).

\section*{Introduction}

The probability of detection ( Pd ) is the probability of saying that "1" is true given that event "1" occurred. The probability of false alarm (Pfa) is the probability of saying that "1" is true given that the " 0 " event occurred. In applications such as sonar and radar, the " 1 " event indicates that a target is present, and the " 0 " event indicates that a target is not present.

A detector's performance is measured by its ability to achieve a certain probability of detection and probability of false alarm for a given SNR. Examining a detector's ROC curves provides insight into its performance. We can use the rocsnr function to calculate and plot ROC curves.

\section*{Single Pulse Detection}

Given an SNR value, you can calculate the Pd and Pfa values that a linear or square-law detector can achieve using a single pulse. Assuming we have an SNR value of 8 dB and our requirements dictate a Pfa value of at most \(1 \%\), what value of Pd can the detector achieve? We can use the rocsnr function to calculate the Pd and Pfa values and then determine what value of Pd corresponds to Pfa \(=0.01\). Note that by default the rocsnr function assumes coherent detection.
```

[Pd,Pfa] = rocsnr(8);
idx = find(Pfa==0.01); % find index for Pfa=0.01

```

Using the index determined above we can find the Pd value that corresponds to \(\mathrm{Pfa}=0.01\).
Pd(idx)
ans \(=0.8899\)
One feature of the rocsnr function is that you can specify a vector of SNR values and rocsnr calculates the ROC curve for each of these SNR values. Instead of individually calculating Pd and Pfa values for a given SNR, we can view the results in a plot of ROC curves. The rocsnr function plots the ROC curves by default if no output arguments are specified. Calling the rocsnr function with an input vector of four SNR values and no output arguments produces a plot of the ROC curves.
```

SNRvals = [2 4 8 9.4];
rocsnr(SNRvals);

```


In the plot we can select the data cursor button in the toolbar (or in the Tools menu) and then select the \(\mathrm{SNR}=8 \mathrm{~dB}\) curve at the point where \(\mathrm{Pd}=0.9\) to verify that Pfa is approximately 0.01 .

\section*{Multiple Pulse Detection}

One way to improve a detector's performance is to average over several pulses. This is particularly useful in cases where the signal of interest is known and occurs in additive complex white noise. Although this still applies to both linear and square-law detectors, the result for square-law detectors could be off by about 0.2 dB . Let's continue our example by assuming an SNR of 8 dB and averaging over two pulses.
```

rocsnr(8,'NumPulses',2);

```


By inspecting the plot we can see that averaging over two pulses resulted in a higher probability of detection for a given false alarm rate. With an SNR of 8 dB and averaging over two pulses, you can constrain the probability of false alarm to be at most 0.0001 and achieve a probability of detection of 0.9 . Recall that for a single pulse, we had to allow the probability of false alarm to be as much as \(1 \%\) to achieve the same probability of detection.

\section*{Noncoherent Detector}

To this point, we have assumed we were dealing with a known signal in complex white Gaussian noise. The rocsnr function by default assumes a coherent detector. To analyze the performance of a detector for the case where the signal is known except for the phase, you can specify a noncoherent detector. Using the same SNR values as before, let's analyze the performance of a noncoherent detector.
rocsnr(SNRvals,'SignalType', 'NonfluctuatingNoncoherent');


Focus on the ROC curve corresponding to an SNR of 8dB. By inspecting the graph with the data cursor, you can see that to achieve a probability of detection of 0.9 , you must tolerate a false-alarm probability of up to 0.05 . Without using phase information, we need a higher SNR to achieve the same Pd for a given Pfa. For noncoherent linear detectors, we can use Albersheim's equation to determine what value of SNR will achieve our desired Pd and Pfa.
```

SNR_valdB = albersheim(0.9,.01) % Pd=0.9 and Pfa=0.01
SNR valdB = 9.5027

```

Plotting the ROC curve for the SNR value approximated by Albersheim's equation, we can see that the detector will achieve \(\mathrm{Pd}=0.9\) and \(\mathrm{Pfa}=0.01\). Note that the Albersheim's technique applies only to noncoherent detectors.
```

rocsnr(SNR_valdB,'SignalType','NonfluctuatingNoncoherent');

```


\section*{Detection of Fluctuating Targets}

All the discussions above assume that the target is nonfluctuating, which means that the target's statistical characteristics do not change over time. However, in real scenarios, targets can accelerate and decelerate as well as roll and pitch. These factors cause the target's radar cross section (RCS) to vary over time. A set of statistical models called Swerling models are often used to describe the random variation in target RCS.

There are four Swerling models, namely Swerling 1-4. The nonfluctuating target is often termed either Swerling 0 or Swerling 5. Each Swerling model describes how a target's RCS varies over time and the probability distribution of the variation.

Because the target RCS is varying, the ROC curves for fluctuating targets are not the same as the nonfluctuating ones. In addition, because Swerling targets add random phase into the received signal, it is harder to use a coherent detector for a Swerling target. Therefore, noncoherent detection techniques are often used for Swerling targets.

Let us now compare the ROC curves for a nonfluctuating target and a Swerling 1 target. In particular, we want to explore what the SNR requirements are for both situations if we want to achieve the same Pd and Pfa. For such a comparison, it is often easy to plot the ROC curve as Pd against SNR with varying Pfa. We can use the rocpfa function to plot ROC curve in this form.

Let us assume that we are doing noncoherent detection with 10 integrated pulses, with the desired Pfa being at most \(1 \mathrm{e}-8\). We first plot the ROC curve for a nonfluctuating target.
```

rocpfa(1e-8,'NumPulses',10,'SignalType','NonfluctuatingNoncoherent')

```


We then plot the ROC curve for a Swerling 1 target for comparison.
```

rocpfa(1e-8,'NumPulses',10,'SignalType','Swerling1')

```


From the figures, we can see that for a \(\operatorname{Pd}\) of 0.9 , we require an SNR of about 6 dB if the target is nonfluctuating. However, if the target is a Swerling case 1 model, the required SNR jumps to more than 14 dB , an 8 dB difference. This will greatly impact the design of the system.

As in the case of nonfluctuating targets, we have approximation equations to help determine the required SNR without having to plot all the curves. The equation used for fluctuating targets is Shnidman's equation. For the scenario we used to plot the ROC curves, the SNR requirements can be derived using the shnidman function.
```

snr_sw1_db = shnidman(0.9,1e-8,10,1) % Pd=0.9, Pfa=1e-8, 10 pulses,
snr_sw1_db = 14.7131

```
```

% Swerling case 1

```

The calculated SNR requirement matches the value derived from the curve.

\section*{Summary}

ROC curves are useful for analyzing detector performance, both for coherent and noncoherent systems. We used the rocsnr function to analyze the effectiveness of a linear detector for various SNR values. We also reviewed the improvement in detector performance achieved by averaging multiple samples. Lastly we showed how we can use the rocsnr and rocpfa functions to analyze detector performance when using a noncoherent detector for both nonfluctuating and fluctuating targets.

\section*{Doppler Estimation}

This example shows a monostatic pulse radar detecting the radial velocity of moving targets at specific ranges. The speed is derived from the Doppler shift caused by the moving targets. We first identify the existence of a target at a given range and then use Doppler processing to determine the radial velocity of the target at that range.

\section*{Radar System Setup}

First, we define a radar system. Since the focus of this example is on Doppler processing, we use the radar system built in the example "Designing a Basic Monostatic Pulse Radar" on page 17-449. Readers are encouraged to explore the details of radar system design through that example.
load BasicMonostaticRadarExampleData;

\section*{System Simulation}

\section*{Targets}

Doppler processing exploits the Doppler shift caused by the moving target. We now define three targets by specifying their positions, radar cross sections (RCS), and velocities.
```

tgtpos = [[1200; 1600; 0],[3543.63; 0; 0],[1600; 0; 1200]];
tgtvel = [[60; 80; 0],[0;0;0],[0; 100; 0]];
tgtmotion = phased.Platform('InitialPosition',tgtpos,'Velocity',tgtvel);
tgtrcs = [1.3 1.7 2.1];
fc = radiator.OperatingFrequency;
target = phased.RadarTarget('MeanRCS',tgtrcs,'OperatingFrequency',fc);

```

Note that the first and third targets are both located at a range of 2000 m and are both traveling at a speed of \(100 \mathrm{~m} / \mathrm{s}\). The difference is that the first target is moving along the radial direction, while the third target is moving in the tangential direction. The second target is not moving.

\section*{Environment}

We also need to setup the propagation environment for each target. Since we are using a monostatic radar, we use the two way propagation model.
```

fs = waveform.SampleRate;
channel = phased.FreeSpace(...
'SampleRate',fs,...
'TwoWayPropagation',true,...
'OperatingFrequency',fc);

```

\section*{Signal Synthesis}

With the radar system, the environment, and the targets defined, we can now simulate the received signal as echoes reflected from the targets. The simulated data is a data matrix with the fast time (time within each pulse) along each column and the slow time (time between pulses) along each row.

We need to set the seed for noise generation at the receiver so that we can reproduce the same results.
```

receiver.SeedSource = 'Property';
receiver.Seed = 2009;

```
```

prf = waveform.PRF;
num_pulse_int = 10;
fast_time_grid = unigrid(0,1/fs,1/prf,'[)');
slow_time_grid = (0:num_pulse_int-1)/prf;
% Pre-allocate array for improved processing speed
rxpulses = zeros(numel(fast_time_grid),num_pulse_int);
for m = 1:num_pulse_int
% Update sensor and target positions
[sensorpos,sensorvel] = sensormotion(1/prf);
[tgtpos,tgtvel] = tgtmotion(1/prf);
% Calculate the target angles as seen by the sensor
[tgtrng,tgtang] = rangeangle(tgtpos,sensorpos);
% Simulate propagation of pulse in direction of targets
pulse = waveform();
[txsig,txstatus] = transmitter(pulse);
txsig = radiator(txsig,tgtang);
txsig = channel(txsig,sensorpos,tgtpos,sensorvel,tgtvel);
% Reflect pulse off of targets
tgtsig = target(txsig);
% Receive target returns at sensor
rxsig = collector(tgtsig,tgtang);
rxpulses(:,m) = receiver(rxsig,~(txstatus>0));
end

```

\section*{Doppler Estimation}

\section*{Range Detection}

To be able to estimate the Doppler shift of the targets, we first need to locate the targets through range detection. Because the Doppler shift spreads the signal power into both I and Q channels, we need to rely on the signal energy to do the detection. This means that we use noncoherent detection schemes.

The detection process is described in detail in the aforementioned example so we simply perform the necessary steps here to estimate the target ranges.
```

% calculate initial threshold
pfa = 1e-6;
% in loaded system, noise bandwidth is half of the sample rate
noise_bw = receiver.SampleRate/2;
npower = noisepow(noise_bw,...
receiver.NoiseFigure, receiver.ReferenceTemperature);
threshold = npower * db2pow(npwgnthresh(pfa,num_pulse_int,'noncoherent'));
% apply matched filter and update the threshold
matchingcoeff = getMatchedFilter(waveform);
matchedfilter = phased.MatchedFilter(...
'Coefficients',matchingcoeff,...
'GainOutputPort',true);

```
```

[rxpulses, mfgain] = matchedfilter(rxpulses);
threshold = threshold * db2pow(mfgain);
% compensate the matched filter delay
matchingdelay = size(matchingcoeff,1)-1;
rxpulses = buffer(rxpulses(matchingdelay+1:end),size(rxpulses,1));
% apply time varying gain to compensate the range dependent loss
prop_speed = radiator.PropagationSpeed;
range_gates = prop_speed*fast_time_grid/2;
lambda = prop_spee\overline{d}/fc;
tvg = phased.TimeVaryingGain(...
'RangeLoss',2*fspl(range_gates,lambda),...
'ReferenceLoss',2*fspl(prop_speed/(prf*2),lambda));
rxpulses = tvg(rxpulses);
% detect peaks from the integrated pulse
[~,range_detect] = findpeaks(pulsint(rxpulses,'noncoherent'),...
'MinPeakHeight',sqrt(threshold));
range_estimates = round(range_gates(range_detect))
range_estimates = 1×2
2000 3550

```

These estimates suggest the presence of targets in the range of 2000 m and 3550 m .

\section*{Doppler Spectrum}

Once we successfully estimated the ranges of the targets, we can then estimate the Doppler information for each target.

Doppler estimation is essentially a spectrum estimation process. Therefore, the first step in Doppler processing is to generate the Doppler spectrum from the received signal.

The received signal after the matched filter is a matrix whose columns correspond to received pulses. Unlike range estimation, Doppler processing processes the data across the pulses (slow time), which is along the rows of the data matrix. Since we are using 10 pulses, there are 10 samples available for Doppler processing. Because there is one sample from each pulse, the sampling frequency for the Doppler samples is the pulse repetition frequency (PRF).

As predicted by the Fourier theory, the maximum unambiguous Doppler shift a pulse radar system can detect is half of its PRF. This also translates to the maximum unambiguous speed a radar system can detect. In addition, the number of pulses determines the resolution in the Doppler spectrum, which determines the resolution of the speed estimates.
```

max_speed = dop2speed(prf/2,lambda)/2
max_speed = 224.6888
speed_res = 2*max_speed/num_pulse_int
speed_res = 44.9378

```

As shown in the calculation above, in this example, the maximum detectable speed is \(225 \mathrm{~m} / \mathrm{s}\), either approaching (-225) or departing (+225). The resulting Doppler resolution is about \(45 \mathrm{~m} / \mathrm{s}\), which
means that the two speeds must be at least \(45 \mathrm{~m} / \mathrm{s}\) apart to be separable in the Doppler spectrum. To improve the ability to discriminate between different target speeds, more pulses are needed.
However, the number of pulses available is also limited by the radial velocity of the target. Since the Doppler processing is limited to a given range, all pulses used in the processing have to be collected before the target moves from one range bin to the next.

Because the number of Doppler samples are in general limited, it is common to zero pad the sequence to interpolate the resulting spectrum. This will not improve the resolution of the resulting spectrum, but can improve the estimation of the locations of the peaks in the spectrum.

The Doppler spectrum can be generated using a periodogram. We zero pad the slow time sequence to 256 points.
```

num_range_detected = numel(range_estimates);
[p1, f1] = periodogram(rxpulses(range_detect(1),:).',[],256,prf, ...
'power','centered');
[p2, f2] = periodogram(rxpulses(range_detect(2),:).',[],256,prf, ...
'power','centered');

```

The speed corresponding to each sample in the spectrum can then be calculated. Note that we need to take into consideration of the round trip effect.
```

speed_vec = dop2speed(f1,lambda)/2;

```

\section*{Doppler Estimation}

To estimate the Doppler shift associated with each target, we need to find the locations of the peaks in each Doppler spectrum. In this example, the targets are present at two different ranges, so the estimation process needs to be repeated for each range.

Let's first plot the Doppler spectrum corresponding to the range of 2000 meters.
periodogram(rxpulses(range_detect(1),:).',[],256,prf,'power','centered');


Note that we are only interested in detecting the peaks, so the spectrum values themselves are not critical. From the plot of Doppler spectrum, we notice that 5 dB below the maximum peak is a good threshold. Therefore, we use -5 as our threshold on the normalized Doppler spectrum.
```

spectrum_data = p1/max(p1);
[~,dop_detect1] = findpeaks(pow2db(spectrum_data),'MinPeakHeight',-5);
sp1 = speed_vec(dop_detect1)
sp1 = 2×1
-103.5675
3.5108

```

The results show that there are two targets at the 2000 m range: one with a velocity of \(3.5 \mathrm{~m} / \mathrm{s}\) and the other with \(-104 \mathrm{~m} / \mathrm{s}\). The value \(-104 \mathrm{~m} / \mathrm{s}\) can be easily associated with the first target, since the first target is departing at a radial velocity of \(100 \mathrm{~m} / \mathrm{s}\), which, given the Doppler resolution of this example, is very close to the estimated value. The value \(3.5 \mathrm{~m} / \mathrm{s}\) requires more explanation. Since the third target is moving along the tangential direction, there is no velocity component in the radial direction. Therefore, the radar cannot detect the Doppler shift of the third target. The true radial velocity of the third target, hence, is \(0 \mathrm{~m} / \mathrm{s}\) and the estimate of \(3.5 \mathrm{~m} / \mathrm{s}\) is very close to the true value.

Note that these two targets cannot be discerned using only range estimation because their range values are the same.

The same operations are then applied to the data corresponding to the range of 3550 meters.
periodogram(rxpulses(range_detect(2),:).',[],256,prf,'power','centered');

```

spectrum data = p2/max(p2);
[~,dop_dētect2] = findpeaks(pow2db(spectrum_data),'MinPeakHeight',-5);
sp2 = speed_vec(dop_detect2)
sp2 = 0

```

This result shows an estimated speed of \(0 \mathrm{~m} / \mathrm{s}\), which matches the fact that the target at this range is not moving.

\section*{Summary}

This example showed a simple way to estimate the radial speed of moving targets using a pulse radar system. We generated the Doppler spectrum from the received signal and estimated the peak locations from the spectrum. These peak locations correspond to the target's radial speed. The limitations of the Doppler processing are also discussed in the example.

\section*{Range Estimation Using Stretch Processing}

This example shows how to estimate the range of a target using stretch processing in a radar system that uses a linear FM pulse waveform.

\section*{Introduction}

Linear FM waveform is a popular choice in modern radar systems because it can achieve high range resolution by sweeping through a wide bandwidth. However, when the bandwidth is on the order of hundreds of megahertz, or even gigahertz, it becomes difficult to perform matched filtering or pulse compression in the digital domain because high-quality A/D converters are hard to find at such data rates.

Stretch processing, sometimes also referred to as deramp, is a technique that can be used in such situations. Stretch processing is performed in the analog domain.

The received signal is first mixed with a replica of the transmitted pulse. Note that the replica matches the return from the reference range. Once mixed, the resulting signal contains a frequency component that corresponds to the range offset measured from this reference range. Hence, the exact range can be estimated by performing a spectral analysis on the signal at the output of the mixer.

In addition, instead of processing the entire range span covered by the pulse, the processing focuses on a small window around a predefined reference range. Because of the limited range span, the output data of the stretch processor can be sampled at a lower rate, relaxing the bandwidth requirement for A/D converters

The following sections show an example of range estimation using stretch processing.

\section*{Simulation Setup}

The radar system in this example uses a linear FM waveform with a 3 MHz sweeping bandwidth. The waveform can be used to achieve a range resolution of 50 m and a maximum unambiguous range of 8 km . The sample rate is set to 6 MHz , i.e., twice the sweeping bandwidth. For more information about the radar system, see "Waveform Design to Improve Performance of an Existing Radar System" on page 17-165.

Three targets are located at 2000.66, 6532.63, and 6845.04 meters from the radar, respectively. Ten pulses are simulated at the receiver. These pulses contain echoes from the targets.
```

[rx_pulses, waveform] = helperStretchSimulate;
fs = waveform.SampleRate;

```

A time frequency plot of the received pulse is shown below. A coherent pulse integration is done before the plot to improve the signal-to-noise ratio (SNR). In the figure, the return from the first target can be clearly seen between 14 and 21 ms while the return from the second and third targets are much weaker, appearing after 45 ms .
```

helperStretchSignalSpectrogram(pulsint(rx_pulses,'coherent'),fs,...
8,4,'Received Signal');

```


\section*{Stretch Processing}

To perform stretch processing, first determine a reference range. In this example, the goal is to search targets around 6700 m away from the radar, in a 500-meter window. A stretch processor can be formed using the waveform, the desired reference range and the range span.
```

refrng = 6700;
rngspan = 500;
prop_speed = physconst('lightspeed');
stretchproc = getStretchProcessor(waveform,refrng,rngspan,prop_speed)
stretchproc =
phased.StretchProcessor with properties:

```
            SampleRate: 5.9958e+06
            PulseWidth: 6.6713e-06
                        PRFSource: 'Property'
                        PRF: 1.8737e+04
                SweepSlope: \(4.4938 e+11\)
            SweepInterval: 'Positive'
        PropagationSpeed: 299792458
            ReferenceRange: 6700
                        RangeSpan: 500

Next, pass the received pulses through the stretch processor.
y_stretch = stretchproc(rx_pulses);

Now, coherently integrate the pulses to improve the SNR.
\(y=\) pulsint(y_stretch,'coherent');
The spectrogram of the signal after stretch processing is shown below. Note that the second and third target echoes no longer appear as a ramp in the plot. Instead, their time-frequency signatures appear at constant frequencies, around 0.5 and -0.5 MHz . Hence, the signal is deramped. In addition, there is no return present from the first target. In fact, any signal outside the ranges of interest has been suppressed. This is because the stretch processor only allows target returns within the range window to pass. This process is often referred to as range gating in a real system.
helperStretchSignalSpectrogram(y,fs,16,12,'Deramped Signal');


\section*{Range Estimation}

To estimate the target range, plot the spectrum of the signal.
```

periodogram(y,[],2048,stretchproc.SampleRate,'centered');

```


From the figure, it is clear that there are two dominant frequency components in the deramped signal, which correspond to two targets. The frequencies of these peaks can be used to determine the true range values of these targets.
```

[p, f] = periodogram(y,[],2048,stretchproc.SampleRate,'centered');
[~,rngidx] = findpeaks(pow2db(p/max(p)),'MinPeakHeight',-5);
rngfreq = f(rngidx);
re = stretchfreq2rng(rngfreq,...
stretchproc.SweepSlope,stretchproc.ReferenceRange,prop_speed)
re = 2\times1
103 }
6.8514
6.5174

```

The estimated ranges are 6518 and 6852 meters, matching the true ranges of 6533 and 6845 meters.

\section*{Reduced Sample Rate}

As mentioned in the introduction section, an attractive feature of stretch processing is that it reduces the bandwidth requirement for successive processing stages. In this example, the range span of interest is 500 meters. The required bandwidth for the successive processing stages can be computed as
```

rngspan_bw = ...
2*rngspan/prop_speed*waveform.SweepBandwidth/waveform.PulseWidth
rngspan_bw = 1.4990e+06

```

Following the same design rule as in the original system, where twice the bandwidth is used as the sampling frequency, the new required sampling frequency becomes
```

fs_required = 2*rngspan_bw
fs_required = 2.9979e+06
dec_factor = round(fs/fs_required)
dec_factor = 2

```

The resulting decimator factor is 2 . This means that after performing stretch processing in the analog domain, signals can be sampled at only half of the sampling frequency compared to the case where the stretch processing is not used. Thus, the requirement on the A/D converter has been relaxed.

To verify this benefit in simulation, the next section shows that the same ranges can be estimated with the signal decimated after stretch processing.
```

% Design a decimation filter
decimator = design(fdesign.decimator(dec_factor,'lowpass',...
'N,F3dB',10,1/dec_factor),'System0bjēct',true);
% Decimate
y_stretch = decimator(y_stretch);

```

This time, the power spectral density is plotted against ranges.
```

y = pulsint(y_stretch,'coherent');
[p, f] = periodogram(y,[],2048,fs_required,'centered');
rng_bin = stretchfreq2rng(f,...
stretchproc.SweepSlope,stretchproc.ReferenceRange,prop_speed);
plot(rng_bin,pow2db(p));
xlabel('Range (m)'); ylabel('Power/frequency (dB/Hz)'); grid on;
title('Periodogram Power Spectral Density Estimate');

```


The true range values are 6533 and 6845 meters. Without decimation, the range estimates are 6518 and 6852 meters. With decimation, the range estimates are 6523 and 6851 meters. Therefore, the range estimation yields the same result with roughly only half of the computations compared to the nondecimated case.

\section*{Summary}

This example shows how to use stretch processing to estimate the target range when a linear FM waveform is used. It also shows that stretch processing reduces the bandwidth requirement.

\section*{Reference}
[1] Mark Richards, Fundamentals of Radar Signal Processing, McGraw-Hill, 2005.

\section*{Signal Detection in White Gaussian Noise}

This example discusses the detection of a deterministic signal in complex, white, Gaussian noise. This situation is frequently encountered in radar, sonar and communication applications.

\section*{Overview}

There are many different kinds of detectors available for use in different applications. A few of the most popular ones are the Bayesian detector, maximum likelihood (ML) detector and NeymanPearson (NP) detector. In radar and sonar applications, NP is the most popular choice since it can ensure the probability of false alarm (Pfa) to be at a certain level.

In this example, we limit our discussion to the scenario where the signal is deterministic and the noise is white and Gaussian distributed. Both signal and noise are complex.

The example discusses the following topics and their interrelations: coherent detection, noncoherent detection, matched filtering and receiver operating characteristic (ROC) curves.

\section*{Signal and Noise Model}

The received signal is assumed to follow the model
\[
x(t)=s(t)+n(t)
\]
where \(s(t)\) is the signal and \(n(t)\) is the noise. Without losing the generality, we assume that the signal power is equal to 1 watt and the noise power is determined accordingly based on the signal to noise ratio (SNR). For example, for an SNR of 10 dB , the noise power, i.e., noise variance will be 0.1 watt.

\section*{Matched Filter}

A matched filter is often used at the receiver front end to enhance the SNR. From the discrete signal point of view, matched filter coefficients are simply given by the complex conjugated reversed signal samples.

When dealing with complex signals and noises, there are two types of receivers. The first kind is a coherent receiver, which assumes that both the amplitude and phase of the received signal are known. This results in a perfect match between the matched filter coefficients and the signal \(s\). Therefore, the matched filter coefficients can be considered as the conjugate of \(s\). The matched filter operation can then be modeled as
\[
y=s^{*} \chi=s^{*}(s+n)=|s|^{2}+s^{*} n .
\]

Note that although the general output \(y\) is still a complex quantity, the signal is completely characterized by \(|s|^{2}\), which is a real number and contained in the real part of \(y\). Hence, the detector following the matched filter in a coherent receiver normally uses only the real part of the received signal. Such a receiver can normally provide the best performance. However, the coherent receiver is vulnerable to phase errors. In addition, a coherent receiver also requires additional hardware to perform the phase detection. For a noncoherent receiver, the received signal is modeled as a copy of the original signal with a random phase error. With a noncoherent received signal, the detection after the matched filter is normally based on the power or magnitude of the signal since you need both real and imaginary parts to completely define the signal.

\section*{Detector}

The objective function of the NP decision rule can be written as
\[
J=P_{d}+g\left(P_{f a}-a\right),
\]
i.e., to maximize the probability of the detection, \(P d\), while limiting the probability of false alarm, Pfa at a specified level \(a\). The variable \(g\) in the equation is the Lagrange multiplier. The NP detector can be formed as a likelihood ratio test (LRT) as follows:
\[
\frac{p_{y}\left(y \mid H_{1}\right)}{p_{y}\left(y \mid H_{0}\right)} \stackrel{H_{1}}{\stackrel{H_{0}}{<}} \mathrm{e} \text {. } T h .
\]

In this particular NP situation, since the false alarm is caused by the noise alone, the threshold \(T h\) is determined by the noise to ensure the fixed Pfa. The general form of the LRT shown above is often difficult to evaluate. In real applications, we often use an easy to compute quantity from the signal, i.e., sufficient statistic, to replace the ratio of two probability density functions. For example, the sufficient statistics, \(z\) may be as simple as
\[
z=|y|
\]
then the simplified detector becomes
\[
\underset{H_{0}}{\stackrel{H_{1}}{\gtrless}} T .
\]
\(T\) is the threshold to the sufficient statistic \(z\), acting just like the threshold \(T h\) to the LRT. Therefore, the threshold is not only related to the probability distributions, but also depends on the choice of sufficient statistic.

\section*{Single Sample Detection Using Coherent Receiver}

We will first explore an example of detecting a signal in noise using just one sample.
Assume the signal is a unit power sample and the SNR is 3 dB . Using a 100000 -trial Monte-Carlo simulation, we generate the signal and noise as
```

% fix the random number generator
rstream = RandStream.create('mt19937ar','seed',2009);
Ntrial = 1e5; % number of Monte-Carlo trials
snrdb = 3; % SNR in dB
snr = db2pow(snrdb); % SNR in linear scale
spower = 1; % signal power is 1
npower = spower/snr; % noise power
namp = sqrt(npower/2); % noise amplitude in each channel
s = ones(1,Ntrial); % signal
n = namp*(randn(rstream,1,Ntrial)+1i*randn(rstream,1,Ntrial)); % noise

```

Note that the noise is complex, white and Gaussian distributed.
If the received signal contains the target, it is given by
```

x = s + n;

```

The matched filter in this case is trivial, since the signal itself is a unit sample.
\(\mathrm{mf}=1\);
In this case, the matched filter gain is 1 , therefore, there is no SNR gain.
Now we do the detection and examine the performance of the detector. For a coherent receiver, the received signal after the matched filter is given by
\(y=m f{ }^{\prime *} x\); \(\%\) apply the matched filter
The sufficient statistic, i.e., the value used to compare to the detection threshold, for a coherent detector is the real part of the received signal after the matched filter, i.e.,
\(z=\operatorname{real}(y)\);
Let's assume that the we want to fix the Pfa to \(1 \mathrm{e}-3\). Given the sufficient statistic, \(z\), the decision rule becomes
\[
\stackrel{\stackrel{H_{1}}{2}}{\underset{H_{0}}{\gtrless}} T
\]
where the threshold \(T\) is related to Pfa as
\[
P_{f a}=\frac{1}{2}\left[1-\operatorname{erf}\left(\frac{T}{\sqrt{N M}}\right)\right]
\]

In the equation, \(N\) is the signal power and \(M\) is the matched filter gain. Note that \(T\) is the threshold of the signal after the matched filter and \(N M\) represents the noise power after the matched filter, so \(\frac{T}{\sqrt{N M}}\) can be considered as the ratio between the signal and noise magnitude, i.e., it is related to the signal to noise ratio, SNR. Since SNR is normally referred to as the ratio between the signal and noise power, considering the units of each quantity in this expression, we can see that
\[
\frac{T}{\sqrt{N M}}=\sqrt{\mathrm{SNR}}
\]

Since \(N\) and \(M\) are fixed once the noise and signal waveform are chosen, there is a correspondence between \(T\) and SNR. Given \(T\) is a threshold of the signal, SNR can be considered as a threshold of the signal to noise ratio. Therefore, the threshold equation can then be rewritten in the form of
\[
P_{f a}=\frac{1}{2}[1-\operatorname{erf}(\sqrt{\mathrm{SNR}})] .
\]

The required SNR threshold given a complex, white Gaussian noise for the NP detector can be calculated using the npwgnthresh function as follows:
```

Pfa = 1e-3;
snrthreshold = db2pow(npwgnthresh(Pfa, 1,'coherent'));

```

Note that this threshold, although also in the form of an SNR value, is different to the SNR of the received signal. The threshold SNR is a calculated value based on the desired detection performance, in this case the Pfa; while the received signal SNR is the physical characteristic of the signal determined by the propagation environment, the waveform, the transmit power, etc.

The true threshold \(T\) can then be derived from this SNR threshold as
```

 T=\sqrt{}{NM}\cdot\sqrt{}{\textrm{SNR}}.
 mfgain = mf'*mf;
% To match the equation in the text above
% npower - N
% mfgain - M
% snrthreshold - SNR
threshold = sqrt(npower*mfgain*snrthreshold);

```

The detection is performed by comparing the signal to the threshold. Since the original signal, \(s\), is presented in the received signal, a successful detection occurs when the received signal passes the threshold, i.e. \(z>T\). The capability of the detector to detect a target is often measured by the Pd. In a Monte-Carlo simulation, \(P d\) can be calculated as the ratio between the number of times the signal passes the threshold and the number of total trials.
```

Pd = sum(z>threshold)/Ntrial
Pd = 0.1390

```

On the other hand, a false alarm occurs when the detection shows that there is a target but there actually isn't one, i.e., the received signal passes the threshold when there is only noise present. The error probability of the detector to detect a target when there isn't one is given by Pfa.
```

x = n;
y = mf'*x;
z = real(y);
Pfa = sum(z>threshold)/Ntrial
Pfa = 9.0000e-04

```
which meets our requirement.
To see the relation among SNR, \(P d\) and \(P f a\) in a graph, we can plot the theoretical ROC curve using the rocsnr function for a SNR value of 3 dB as
```

rocsnr(snrdb,'SignalType','NonfluctuatingCoherent','MinPfa',1e-4);

```


It can be seen from the figure that the measured \(P d=0.1390\) and \(P f a=0.0009\) obtained above for the SNR value of 3 dB match a theoretical point on the ROC curve.

\section*{Single Sample Detection Using Noncoherent Receiver}

A noncoherent receiver does not know the phase of the received signal, therefore, for target present case, the signal x contains a phase term and is defined as
\% simulate the signal
\(x=s . * \exp \left(1 i^{*} 2^{*}\right.\) pi* \(^{*}\) rand \((\) rstream,1,Ntrial)) +n ;
\(y=m f^{\prime *} x\);
When the noncoherent receiver is used, the quantity used to compare with the threshold is the power (or magnitude) of the received signal after the matched filter. In this simulation, we choose the magnitude as the sufficient statistic.
z = abs(y);
Given our choice of the sufficient statistic \(z\), the threshold is related to Pfa by the equation
\[
P_{f a}=\exp \left(-\frac{T^{2}}{N M}\right)=\exp (-\mathrm{SNR}) .
\]

The signal to noise ratio threshold SNR for an NP detector can be calculated using npwgnthresh as follows:
```

snrthreshold = db2pow(npwgnthresh(Pfa, 1,'noncoherent'));

```

The threshold, \(T\), is derived from SNR as before
```

mfgain = mf'*mf;
threshold = sqrt(npower*mfgain*snrthreshold);

```

Again, \(P d\) can then be obtained using
Pd \(=\operatorname{sum}(z>\) threshold) \(/\) Ntrial
\(\mathrm{Pd}=0.0583\)
Note that this resulting \(P d\) is inferior to the performance we get from a coherent receiver.
For the target absent case, the received signal contains only noise. We can calculate the Pfa using Monte-Carlo simulation as
```

x = n;
y = mf'*x;
z = abs(y);
Pfa = sum(z>threshold)/Ntrial
Pfa = 9.5000e-04

```

The ROC curve for a noncoherent receiver is plotted as
```

rocsnr(snrdb,'SignalType','NonfluctuatingNoncoherent','MinPfa',1e-4);

```

Nonfluctuating Noncoherent Receiver Operating Characteristic (ROC) Curves


We can see that the performance of the noncoherent receiver detector is inferior to that of the coherent receiver.

\section*{Summary}

This example shows how to simulate and perform different detection techniques using MATLAB®. The example illustrates the relationship among several frequently encountered variables in signal detection, namely, probability of detection (Pd), probability of false alarm (Pfa) and signal to noise ratio (SNR). In particular, the example calculates the performance of the detector using Monte-Carlo simulations and verifies the results of the metrics with the receiver operating characteristic (ROC) curves.

There are two SNR values we encounter in detecting a signal. The first one is the SNR of a single data sample. This is the SNR value appeared in a ROC curve plot. A point on ROC gives the required single sample SNR necessary to achieve the corresponding Pd and Pfa. However, it is NOT the SNR threshold used for detection. Using the Neyman-Pearson decision rule, the SNR threshold, the second SNR value we see in the detection, is determined by the noise distribution and the desired Pfa level. Therefore, such an SNR threshold indeed corresponds to the Pfa axis in a ROC curve. If we fix the SNR of a single sample, as depicted in the above ROC curve plots, each point on the curve will correspond to a Pfa value, which in turn translates to an SNR threshold value. Using this particular SNR threshold to perform the detection will then result in the corresponding Pd.

Note that an SNR threshold may not be the threshold used directly in the actual detector. The actual detector normally uses an easy to compute sufficient statistic quantity to perform the detection. Thus, the true threshold has to be derived from the aforementioned SNR threshold accordingly so that it is consistent with the choice of sufficient statistics.

This example performs the detection using only one received signal sample. Hence, the resulting Pd is fairly low and there is no processing gain achieved by the matched filter. To improve Pd and to take advantage of the processing gain of the matched filter, we can use multiple samples, or even multiple pulses, of the received signal. For more information about how to detect a signal using multiple samples or pulses, please refer to the example "Signal Detection Using Multiple Samples" on page 17-314.

\section*{Signal Detection Using Multiple Samples}

This example shows how to detect a signal in complex, white Gaussian noise using multiple received signal samples. A matched filter is used to take advantage of the processing gain.

\section*{Introduction}

The example, "Signal Detection in White Gaussian Noise" on page 17-307, introduces a basic signal detection problem. In that example, only one sample of the received signal is used to perform the detection. This example involves more samples in the detection process to improve the detection performance.

As in the previous example, assume that the signal power is 1 and the single sample signal to noise ratio (SNR) is 3 dB . The number of Monte Carlo trials is 100000 . The desired probability of false alarm (Pfa) level is 0.001.
```

Ntrial = le5; % number of Monte Carlo trials
Pfa = 1e-3; %Pfa
snrdb = 3; % SNR in dB
snr = db2pow(snrdb); % SNR in linear scale
npower = 1/snr; % noise power
namp = sqrt(npower/2); % noise amplitude in each channel

```

\section*{Signal Detection Using Longer Waveform}

As discussed in the previous example, the threshold is determined based on Pfa. Therefore, as long as the threshold is chosen, the Pfa is fixed, and vice versa. Meanwhile, one certainly prefers to have a higher probability of detection (Pd). One way to achieve that is to use multiple samples to perform the detection. For example, in the previous case, the SNR at a single sample is 3 dB . If one can use multiple samples, then the matched filter can produce an extra gain in SNR and thus improve the performance. In practice, one can use a longer waveform to achieve this gain. In the case of discrete time signal processing, multiple samples can also be obtained by increasing the sampling frequency.

Assume that the waveform is now formed with two samples
```

Nsamp = 2;
wf = ones(Nsamp,1);
mf = conj(wf(end:-1:1)); % matched filter

```

For a coherent receiver, the signal, noise and threshold are given by
```

% fix the random number generator
rstream = RandStream.create('mt19937ar','seed',2009);
s = wf*ones(1,Ntrial);
n = namp*(randn(rstream,Nsamp,Ntrial)+li*randn(rstream,Nsamp,Ntrial));
snrthreshold = db2pow(npwgnthresh(Pfa, 1,'coherent'));
mfgain = mf'*mf;
threshold = sqrt(npower*mfgain*snrthreshold); % Final threshold T

```

If the target is present
```

x = s + n;
y = mf'*x;
z = real(y);
Pd = sum(z>threshold)/Ntrial

```
```

Pd = 0.3947

```

If the target is absent
```

x = n;
y = mf'*x;
z = real(y);
Pfa = sum(z>threshold)/Ntrial
Pfa = 0.0011

```

Notice that the SNR is improved by the matched filter.
```

snr new = snr*mf'*mf;
snr\overline{db_new = pow2db(snr_new)}
snrdb_new = 6.0103

```

Plot the ROC curve with this new SNR value.
rocsnr(snrdb_new, 'SignalType', 'NonfluctuatingCoherent', 'MinPfa', 1e-4);


One can see from the figure that the point given by Pfa and Pd falls right on the curve. Therefore, the SNR corresponding to the ROC curve is the SNR of a single sample at the output of the matched filter. This shows that, although one can use multiple samples to perform the detection, the single sample threshold in SNR (snrthreshold in the program) does not change compared to the simple sample case. There is no change because the threshold value is essentially determined by Pfa. However, the final threshold, \(T\), does change because of the extra matched filter gain. The resulting

Pfa remains the same compared to the case where only one sample is used to do the detection. However, the extra matched gain improved the Pd from 0.1390 to 0.3947 .

One can run similar cases for the noncoherent receiver to verify the relation among Pd, Pfa and SNR.

\section*{Signal Detection Using Pulse Integration}

Radar and sonar applications frequently use pulse integration to further improve the detection performance. If the receiver is coherent, the pulse integration is just adding real parts of the matched filtered pulses. Thus, the SNR improvement is linear when one uses the coherent receiver. If one integrates 10 pulses, then the SNR is improved 10 times. For a noncoherent receiver, the relationship is not that simple. The following example shows the use of pulse integration with a noncoherent receiver.

Assume an integration of 2 pulses. Then, construct the received signal and apply the matched filter to it.
```

PulseIntNum = 2;
Ntotal = PulseIntNum*Ntrial;
s = wf*exp(1i*2*pi*rand(rstream,1,Ntotal)); % noncoherent
n = sqrt(npower/2)*...
(randn(rstream,Nsamp,Ntotal)+li*randn(rstream,Nsamp,Ntotal));

```

If the target is present
```

x = s + n;
y = mf'*x;
y = reshape(y,Ntrial,PulseIntNum); % reshape to align pulses in columns

```

One can integrate the pulses using either of two possible approaches. Both approaches are related to the approximation of the modified Bessel function of the first kind, which is encountered in modeling the likelihood ratio test (LRT) of the noncoherent detection process using multiple pulses. The first approach is to sum abs (y)^2 across the pulses, which is often referred to as a square law detector. The second approach is to sum together abs(y) from all pulses, which is often referred to as a linear detector. For small SNR, square law detector is preferred while for large SNR, using linear detector is advantageous. We use square law detector in this simulation. However, the difference between the two kinds of detectors is normally within 0.2 dB .

For this example, choose the square law detector, which is more popular than the linear detector. To perform the square law detector, one can use the pulsint function. The function treats each column of the input data matrix as an individual pulse. The pulsint function performs the operation of
\[
\begin{gathered}
y=\sqrt{\left|x_{1}\right|^{2}+\cdots+\left|x_{n}\right|^{2}} \\
z=\operatorname{pulsint}(y, \text { 'noncoherent')} ;
\end{gathered}
\]

The relation between the threshold \(T\) and the Pfa, given this new sufficient statistics, \(z\), is given by
\[
P_{f a}=1-I\left(\frac{T^{2} /(N M)}{\sqrt{L}}, L-1\right)=1-I\left(\frac{\mathrm{SNR}}{\sqrt{L}}, L-1\right) .
\]
where
\[
I(u, K)=\int_{0}^{u \sqrt{K+1}} \frac{e^{-\tau} \tau^{K}}{K!} d \tau
\]
is Pearson's form of the incomplete gamma function and \(L\) is the number of pulses used for pulse integration. Using a square law detector, one can calculate the SNR threshold involving the pulse integration using the npwgnthresh function as before.
```

snrthreshold = db2pow(npwgnthresh(Pfa,PulseIntNum,'noncoherent'));

```

The resulting threshold for the sufficient statistics, \(z\), is given by
```

mfgain = mf'*mf;
threshold = sqrt(npower*mfgain*snrthreshold);

```

The probability of detection is obtained by
```

Pd = sum(z>threshold)/Ntrial
Pd = 0.5343

```

Then, calculate the Pfa when the received signal is noise only using the noncoherent detector with 2 pulses integrated.
```

x = n;
y = mf'*x;
y = reshape(y,Ntrial,PulseIntNum);
z = pulsint(y,'noncoherent');
Pfa = sum(z>threshold)/Ntrial
Pfa = 0.0011

```

To plot the ROC curve with pulse integration, one has to specify the number of pulses used in integration in rocsnr function
```

rocsnr(snrdb_new,'SignalType','NonfluctuatingNoncoherent',...
'MinPfa',}1\textrm{le}-4,',NumPulses',PulseIntNum)

```


Again, the point given by Pfa and Pd falls on the curve. Thus, the SNR in the ROC curve specifies the SNR of a single sample used for the detection from one pulse.

Such an SNR value can also be obtained from Pd and Pfa using Albersheim's equation. The result obtained from Albersheim's equation is just an approximation, but is fairly good over frequently used \(P f a, P d\) and pulse integration range.

Note: Albersheim's equation has many assumptions, such as the target is nonfluctuating (Swirling case 0 or 5 ), the noise is complex, white Gaussian, the receiver is noncoherent and the linear detector is used for detection (square law detector for nonfluctuating target is also ok).

To calculate the necessary single sample SNR to achieve a certain \(P d\) and \(P f a\), use the albersheim function as
```

snr_required = albersheim(Pd,Pfa,PulseIntNum)
snr_required = 6.0009

```

This calculated required SNR value matches the new SNR value of 6 dB .
To see the improvement achieved in Pd by pulse integration, plot the ROC curve when there is no pulse integration used.
```

rocsnr(snrdb_new,'SignalType','NonfluctuatingNoncoherent',...
'MinPfa',1e-4,'NumPulses',1);

```


From the figure, one can see that without pulse integration, \(P d\) can only be around 0.24 with \(P f a\) at 1e-3. With 2-pulse integration, as illustrated in the above Monte Carlo simulation, for the same Pfa, the \(P d\) is around 0.53 .

\section*{Summary}

This example showed how using multiple signal sample in detection can improve the probability of detection while maintaining a desired probability of false alarm level. In particular, it showed using either longer waveform or pulse integration technique to improve \(P d\). The example illustrates the relation among Pd, Pfa, ROC curve and Albersheim's equation. The performance is calculated using Monte Carlo simulations.

\section*{Modeling the Propagation of RF Signals}

This example shows how to model several RF propagation effects. These include free space path loss, atmospheric attenuation due to rain, fog and gas, and multipath propagation due to bounces on the ground. This discussion is based on the International Telecommunication Union's ITU-R P series recommendations. ITU-R is the organization's radio communication sector and the \(P\) series focuses on radio wave propagation.

\section*{Introduction}

To properly evaluate the performance of radar and wireless communication systems, it is critical to understand the propagation environment. Using radar as an example, the received signal power of a monostatic radar is given by the radar range equation:
\[
P_{r}=\frac{P_{t} G^{2} \sigma \lambda^{2}}{(4 \pi)^{3} R^{4} L}
\]
where \(P_{t}\) is the transmitted power, \(G\) is the antenna gain, \(\sigma\) is the target radar cross section (RCS), \(\lambda\) is the wavelength, and \(R\) is the propagation distance. All propagation losses other than free space path loss are included in the \(L\) term. The rest of example shows how to estimate this \(L\) term in different scenarios.

\section*{Free Space Path Loss}

First, the free space path loss is computed as a function of propagation distance and frequency. In free space, RF signals propagate at a constant speed of light in all directions. At a far enough distance, the radiating source looks like a point in space and the wavefront forms a sphere whose radius is equal to \(R\). The power density at the wavefront is inversely proportional to \(R^{2}\)
\[
\frac{P_{t}}{4 \pi R^{2}}
\]
where \(P_{t}\) is the transmitted signal power. For a monostatic radar where the signal has to travel both directions (from the source to the target and back), the dependency is actually inversely proportional to \(R^{4}\), as shown previously in the radar equation. The loss related to this propagation mechanism is referred to as free space path loss, sometimes also called the spreading loss. Quantitatively, free space path loss is also a function of frequency, given by [5]
\[
L_{f s}=20 * \log _{10}\left(\frac{4 \pi R}{\lambda}\right) \quad d B
\]

As a convention, propagation losses are often expressed in dB . This convention makes it much easier to derive the two-way free space path loss by simply doubling the one-way free space loss.

The following figure plots how the free space path loss changes over the frequency between 10 to 1000 GHz for different ranges.
```

c = physconst('lightspeed');
R0 = [100 1e3 10e3];
freq = (10:1000).'*1e9;
apathloss = fspl(R0,c./freq);
loglog(freq/le9,apathloss);
grid on; ylim([90 200])

```
legend('Range: 100 m ', 'Range: \(1 \mathrm{~km}{ }^{\prime}\), 'Range: \(10 \mathrm{~km}{ }^{\prime}\) )
xlabel('Frequency (GHz)');
ylabel('Path Loss (dB)')
title('Free Space Path Loss')


The figure illustrates that the propagation loss increases with range and frequency.

\section*{Propagation Loss Due to Rain}

In reality, signals don't travel in a vacuum, so free space path loss describes only part of the signal attenuation. Signals interact with particles in the air and lose energy along the propagation path. The loss varies with different factors such as pressure, temperature, water density.

Rain can be a major limiting factor for a radar systems, especially when operating above 5 GHz . In the ITU model in [2], rain is characterized by the rain rate (in mm/h). According to [6], the rain rate can range from less than \(0.25 \mathrm{~mm} / \mathrm{h}\) for very light rain to over \(50 \mathrm{~mm} / \mathrm{h}\) for extreme rains. In addition, because of the rain drop's shape and its relative size compared to the RF signal wavelength, the propagation loss due to rain is also a function of signal polarization.

The following plot shows how losses due to rain varies with frequency. The plot assumes the polarization to be horizontal, so the tilt angle is 0 . In addition, assume that the signal propagates parallel to the ground, so the elevation angle is 0 . In general, horizontal polarization represents the worse case for propagation loss due to rain.
```

R0 = 1e3;
% 1 km range
rainrate = [1 4 16 50]; % rain rate in mm/h
el = 0; % 0 degree elevation

```
```

tau = 0; % horizontal polarization
for m = 1:numel(rainrate)
rainloss(:,m) = rainpl(R0,freq,rainrate(m),el,tau)';
end
loglog(freq/le9,rainloss); grid on;
legend('Light rain','Moderate rain','Heavy rain','Extreme rain', ...
'Location','SouthEast');
xlabel('Frequency (GHz)');
ylabel('Rain Attenuation (dB/km)')
title('Rain Attenuation for Horizontal Polarization');

```


Similar to rainfall, snow can also have a significant impact on the propagation of RF signals. However, there is no specific model to compute the propagation loss due to snow. The common practice is to treat it as rainfall and compute the propagation loss based on the rain model, even though this approach tends to overestimate the loss a bit.

\section*{Propagation Loss Due to Fog and Cloud}

Fog and cloud are formed with water droplets too, although much smaller compared to rain drops. The size of fog droplets are generally less than 0.01 cm . Fog is often characterized by the liquid water density. A medium fog with a visibility of roughly 300 meters, has a liquid water density of \(0.05 \mathrm{~g} /\) \(\mathrm{m}^{\wedge} 3\). For heavy fog where the visibility drops to 50 meters, the liquid water density is about \(0.5 \mathrm{~g} /\) \(\mathrm{m}^{\wedge} 3\). The atmosphere temperature (in Celsius) is also present in the ITU model for propagation loss due to fog and cloud [3].

The next plot shows how the propagation loss due to fog varies with frequency.
```

T = 15; % 15 degree Celsius
waterdensity = [0.05 0.5]; % liquid water density in g/m^3
for m = 1: numel(waterdensity)
fogloss(:,m) = fogpl(R0,freq,T,waterdensity(m))';
end
loglog(freq/le9,fogloss); grid on;
legend('Medium fog','Heavy fog');
xlabel('Frequency (GHz)');
ylabel('Fog Attenuation (dB/km)')
title('Fog Attenuation');

```

Fog Attenuation


Note that in general fog is not present when it is raining.

\section*{Propagation Loss Due to Atmospheric Gases}

Even when there is no fog or rain, the atmosphere is full of gases that still affect the signal propagation. The ITU model [4] describes atmospheric gas attenuation as a function of both dry air pressure, like oxygen, measured in hPa , and water vapour density, measured in \(\mathrm{g} / \mathrm{m}^{\wedge} 3\).

The plot below shows how the propagation loss due to atmospheric gases varies with the frequency. Assume a dry air pressure of 1013 hPa at 15 degrees Celsius, and a water vapour density of \(7.5 \mathrm{~g} /\) \(\mathrm{m}^{\wedge} 3\).
```

P = 101300; % dry air pressure in Pa
ROU = 7.5; % water vapour density in g/m^3
gasloss = gaspl(R0,freq,T,P,ROU);
loglog(freq/le9,gasloss); grid on;

```
```

xlabel('Frequency (GHz)');
ylabel('Atmospheric Gas Attenuation (dB/km)')
title('Atmospheric Gas Attenuation');

```

Atmospheric Gas Attenuation


The plot suggests that there is a strong absorption due to atmospheric gases at around 60 GHz .
The next figure compares all weather related losses for a 77 GHz automotive radar. The horizontal axis is the target distance from the radar. The maximum distance of interest is about 200 meters.
```

R = (1:200).';
fc77 = 77e9;
apathloss = fspl(R,c/fc77);
rr = 16; % heavy rain
arainloss = rainpl(R,fc77,rr,el,tau);
M = 0.5; % heavy fog
afogloss = fogpl(R,fc77,T,M);
agasloss = gaspl(R,fc77,T,P,ROU);
%Multiply by 2 for two-way loss
semilogy(R,2*[apathloss arainloss afogloss agasloss]);
grid on;
xlabel('Propagation Distance (m)');
ylabel('Path Loss (dB)');

```
```

legend('Free space','Rain','Fog','Gas','Location','Best')
title('Path Loss for 77 GHz Radar');

```

Path Loss for \(77 \mathbf{G H z}\) Radar


The plot suggests that for a 77 GHz automotive radar, the free space path loss is the dominant loss. Losses from fog and atmospheric gasses are negligible, accounting for less than 0.5 dB . The loss from rain can get close to 3 dB at 180 m .

\section*{Propagation Delay and Doppler Shift on Top of Propagation Loss}

Functions mentioned above for computing propagation losses, are useful to establish budget links. To simulate the propagation of arbitrary signals, we also need to apply range-dependent time delays, gains and phase shifts.

The code below simulates an air surveillance radar operated at 24 GHz .
\(\mathrm{fc}=24 \mathrm{e} 9\);
First, define the transmitted signal. A rectangular waveform will be used in this case
```

waveform = phased.RectangularWaveform;

```
wav = waveform();

Assume the radar is at the origin and the target is at a 5 km range, of the direction of 45 degrees azimuth and 10 degrees elevation. In addition, assume the propagation is along line of sight (LOS), a heavy rain rate of \(\mathrm{mm} / \mathrm{h}\) with no fog.

Rt = 5e3;
az = 45;
```

el = 10;
pos_tx = [0;0;0];
pos_rx = [Rt* cosd(el)*\operatorname{cosd(az);Rt*cosd(el)*sind(az);Rt*sind(el)];}
vel_tx = [0;0;0];
vel_rx = [0;0;0];
loschannel = phased.LOSChannel(...
'PropagationSpeed', c,...
'OperatingFrequency',fc,...
'SpecifyAtmosphere',true,...
'Temperature',T,...
'DryAirPressure',P,...
'WaterVapourDensity',ROU,...
'LiquidWaterDensity',0,... % No fog
'RainRate',rr,...
'TwoWayPropagation', true)
loschannel =
phased.LOSChannel with properties:
PropagationSpeed: 299792458
OperatingFrequency: 2.4000e+10
SpecifyAtmosphere: true
Temperature: 15
DryAirPressure: 101300
WaterVapourDensity: 7.5000
LiquidWaterDensity: 0
RainRate: 16
TwoWayPropagation: true
SampleRate: 1000000
MaximumDistanceSource: 'Auto'

```

The received signal can then be simulated as
\(y=\) loschannel(wav,pos_tx,pos_rx,vel_tx,vel_rx);

The total loss can be computed as
L_total = pow2db(bandpower(wav))-pow2db(bandpower(y))
L_total =
289.3914

To verify the power loss obtained from the simulation, compare it with the result from the analysis below and make sure they match.
```

Lfs = 2*fspl(Rt,c/fc);
Lr = 2*rainpl(Rt,fc,rr,el,tau);
Lg = 2*gaspl(Rt,fc,T,P,ROU);
L_analysis = Lfs+Lr+Lg
L_analysis =

```
289.3514

\section*{Multipath Propagation}

Signals may not always propagate along the line of sight. Instead, some signals can arrive at the destination via different paths through reflections and may add up either constructively or destructively. This multipath effect can cause significant fluctuations in the received signal.

Ground reflection is a common phenomenon for many radar or wireless communication systems. For example, when a base station sends a signal to a mobile unit, the signal not only propagates directly to the mobile unit but is also reflected from the ground.

Assume an operating frequency of 1900 MHz , as used in LTE, such a channel can be modeled as
```

fc = 1900e6;
tworaychannel = phased.TwoRayChannel('PropagationSpeed',c,...
'OperatingFrequency',fc);

```

Assume the mobile unit is 1.6 meters above the ground, the base station is 100 meters above the ground at a 500 meters distance. Simulate the signal received by the mobile unit.
```

pos_base = [0;0;100];
pos_mobile = [500;0;1.6];
vel_base = [0;0;0];
vel_mobile = [0;0;0];
y2ray = tworaychannel(wav,pos_base,pos_mobile,vel_base,vel_mobile);

```

The signal loss suffered in this channel can be computed as
L_2ray = pow2db(bandpower(wav))-pow2db(bandpower(y2ray))

L_2ray =
109.1524

The free space path loss is given by
```

L_ref = fspl(norm(pos_mobile-pos_base),c/fc)

```
L_ref =
    92.1673

The result suggests that in this configuration, the channel introduces an extra 17 dB loss to the received signal compared to the free space case. Now assume the mobile user is a bit taller and holds the mobile unit at 1.8 meters above the ground. Repeating the simulation above suggests that this time the ground reflection actually provides a 6 dB gain! Although free space path loss is essentially the same in the two scenarios, a 20 cm move caused a 23 dB fluctuation in signal power.
```

pos_mobile = [500;0;1.8];
y2rāy = tworaychannel(wav,pos_base,pos_mobile,vel_base,vel_mobile);

```
```

L_2ray = pow2db(bandpower(wav))-pow2db(bandpower(y2ray))
L_ref = fspl(norm(pos_mobile-pos_base),c/fc)
L_2ray =
86.2165
L_ref =
92.1666

```

\section*{Wideband Propagation in a Multipath Environment}

Increasing a system's bandwidth increases the capacity of its channel. This enables higher data rates in communication systems and finer range resolutions for radar systems. The increased bandwidth can also improve robustness to multipath fading for both systems.

Typically, wideband systems operate with a bandwidth of greater than \(5 \%\) of their center frequency. In contrast, narrowband systems operate with a bandwidth of \(1 \%\) or less of the system's center frequency.

The narrowband channel in the preceding section was shown to be very sensitive to multipath fading. Slight changes in the mobile unit's height resulted in considerable signal losses. The channel's fading characteristics can be plotted by varying the mobile unit's height across a span of operational heights for this wireless communication system. A span of heights from 10 cm to 3 m is chosen to cover a likely range for mobile unit usage.
```

% Simulate the signal fading at mobile unit for heights from 10cm to 3m
hMobile = linspace(0.1,3);
pos_mobile = repmat([500;0;1.6],[1 numel(hMobile)]);
pos_mobile(3,:) = hMobile;
vel_mobile = repmat([0;0;0],[1 numel(hMobile)]);
release(tworaychannel);
y2ray = tworaychannel(repmat(wav,[1 numel(hMobile)]),...
pos_base,pos_mobile,vel_base,vel_mobile);

```

The signal loss observed at the mobile unit for the narrowband system can now be plotted.
```

L2ray = pow2db(bandpower(wav))-pow2db(bandpower(y2ray));
plot(hMobile,L2ray);
xlabel('Mobile Unit''s Height (m)');
ylabel('Channel Loss (dB)');
title('Multipath Fading Observed at Mobile Unit');
grid on;

```


The sensitivity of the channel loss to the mobile unit's height for this narrowband system is clear. Deep signal fades occur at heights that are likely to be occupied by the system's users.

Increasing the channel's bandwidth can improve the communication link's robustness to these multipath fades. To do this, a wideband waveform is defined with a bandwidth of \(10 \%\) of the link's center frequency.
```

bw = 0.10*fc;
pulse_width = 1/bw;
fs = 2*bw;
waveform = phased.RectangularWaveform('SampleRate',fs,...
'PulseWidth',pulse_width);
wav = waveform();

```

A wideband two-ray channel model is also required to simulate the multipath reflections of this wideband signal off of the ground between the base station and the mobile unit and to compute the corresponding channel loss.
```

widebandTwoRayChannel = ...

```
    phased.WidebandTwoRayChannel('PropagationSpeed', c, ...
    'OperatingFrequency',fc,'SampleRate',fs);

The received signal at the mobile unit for various operational heights can now be simulated for this wideband system.
y2ray_wb = widebandTwoRayChannel(repmat(wav,[1 numel(hMobile)]),... pos_base, pos_mobile, vel_base, vel_mobile);
```

L2ray_wb = pow2db(bandpower(wav)) - pow2db(bandpower(y2ray_wb));
hold on;
plot(hMobile,L2ray_wb);
hold off;
legend('Narrowband','Wideband');

```


As expected, the wideband channel provides much better performance across a wide range of heights for the mobile unit. In fact, as the height of the mobile unit increases, the impact of multipath fading almost completely disappears. This is because the difference in propagation delay between the direct and bounce path signals is increasing, reducing the amount of coherence between the two signals when received at the mobile unit.

\section*{Conclusion}

This example provides a brief overview of RF propagation losses due to atmospheric and weather effects. It also introduces multipath signal fluctuations due to bounces on the ground. It highlighted functions and objects to calculate attenuation losses and simulate range-dependent time delays and Doppler shifts.

\section*{References}
[1] John Seybold, Introduction to RF Propagation, Wiley, 2005
[2] Recommendation ITU-R P.838-3, 2005
[3] Recommendation ITU-R P.840-3, 2013
[4] Recommendation ITU-R P.676-10, 2013
[5] Recommendation ITU-R P.525-2, 1994

\section*{Modeling Target Radar Cross Section}

This example shows how to model radar targets with increasing levels of fidelity. The example introduces the concept of radar cross sections (RCS) for simple point targets and extends it to more complicated cases of targets with multiple scattering centers. It also discusses how to model fluctuations of the RCS over time and briefly considers the case of polarized signals.

\section*{Introduction}

A radar system relies on target reflection or scattering to detect and identify targets. The more strongly a target reflects, the greater the returned echo at the radar receiver, resulting in a higher signal-to-noise ratio (SNR) and likelier detection. In radar systems, the amount of energy reflected from a target is determined by the radar cross section (RCS), defined as
\[
\sigma=\lim _{R \rightarrow>\infty} 4 \pi R^{2} \frac{\left|E_{s}\right|^{2}}{\left|E_{i}\right|^{2}}
\]
where \(\sigma\) represents the RCS, \(R\) is the distance between the radar and the target, \(E_{s}\) is the field strength of the signal reflected from the target, and \(E_{i}\) is the field strength of the signal incident on the target. In general, targets scatter energy in all directions and the RCS is a function of the incident angle, the scattering angle, and the signal frequency. RCS depends on the shape of the target and the materials from which it is constructed. Common units used for RCS include square meters or dBsm.

This example focuses on narrowband monostatic radar systems, when the transmitter and receiver are co-located. The incident and scattered angles are equal and the RCS is a function only of the incident angle. This is the backscattered case. For a narrowband radar, the signal bandwidth is small compared to the operating frequency and is therefore considered to be constant.

\section*{RCS of a Simple Point Target}

The simplest target model is an isotropic scatterer. An example of an isotropic scatterer is a metallic sphere of uniform density. In this case, the reflected energy is independent of the incident angle. An isotropic scatterer can often serve as a first order approximation of a more complex point target that is distant from the radar. For example, a pedestrian can be approximated by an isotropic scatterer with a 1 square meter RCS.
```

c = 3e8;
fc = 3e8;
pedestrian = phased.RadarTarget('MeanRCS',1,'PropagationSpeed',c,...
'OperatingFrequency',fc)
pedestrian =
phased.RadarTarget with properties:
EnablePolarization: false
MeanRCSSource: 'Property'
MeanRCS: 1
Model: 'Nonfluctuating'
PropagationSpeed: 300000000
OperatingFrequency: 300000000

```
where c is the propagation speed and fc is the operating frequency of the radar system. The scattered signal from a unit input signal can then be computed as
\(x=1 ;\)
ped_echo = pedestrian(x)
ped_echo =
3.5449
where x is the incident signal. The relation between the incident and the reflected signal can be expressed as \(y=\sqrt{G} * x\) where
\[
G=\frac{4 \pi \sigma}{\lambda^{2}}
\]
\(G\) represents the dimensionless gain that results from the target reflection. \(\lambda\) is the wavelength corresponding to the system's operating frequency.

\section*{RCS of Complex Targets}

For targets with more complex shapes, reflections can non longer be considered the same across all directions. The RCS varies with the incident angles (also known as aspect angles). Aspect-dependent RCS patterns can be measured or modeled just as you would antenna radiation patterns. The result of such measurements or models is a table of RCS values as a function of azimuth and elevation angles in the target's local coordinate system.

The example below first computes the RCS pattern of a cylindrical target, with a radius of 1 meter and a height of 10 meters, as a function of azimuth and elevation angles.

[cylrcs,az,el] = rcscylinder(1,1,10, c,fc);
Because the cylinder is symmetric around the z axis, there is no azimuth-angle dependency. RCS values vary only with elevation angle.
helperTargetRCSPatternPlot(az,el, cylrcs);
title('RCS Pattern of Cylinder');

RCS Pattern of Cylinder


The pattern in the elevation cut looks like
plot(el, pow2db(cylrcs));
grid; axis tight; ylim([-30 30]);
xlabel('Elevation Angles (degrees)');
ylabel('RCS (dBsm)');
title('RCS Pattern for Cylinder');


The aspect-dependent RCS patterns can then imported into a phased. BackscatterRadarTarget object.
```

cylindricalTarget = phased.BackscatterRadarTarget('PropagationSpeed',c,...
'OperatingFrequency',fc,'AzimuthAngles',az,'ElevationAngles',el,...
'RCSPattern',cylrcs)
cylindricalTarget =
phased.BackscatterRadarTarget with properties:
EnablePolarization: false
AzimuthAngles: [1\times361 double]
ElevationAngles: [1x181 double]
RCSPattern: [181\times361 double]
Model: 'Nonfluctuating'
PropagationSpeed: 300000000
OperatingFrequency: 300000000

```

Finally, generate the target reflection. Assume three equal signals are reflected from the target at three different aspect angles. The first two angles have the same elevation angle but with different azimuth angles. The last has a different elevation angle from the first two.
```

x = [llll
% 3 unit signals
ang = [0 30 30;0 0 30]; % 3 directions
cyl_echo = cylindricalTarget(x,ang)

```
```

cyl_echo =
88.8577 88.8577 1.3161

```

One can verify that there is no azimuth angle dependence because the first two outputs are the same.
The number of target shapes for which analytically-derived RCS patterns exist are few. For more complicated shapes and materials, computational electromagnetics approaches, such as method of moments (MoM), or finite element analysis (FEM), can be used to accurately predict the RCS pattern. A more detailed discussion of these techniques is available in [1]. You can use the output of these computations as input to the phased.BackscatterRadarTarget System object \({ }^{\text {TM }}\) as was done in the cylinder example before.

\section*{RCS of Extended Targets with Multiple Scatterers}

Although computational electromagnetic approaches can provide accurate RCS predictions, they often require a significant amount of computation and are not suitable for real-time simulations. An alternative approach for describing a complex targets is to model it as a collection of simple scatterers. The RCS pattern of the complex target can then be derived from the RCS patterns of the simple scatterer as [1]
\[
\sigma=\left|\sum_{p} \sqrt{\sigma_{p}} e^{i \phi_{p}}\right|^{2}
\]
where \(\sigma\) is the RCS of the target, \(\sigma_{p}\) is the RCS of the \(p\) th scatterer, and \(\phi_{p}\) is the relative phase of the \(p\) th scatterer. A multi-scatterer target behaves much like an antenna array.

The next section shows how to model a target consisting of four scatterers. The scatterers are located at the four vertices of a square. Each scatterer is a cylindrical point target as derived in the previous section. Without loss of generality, the square is placed in the \(x y\)-plane. The side length of the square is 0.5 meter.


First, define the positions of the scatterers.
```

scatpos = [-0.5 -0.5 0.5 0.5;0.5 -0.5 0.5 -0.5;0 0 0 0];

```

If the target is in the far field of the transmitter, the incident angle for each component scatterer is the same. Then, the total RCS pattern can be computed as
```

naz = numel(az);
nel = numel(el);
extrcs = zeros(nel,naz);
for m = 1:nel
sv = steervec(scatpos,[az;el(m)*ones(1,naz)]);
% sv is squared due to round trip in a monostatic scenario
extrcs(m,:) = abs(sqrt(cylrcs(m,:)).*sum(sv.^2)).^^2;
end

```

The total RCS pattern then looks like
helperTargetRCSPatternPlot(az,el,extrcs);
title('RCS Pattern of Extended Target with 4 Scatterers');

\section*{RCS Pattern of Extended Target with 4 Scatterers}


This pattern can then be used in a phased.BackscatterRadarTarget object to compute the reflected signal. The results verify that the reflected signal depends on both azimuth and elevation angles.
```

extendedTarget = phased.BackscatterRadarTarget('PropagationSpeed',c,...
'OperatingFrequency',fc,'AzimuthAngles',az,'ElevationAngles',el,...
'RCSPattern',extrcs);
ext_echo = extendedTarget(x,ang)
ext_echo =
355.4306 236.7633 0.0000

```

\section*{Wideband RCS of Extended Targets with Multiple Scatterers}

Wideband radar systems are typically defined as having a bandwidth greater than \(5 \%\) of their center frequency. In addition to improved range resolution, wideband systems also offer improved target detection. One way in which wideband systems improve detection performance is by filling in fades in a target's RCS pattern. This can be demonstrated by revisiting the extended target comprised of 4 cylindrical scatterers used in the preceding section. The modeled narrowband RCS swept across various target aspects is shown as
```

sweepaz = -90:90; % Azimuthal sweep across target
sweepel = 0;

```
```

[elg,azg] = meshgrid(sweepel,sweepaz);
sweepang = [azg(:)';elg(:)'];
x = ones(1,size(sweepang,2)); % unit signals
release(extendedTarget);
extNarrowbandSweep = extendedTarget(x,sweepang);
clf;
plot(sweepaz,pow2db(extNarrowbandSweep));
grid on; axis tight;
xlabel('Azimuth Angles (degrees)');
ylabel('RCS (dBsm)');
title(['RCS Pattern at 0^o Elevation ',...
'for Extended Target with 4 Scatterers']);

```


Returns from the multiple cylinders in the extended target model coherently combine, creating deep fades between 40 and 50 degrees. These fades can cause the target to not be detected by the radar sensor.

Next, the RCS pattern for a wideband system operating at the same center frequency will be examined. The bandwidth for this system will be set to \(10 \%\) of the center frequency
```

bw = 0.10*fc; % Bandwidth is greater-than 5% of center frequency
fs = 2*bw;

```

A wideband RCS model is created as was previously done for the narrowband extended target. Often, RCS models are generated offline using either simulation tools or range measurements and are then
provided to radar engineers for use in their system models. Here, it is assumed that the provided RCS model has been sampled at 1 MHz intervals on either side of the radar's center frequency.
```

modelFreq = (-80e6:1e6:80e6)+fc;
[modelCylRCS,modelAz,modelEl] = helperCylinderRCSPattern(c,modelFreq);

```

The contributions from the various scattering centers are modeled as before. It is important to note that this approximation assumes that all of the target's scattering centers fall within the same range resolution bin, which is true for this example.
```

nf = numel(modelFreq);
naz = numel(modelAz);
nel = numel(modelEl);
modelExtRCS = zeros(nel,naz,nf);
for k = 1:nf
for m = 1:nel
pos = scatpos*modelFreq(k)/fc;
sv = steervec(pos,[modelAz;modelEl(m)*ones(1,naz)]);
% sv is squared due to round trip in a monostatic scenario
modelExtRCS(m,:,k) = abs(sqrt(modelCylRCS(m,:,k)).*sum(sv.^2)).^2;
end
end

```

The wideband RCS target model is now generated, using the RCS patterns that were just computed.
```

widebandExtendedTarget = phased.WidebandBackscatterRadarTarget(...
'PropagationSpeed',c,'OperatingFrequency',fc,'SampleRate',fs,...
'AzimuthAngles',modelAz,'ElevationAngles',modelEl,...
'FrequencyVector',modelFreq, 'RCSPattern', modelExtRCS);

```

The modeled wideband RCS can now be compared to the narrowband system
```

extWidebandSweep = widebandExtendedTarget(x,sweepang);
hold on;
plot(sweepaz,pow2db(extWidebandSweep));
hold off;
legend('Narrowband','Wideband');

```


The target's RCS pattern now has much shallower nulls between 40 and 50 degrees azimuth. The deep nulls in the narrowband pattern occur when signals combine destructively at a specific frequency and azimuth combination. The wideband waveform fills in these fades because, while a few frequencies may experience nulls for a given aspect, the majority of the bandwidth does not lie within the null at that azimuth angle.

\section*{RCS of Fluctuating Targets}

The discussion so far assumes that the target RCS value is constant over time. This is the nonfluctuating target case. In reality, because both the radar system and the target are moving, the RCS value changes over time. This case is a fluctuating target. To simulate fluctuating targets, Peter Swerling developed four statistical models, referred to as Swerling 1 through Swerling 4, that are widely adopted in practice. The Swerling models divide fluctuating targets into two probability distributions and two time varying behaviors as shown in the following table:
\begin{tabular}{|c|c|c|}
\hline & Slow Fluctuating & Fast Fluctuating \\
\hline Exponential & Swerling 1 & Swerling 2 \\
\hline 4th Degree Chi-square & Swerling 3 & Swerling 4 \\
\hline
\end{tabular}

The RCS of a slow-fluctuating target remains constant during a dwell but varies from scan to scan. In contrast, the RCS for a fast fluctuating target changes with each pulse within a dwell.

The Swerling 1 and 2 models obey an exponential density function (pdf) given by
\(p(\sigma)=\frac{1}{\mu_{\sigma}} e^{-s i g m a / \mu_{\sigma}}\),
These models are useful in simulating a target consisting of a collection of equal strength scatterers.
The Swerling 3 and 4 models obey a 4th degree Chi-square pdf, given by
\(p(\sigma)=\frac{4 \sigma}{\mu_{\sigma}^{2}} e^{-2 \sigma / \mu_{\sigma}}\),
These models apply when the target contains a dominant scattering component. In both pdf definitions, \(\mu_{\sigma}\) represents the mean RCS value, which is the RCS value of the same target under the nonfluctuating assumption.

The next section shows how to apply a Swerling 1 statistical model when generating the radar echo from the previously described cylindrical target.
```

cylindricalTargetSwerling1 = ...
phased.BackscatterRadarTarget('PropagationSpeed',c,...
'OperatingFrequency',fc,'AzimuthAngles',az,'ElevationAngles',el,...
'RCSPattern',cylrcs,'Model','Swerling1')
cylindricalTargetSwerling1 =
phased.BackscatterRadarTarget with properties:
EnablePolarization: false
AzimuthAngles: [1x361 double]
ElevationAngles: [1x181 double]
RCSPattern: [181x361 double]
Model: 'Swerling1'
PropagationSpeed: 300000000
OperatingFrequency: 300000000
SeedSource: 'Auto'

```

In the Swerling 1 case, the reflection is no longer constant. The RCS value varies from scan to scan. Assuming that the target is illuminated by the signal only once per dwell, the following code simulates the reflected signal power for 10,000 scans for a unit incident signal.
```

N = 10000;
tgt_echo = zeros(1,N);
x = 1;
for m = 1:N
tgt_echo(m) = cylindricalTargetSwerling1(x,[0;0],true);
end
p_echo = tgt_echo.^2; % Reflected power

```

Plot the histogram of returns from all scans and verify that the distribution of the returns match the theoretical prediction. The theoretical prediction uses the nonfluctuating RCS derived before. For the cylindrical target, the reflected signal power at normal incidence for unit power input signal is
```

p_n = cyl_echo(1)^2;
helperTargetRCSReturnHistogramPlot(p_echo,p_n)

```


The target RCS is also a function of polarization. To describe the polarization signature of a target, a single RCS value is no longer sufficient. Instead, for each frequency and incident angle, a scattering matrix is used to describe the interaction of the target with the incoming signal's polarization components. This example will not go into further details because this topic is covered in the "Modeling and Analyzing Polarization" on page 17-25 example.

\section*{Conclusion}

This example gave a brief introduction to radar target modeling for a radar system simulation. It showed how to model point targets, targets with measured patterns, and extended targets. It also described how to take statistical fluctuations into account when generating target echoes.

\section*{Reference}
[1] Merrill Skolnik, Radar Handbook, 2nd Ed. Chapter 11, McGraw-Hill, 1990
[2] Bassem Mahafza, Radar Systems Analysis and Design Using MATLAB, 2nd Ed. Chapman \& Hall/ CRC, 2005

\section*{Antenna Array Beam Scanning Visualization on a Map}

This example shows how to visualize the changing pattern and coverage map of an antenna array as it scans a sweep of angles. The antenna array is created using Antenna Toolbox \({ }^{\mathrm{TM}}\) and Phased Array System Toolbox \({ }^{\mathrm{TM}}\). The array is designed to be directional and radiate in the xy-plane to generate a maximum coverage region in the geographic azimuth. Transmitter and receiver sites are created and shown on a map, and the pattern and coverage map are displayed as the antenna array is steered.

\section*{Design a Reflector-Backed Dipole Antenna Element}

Use Antenna Toolbox to design a reflector-backed dipole antenna element. Design the element and its exciter for 10 GHz , and specify tilt to direct radiation in the xy-plane, which corresponds to the geographic azimuth.
```

% Design reflector-backed dipole antenna element
fq = 10e9; % 10 GHz
myelement = design(reflector,fq);
myelement.Exciter = design(myelement.Exciter,fq);
% Tilt antenna element to radiate in xy-plane, with boresight along x-axis
myelement.Tilt = 90;
myelement.TiltAxis = 'y';
myelement.Exciter.Tilt = 90;
myelement.Exciter.TiltAxis = 'y';

```

\section*{Create a 7-by-7 Rectangular Antenna Array}

Use Phased Array System Toolbox to create a 7-by-7 rectangular array from the antenna element. Specify the array normal to direct radiation in the \(x\)-axis direction.
```

% Create 7-by-7 antenna array
nrow = 7;
ncol = 7;
myarray = phased.URA('Size',[nrow ncol],'Element',myelement);
% Define element spacing to be half-wavelength at 10 GHz, and specify
% array plane as yz-plane, which directs radiation in x-axis direction
lambda = physconst('lightspeed')/fq;
drow = lambda/2;
dcol = lambda/2;
myarray.ElementSpacing = [drow dcol];
myarray.ArrayNormal = 'x';
% Display radiation pattern
f = figure;
az = -180:1:180;
el = -90:1:90;
pattern(myarray,fq,az,el)

```


\section*{Create Transmitter Site at Washington Monument}

Create a transmitter site at the Washington Monument in Washington, DC using the antenna array. The transmitter frequency matches the antenna's design frequency, and the transmitter output power is 1 W . Set antenna height to 169 m , which is the height of the monument.
```

tx = txsite('Name','Washington Monument',...
'Latitude',38.88949, ...
'Longitude',-77.03523, ...
'Antenna',myarray,...
'AntennaHeight',169', ...
'TransmitterFrequency',fq,...
'TransmitterPower',1);

```

\section*{Show Transmitter Site on a Map}

Launch Site Viewer and show the transmitter site, which centers the view at the Washington Monument. The default map shows satellite imagery, and the site marker is shown at the site's antenna height.
```

if isvalid(f)
close(f)
end
viewer = siteviewer;
show(tx)

```


\section*{Show Antenna Radiation Pattern on a Map}

Visualize the orientation of the antenna by showing the radiation pattern in Site Viewer.
pattern(tx);
Select the site marker to view the color legend of the pattern.


\section*{Create Receiver Sites}

Create an array of receiver sites in the Washington, DC area. These are used as place markers for sites of interest to assess the coverage of the transmitter site.
```

% Define names for receiver sites
rxNames = {...
'Brentwood Hamilton Field', ...
'Nationals Park', ...
'Union Station', ...
'Georgetown University', ...
'Arlington Cemetery'};
% Define coordinates for receiver sites
rxLocations = [...
38.9080 -76.9958; ...
38.8731 -77.0075; ...
38.8976 -77.0062; ..
38.9076 -77.0722; ...

```
38.8783-77.0685];
```

% Create array of receiver sites. Each receiver has a sensitivity of -75 dBm.
rxs = rxsite('Name',rxNames, ...
'Latitude',rxLocations(:,1), ...
'Longitude',rxLocations(:,2), ...
'ReceiverSensitivity',-75);

```

\section*{Show receiver sites on a map.}
show(rxs)
Set the map imagery using the Basemap property. Alternatively, open the map imagery picker in "Site Viewer" (Antenna Toolbox) by clicking the second button from the right. Select "Streets" to see streets and labels on the map.
viewer. Basemap = "streets";


\section*{Scan the Array and Update the Radiation Pattern}

Scan the antenna beam by applying a taper for a range of angles. For each angle, update the radiation pattern in Site Viewer. This approach of scanning the beam produces different patterns than physically rotating the antenna, as could be achieved by setting AntennaAngle of the transmitter site. This step is used to validate the orientation of the antenna's main beam.
```

% Get the starting array taper
startTaper = myarray.Taper;
% Define angles over which to perform sweep
azsweep = -30:10:30;
% Set up tapering window and steering vector
N = nrow*ncol;
nbar = 5;
sll = -20;
sltaper = taylorwin(N,nbar,sll)';
steeringVector = phased.SteeringVector('SensorArray',myarray);
% Sweep the angles and show the antenna pattern for each
for az = azsweep
sv = steeringVector(fq,[az; 0]);
myarray.Taper = sltaper.*sv';
% Update the radiation pattern. Use a larger size so the pattern is visible among the antenn
pattern(tx, 'Size', 2500,'Transparency',1);
end

```


\section*{Display Transmitter Coverage Map}

Define three signal strength levels and corresponding colors to display on the coverage map. Each color is visible where the received power for a mobile receiver meets the corresponding signal strength. The received power includes the total power transmitted from the rectangular antenna array.

The default orientation of the transmitter site points the antenna x -axis east, so that is the direction of maximum coverage.
\% Reset the taper to the starting taper
myarray.Taper = startTaper;
\% Define signal strength levels (dBm) and corresponding colors
strongSignal = -65;
mediumSignal \(=-70\);
weakSignal = -75;
sigstrengths = [strongSignal mediumSignal weakSignal];
sigcolors = \{'red' 'yellow' 'green'\};
```

% Show the tx pattern
pattern(tx,'Size',500)
% Display coverage map out to 6 km
maxRange = 6000;
coverage(tx, ...
'SignalStrengths',sigstrengths, ...
'Colors',sigcolors, ...
'MaxRange',maxRange)

```


The coverage map shows no coverage at the transmitter site and a couple of pockets of coverage along the boresight direction before the main coverage area. The radiation pattern provides insight into the coverage map by showing how the antenna power projects onto the map locations around the transmitter.


\section*{Scan the Array and Update the Coverage Display}

Scan the antenna beam by applying a taper for a range of angles. For each angle, update the coverage map. This method of beamscanning is the same method used above. The final map includes two receiver sites of interest within the coverage region.
```

% Repeat the sweep but show the pattern and coverage map
for az = azsweep
% Calculate and assign taper from steering vector
sv = steeringVector(fq,[az; 0]);
myarray.Taper = sltaper.*sv';
% Update the tx pattern
pattern(tx,'Size',500)
% Update coverage map
coverage(tx, ...
'SignalStrengths',sigstrengths, ...
'Colors',sigcolors, ...

```
'MaxRange ', maxRange)
end


\section*{SINR Map for a 5G Urban Macro-Cell Test Environment}

This example shows how to construct a 5G urban macro-cell test environment and visualize the signal-to-interference-plus-noise ratio (SINR) on a map. The test environment is based on the guidelines defined in Report ITU-R M.[IMT-2020.EVAL] [1] for evaluating 5G radio technologies. This report defines several test environments and usage scenarios in Section 8.2. The test environment in this example is based on the urban environment with high user density and traffic loads focusing on pedestrian and vehicular users (Dense Urban-eMBB). The test environment includes a hexagonal cell network as well as a custom antenna array that is implemented using Phased Array System Toolbox \({ }^{\mathrm{TM}}\).

\section*{Define Network Layout}

The test environment guidelines for 5G technologies reuse the test network layout for 4G technologies defined in Section 8.3 of Report ITU-R M.2135-1 [2], which is shown below. The layout consists of 19 sites placed in a hexagonal layout, each with 3 cells. The distance between adjacent sites is the inter-site distance (ISD) and depends on the test usage scenario. For the Dense UrbaneMBB test environment, the ISD is 200 m .


Create the locations corresponding to cell sites in the network layout, using MathWorks Glasgow as the center location.
```

% Define center location site (cells 1-3)
centerSite = txsite('Name','MathWorks Glasgow', ...
'Latitude',55.862787,...
'Longitude',-4.258523);
% Initialize arrays for distance and angle from center location to each cell site, where
% each site has 3 cells
numCellSites = 19;
siteDistances = zeros(1,numCellSites);
siteAngles = zeros(1,numCellSites);
% Define distance and angle for inner ring of 6 sites (cells 4-21)
isd = 200; % Inter-site distance
siteDistances(2:7) = isd;

```
```

siteAngles(2:7) = 30:60:360;
% Define distance and angle for middle ring of 6 sites (cells 22-39)
siteDistances(8:13) = 2*isd*cosd(30);
siteAngles(8:13) = 0:60:300;
% Define distance and angle for outer ring of 6 sites (cells 40-57)
siteDistances(14:19) = 2*isd;
siteAngles(14:19) = 30:60:360;

```

\section*{Define Cell Parameters}

Each cell site has three transmitters corresponding to each cell. Create arrays to define the names, latitudes, longitudes, and antenna angles of each cell transmitter.
```

% Initialize arrays for cell transmitter parameters
numCells = numCellSites*3;
cellLats = zeros(1,numCells);
cellLons = zeros(1,numCells);
cellNames = strings(1,numCells);
cellAngles = zeros(1,numCells);
% Define cell sector angles
cellSectorAngles = [30 150 270];
% For each cell site location, populate data for each cell transmitter
cellInd = 1;
for siteInd = 1:numCellSites
% Compute site location using distance and angle from center site
[cellLat,cellLon] = location(centerSite, siteDistances(siteInd), siteAngles(siteInd));
% Assign values for each cell
for cellSectorAngle = cellSectorAngles
cellNames(cellInd) = "Cell " + cellInd;
cellLats(cellInd) = cellLat;
cellLons(cellInd) = cellLon;
cellAngles(cellInd) = cellSectorAngle;
cellInd = cellInd + 1;
end
end

```

\section*{Create Transmitter Sites}

Create transmitter sites using parameters defined above as well as configuration parameters defined for Dense Urban-eMBB. Launch "Site Viewer" (Antenna Toolbox) and set the map imagery using the Basemap property. Alternatively, open the basemap picker in Site Viewer by clicking the second button from the right. Select "Topographic" to choose a basemap with topography, streets, and labels.
```

% Define transmitter parameters using Table 8-2 (b) of Report ITU-R M.[IMT-2020.EVAL]
fq = 4e9; % Carrier frequency (4 GHz) for Dense Urban-eMBB
antHeight = 25; % m
txPowerDBm = 44; % Total transmit power in dBm
txPower = 10.^((txPowerDBm-30)/10); % Convert dBm to W
% Create cell transmitter sites
txs = txsite('Name',cellNames, ...
'Latitude',cellLats, ...
'Longitude',cellLons, ...

```
```

'AntennaAngle',cellAngles, ...
'AntennaHeight',antHeight, ...
'TransmitterFrequency',fq, ...
'TransmitterPower',txPower);

```
\% Launch Site Viewer
viewer = siteviewer;
\% Show sites on a map
show(txs);
viewer.Basemap = 'topographic';


\section*{Create Antenna Element}

Section 8.5 of ITU-R report [1] defines antenna characteristics for base station antennas. The antenna is modeled as having one or more antenna panels, where each panel has one or more antenna elements. Use Phased Array System Toolbox to implement the antenna element pattern defined in the report.
```

% Define pattern parameters
azvec = -180:180;
elvec = -90:90;
Am = 30; % Maximum attenuation (dB)
tilt = 0; % Tilt angle
az3dB = 65; % 3 dB bandwidth in azimuth
el3dB = 65; % 3 dB bandwidth in elevation
% Define antenna pattern
[az,el] = meshgrid(azvec,elvec);
azMagPattern = -12*(az/az3dB).^2;
elMagPattern = -12*((el-tilt)/el3dB).^2;
combinedMagPattern = azMagPattern + elMagPattern;
combinedMagPattern(combinedMagPattern<-Am) = -Am; % Saturate at max attenuation
phasepattern = zeros(size(combinedMagPattern));
% Create antenna element
antennaElement = phased.CustomAntennaElement(...
'AzimuthAngles',azvec, ...
'ElevationAngles',elvec, ...
'MagnitudePattern',combinedMagPattern, ...
'PhasePattern',phasepattern);
% Display radiation pattern
f = figure;
pattern(antennaElement,fq);

```


\section*{Display SINR Map for Single Antenna Element}

Visualize SINR for the test scenario using a single antenna element and the free space propagation model. For each location on the map within the range of the transmitter sites, the signal source is the cell with the greatest signal strength, and all other cells are sources of interference. Areas with no color within the network indicate areas where the SINR is below the default threshold of -5 dB .
```

% Assign the antenna element for each cell transmitter
for tx = txs
tx.Antenna = antennaElement;
end
% Define receiver parameters using Table 8-2 (b) of Report ITU-R M.[IMT-2020.EVAL]
bw = 20e6; % 20 MHz bandwidth
rxNoiseFigure = 7; % dB
rxNoisePower = -174 + 10*log10(bw) + rxNoiseFigure;
rxGain = 0; % dBi
rxAntennaHeight = 1.5; % m
% Display SINR map
if isvalid(f)
close(f)
end
sinr(txs,'freespace', ...
'ReceiverGain',rxGain, ...
'ReceiverAntennaHeight',rxAntennaHeight, ...
'ReceiverNoisePower',rxNoisePower, ...
'MaxRange',isd, ...
'Resolution',isd/20)

```


\section*{Create 8-by-8 Rectangular Antenna Array}

Define an antenna array to increase directional gain and increase peak SINR values. Use Phased Array System Toolbox to create an 8-by-8 uniform rectangular array.
```

% Define array size
nrow = 8;
ncol = 8;
% Define element spacing
lambda = physconst('lightspeed')/fq;
drow = lambda/2;
dcol = lambda/2;
% Define taper to reduce sidelobes
dBdown = 30;
taperz = chebwin(nrow,dBdown);
tapery = chebwin(ncol,dBdown);
tap = taperz*tapery.'; % Multiply vector tapers to get 8-by-8 taper values

```
```

% Create 8-by-8 antenna array
cellAntenna = phased.URA('Size',[nrow ncol], ...
'Element',antennaElement, ...
'ElementSpacing',[drow dcol], ...
'Taper',tap, ...
'ArrayNormal','x');
% Display radiation pattern
f = figure;
pattern(cellAntenna,fq);

```


\section*{Display SINR Map for 8-by-8 Antenna Array}

Visualize SINR for the test scenario using a uniform rectangular antenna array and the free space propagation model. Apply a mechanical downtilt to illuminate the intended ground area around each transmitter.
```

% Assign the antenna array for each cell transmitter, and apply downtilt.
% Without downtilt, pattern is too narrow for transmitter vicinity.
downtilt = 15;
for tx = txs
tx.Antenna = cellAntenna;
tx.AntennaAngle = [tx.AntennaAngle; -downtilt];
end
% Display SINR map
if isvalid(f)

```
```

 close(f)
 end
sinr(txs,'freespace', ...
'ReceiverGain',rxGain, ...
'ReceiverAntennaHeight',rxAntennaHeight, ...
'ReceiverNoisePower',rxNoisePower, ...
'MaxRange',isd, ...
'Resolution',isd/20)

```


\section*{Display SINR Map using Close-In Propagation Model}

Visualize SINR for the test scenario using the Close-In propagation model [3], which models path loss for 5G urban micro-cell and macro-cell scenarios. This model produces an SINR map that shows reduced interference effects compared to the free space propagation model.
```

sinr(txs,'close-in', ...
'ReceiverGain',rxGain, ...
'ReceiverAntennaHeight',rxAntennaHeight, ...
'ReceiverNoisePower',rxNoisePower, ...

```
'MaxRange',isd, ...
'Resolution',isd/20)


\section*{Use Rectangular Patch Antenna as Array Element}

The analysis above used an antenna element that was defined using the equations specified in the ITU-R report [1]. The antenna element needs to provide a maximum gain of 9.5 dBi and a front-toback ratio of approximately 30 dB . Now replace the equation-based antenna element definition with a real antenna model using a standard half-wavelength rectangular microstrip patch antenna. The antenna element provides a gain of about 9 dBi , although with a lower front-to-back ratio.
\% Design half-wavelength rectangular microstrip patch antenna patchElement \(=\) design(patchMicrostrip,fq);
patchElement.Width = patchElement.Length;
patchElement.Tilt = 90;
patchElement.TiltAxis = [0 1 0];
\% Display radiation pattern
```

f = figure;
pattern(patchElement,fq)

```


\section*{Display SINR Map using the Patch Antenna Element in the 8-by-8 Array}

Update the SINR map for the Close-In propagation model [3] using the patch antenna as the array element. This analysis should capture the effect of deviations from an equation-based antenna specification as per the ITU-R report [1], including:
- Variations in peak gain
- Variations in pattern symmetry with spatial angles
- Variations in front-to-back ratios
\% Assign the patch antenna as the array element cellAntenna.Element = patchElement;
```

% Display SINR map
if isvalid(f)
close(f)
end
sinr(txs,'close-in',...
'ReceiverGain',rxGain, ...
'ReceiverAntennaHeight',rxAntennaHeight, ...
'ReceiverNoisePower',rxNoisePower, ...
'MaxRange',isd, ...
'Resolution',isd/20)

```


\section*{Summary}

This example shows how to construct a 5G urban macro-cell test environment consisting of a hexagonal network of 19 cell sites, each containing 3 sectored cells. The signal-to-interference-plusnoise ratio (SINR) is visualized on a map for different antennas. The following observations are made:
- A rectangular antenna array can provide greater directionality and therefore peak SINR values than use of a single antenna element.
- The outward-facing lobes on the perimeter of the SINR map represent areas where less interference occurs. A more realistic modelling technique would be to replicate, or wrap around, cell sites to expand the geometry so that perimeter areas experience similar interference as interior areas.
- Using a rectangular antenna array, a propagation model that estimates increased path loss also results in higher SINR values due to less interference.
- Two antenna elements are tried in the antenna array: an equation-based element using Phased Array System Toolbox and a patch antenna element using Antenna Toolbox. These produce similar SINR maps.

\section*{References}
[1] Report ITU-R M.[IMT-2020.EVAL], "Guidelines for evaluation of radio interface technologies for IMT-2020", 2017. https://www.itu.int/md/R15-SG05-C-0057
[2] Report ITU-R M.2135-1, "Guidelines for evaluation of radio interface technologies for IMTAdvanced", 2009. https://www.itu.int/dms_pub/itu-r/opb/rep/R-REP-M.2135-1-2009-PDF-E.pdf
[3] Sun, S.,Rapport, T.S., Thomas, T., Ghosh, A., Nguyen, H., Kovacs, I., Rodriguez, I., Koymen, O., and Prartyka, A. "Investigation of prediction accuracy, sensitivity, and parameter stability of large-scale propagation path loss models for 5G wireless communications." IEEE Transactions on Vehicular Technology, Vol 65, No.5, pp.2843-2860, May 2016.

\section*{Automotive Adaptive Cruise Control Using FMCW Technology}

This example shows how to model an automotive adaptive cruise control system using the frequency modulated continuous wave (FMCW) technique. This example performs range and Doppler estimation of a moving vehicle. Unlike pulsed radar systems that are commonly seen in the defense industry, automotive radar systems often adopt FMCW technology. Compared to pulsed radars, FMCW radars are smaller, use less power, and are much cheaper to manufacture. As a consequence, FMCW radars can only monitor a much smaller distance.

\section*{FMCW Waveform}

Consider an automotive long range radar (LRR) used for adaptive cruise control (ACC). This kind of radar usually occupies the band around 77 GHz , as indicated in [1]. The radar system constantly estimates the distance between the vehicle it is mounted on and the vehicle in front of it, and alerts the driver when the two become too close. The figure below shows a sketch of ACC.


A popular waveform used in ACC system is FMCW. The principle of range measurement using the FMCW technique can be illustrated using the following figure.


The received signal is a time-delayed copy of the transmitted signal where the delay, \(\Delta t\), is related to the range. Because the signal is always sweeping through a frequency band, at any moment during the sweep, the frequency difference, \(f_{b}\), is a constant between the transmitted signal and the received signal. \(f_{b}\) is usually called the beat frequency. Because the sweep is linear, one can derive the time delay from the beat frequency and then translate the delay to the range.

In an ACC setup, the maximum range the radar needs to monitor is around 200 m and the system needs to be able to distinguish two targets that are 1 meter apart. From these requirements, one can compute the waveform parameters.
```

fc = 77e9;
c = 3e8;
lambda = c/fc;

```

The sweep time can be computed based on the time needed for the signal to travel the unambiguous maximum range. In general, for an FMCW radar system, the sweep time should be at least 5 to 6 times the round trip time. This example uses a factor of 5.5.
```

range_max = 200;
tm = 5.5*range2time(range_max,c);

```

The sweep bandwidth can be determined according to the range resolution and the sweep slope is calculated using both sweep bandwidth and sweep time.
```

range_res = 1;
bw = - range2bw(range_res,c);
sweep_slope = bw/tm;

```

Because an FMCW signal often occupies a huge bandwidth, setting the sample rate blindly to twice the bandwidth often stresses the capability of A/D converter hardware. To address this issue, one can often choose a lower sample rate. Two things can be considered here:

1 For a complex sampled signal, the sample rate can be set to the same as the bandwidth.
2 FMCW radars estimate the target range using the beat frequency embedded in the dechirped signal. The maximum beat frequency the radar needs to detect is the sum of the beat frequency corresponding to the maximum range and the maximum Doppler frequency. Hence, the sample rate only needs to be twice the maximum beat frequency.

In this example, the beat frequency corresponding to the maximum range is given by
```

fr_max = range2beat(range_max,sweep_slope,c);

```

In addition, the maximum speed of a traveling car is about \(230 \mathrm{~km} / \mathrm{h}\). Hence the maximum Doppler shift and the maximum beat frequency can be computed as
```

v_max = 230*1000/3600;
f\overline{d}_max = speed2dop(2*v_max,lambda);
fb_max = fr_max+fd_max;

```

This example adopts a sample rate of the larger of twice the maximum beat frequency and the bandwidth.
```

fs = max(2*fb_max,bw);

```

The following table summarizes the radar parameters.
\begin{tabular}{|c|c|}
\hline System parameters & Value \\
\hline Operating frequency (GHz) & 77 \\
\hline Maximum target range (m) & 200 \\
\hline Range resolution (m) & 1 \\
\hline Maximum target speed (km/h) & 230 \\
\hline
\end{tabular}
```

Sweep time (microseconds) 7.33
Sweep bandwidth (MHz) 150
Maximum beat frequency (MHz) 27.30
Sample rate (MHz) 150

```

With all the information above, one can set up the FMCW waveform used in the radar system.
```

waveform = phased.FMCWWaveform('SweepTime',tm,'SweepBandwidth',bw,...

```
    'SampleRate',fs);

This is a up-sweep linear FMCW signal, often referred to as sawtooth shape. One can examine the time-frequency plot of the generated signal.
```

sig = waveform();
subplot(211); plot(0:1/fs:tm-1/fs,real(sig));
xlabel('Time (s)'); ylabel('Amplitude (v)');
title('FMCW signal'); axis tight;
subplot(212); spectrogram(sig,32,16,32,fs,'yaxis');
title('FMCW signal spectrogram');

```


\section*{Target Model}

The target of an ACC radar is usually a car in front of it. This example assumes the target car is moving 50 m ahead of the car with the radar, at a speed of \(96 \mathrm{~km} / \mathrm{h}\) along the x -axis.

The radar cross section of a car, according to [1], can be computed based on the distance between the radar and the target car.
```

car_dist = 43;
car_speed = 96*1000/3600;
car_rcs = db2pow(min(10*log10(car_dist)+5,20));
cartarget = phased.RadarTarget('MeanRCS',car_rcs,'PropagationSpeed ',c,...
'OperatingFrequency',fc);
carmotion = phased.Platform('InitialPosition',[car_dist;0;0.5],...
'Velocity',[car_speed;0;0]);

```

The propagation model is assumed to be free space.
```

channel = phased.FreeSpace('PropagationSpeed',c,...
'OperatingFrequency',fc,'SampleRate',fs,'TwoWayPropagation',true);

```

\section*{Radar System Setup}

The rest of the radar system includes the transmitter, the receiver, and the antenna. This example uses the parameters presented in [1]. Note that this example models only main components and omits the effect from other components, such as coupler and mixer. In addition, for the sake of simplicity, the antenna is assumed to be isotropic and the gain of the antenna is included in the transmitter and the receiver.
```

ant_aperture = 6.06e-4; % in square meter
ant_gain = aperture2gain(ant_aperture,lambda); % in dB
tx_ppower = db2pow(5)*1e-3; % in watts
tx_gain = 9+ant_gain; % in dB
rx_gain = 15+ant_gain; % in dB
rx_nf = 4.5; % in dB
transmitter = phased.Transmitter('PeakPower',tx_ppower,'Gain',tx_gain);
receiver = phased.ReceiverPreamp('Gain',rx_gain,'NoiseFigure',rx_nf,...
'SampleRate',fs);

```

Automotive radars are generally mounted on vehicles, so they are often in motion. This example assumes the radar is traveling at a speed of \(100 \mathrm{~km} / \mathrm{h}\) along x -axis. So the target car is approaching the radar at a relative speed of \(4 \mathrm{~km} / \mathrm{h}\).
```

radar_speed = 100*1000/3600;
radarmotion = phased.Platform('InitialPosition',[0;0;0.5],...
'Velocity',[radar_speed;0;0]);

```

\section*{Radar Signal Simulation}

As briefly mentioned in earlier sections, an FMCW radar measures the range by examining the beat frequency in the dechirped signal. To extract this frequency, a dechirp operation is performed by mixing the received signal with the transmitted signal. After the mixing, the dechirped signal contains only individual frequency components that correspond to the target range.

In addition, even though it is possible to extract the Doppler information from a single sweep, the Doppler shift is often extracted among several sweeps because within one pulse, the Doppler frequency is indistinguishable from the beat frequency. To measure the range and Doppler, an FMCW radar typically performs the following operations:

1 The waveform generator generates the FMCW signal.

2 The transmitter and the antenna amplify the signal and radiate the signal into space.
3 The signal propagates to the target, gets reflected by the target, and travels back to the radar.
4 The receiving antenna collects the signal.
5 The received signal is dechirped and saved in a buffer.
6 Once a certain number of sweeps fill the buffer, the Fourier transform is performed in both range and Doppler to extract the beat frequency as well as the Doppler shift. One can then estimate the range and speed of the target using these results. Range and Doppler can also be shown as an image and give an intuitive indication of where the target is in the range and speed domain.

The next section simulates the process outlined above. A total of 64 sweeps are simulated and a range Doppler response is generated at the end.

During the simulation, a spectrum analyzer is used to show the spectrum of each received sweep as well as its dechirped counterpart.
```

specanalyzer = dsp.SpectrumAnalyzer('SampleRate',fs,...
'PlotAsTwoSidedSpectrum',true,...
'Title','Spectrum for received and dechirped signal',...
'ShowLegend',true);

```

Next, run the simulation loop.
```

rng(2012);
Nsweep = 64;
xr = complex(zeros(waveform.SampleRate*waveform.SweepTime,Nsweep));
for m = 1:Nsweep
% Update radar and target positions
[radar_pos,radar_vel] = radarmotion(waveform.SweepTime);
[tgt_pos,tgt_vel]}= carmotion(waveform.SweepTime);
% Transmit FMCW waveform
sig = waveform();
txsig = transmitter(sig);
% Propagate the signal and reflect off the target
txsig = channel(txsig,radar_pos,tgt_pos,radar_vel,tgt_vel);
txsig = cartarget(txsig);
% Dechirp the received radar return
txsig = receiver(txsig);
dechirpsig = dechirp(txsig,sig);
% Visualize the spectrum
specanalyzer([txsig dechirpsig]);
xr(:,m) = dechirpsig;
end

```


From the spectrum scope, one can see that although the received signal is wideband (channel 1), sweeping through the entire bandwidth, the dechirped signal becomes narrowband (channel 2).

\section*{Range and Doppler Estimation}

Before estimating the value of the range and Doppler, it may be a good idea to take a look at the zoomed range Doppler response of all 64 sweeps.
rngdopresp \(=\) phased.RangeDopplerResponse('PropagationSpeed', c, . .
'DopplerOutput','Speed','OperatingFrequency',fc,'SampleRate',fs,...
'RangeMethod', 'FFT', 'SweepSlope', sweep_slope, ...
'RangeFFTLengthSource','Property','RangeFFTLength',2048,...
'DopplerFFTLengthSource','Property', 'DopplerFFTLength', 256);
clf;
plotResponse(rngdopresp,xr); \% Plot range Doppler map
axis([-v_max v_max 0 range_max])
clim = caxis;


From the range Doppler response, one can see that the car in front is a bit more than 40 m away and appears almost static. This is expected because the radial speed of the car relative to the radar is only \(4 \mathrm{~km} / \mathrm{h}\), which translates to a mere \(1.11 \mathrm{~m} / \mathrm{s}\).

There are many ways to estimate the range and speed of the target car. For example, one can choose almost any spectral analysis method to extract both the beat frequency and the Doppler shift. This example uses the root MUSIC algorithm to extract both the beat frequency and the Doppler shift.

As a side note, although the received signal is sampled at 150 MHz so the system can achieve the required range resolution, after the dechirp, one only needs to sample it at a rate that corresponds to the maximum beat frequency. Since the maximum beat frequency is in general less than the required sweeping bandwidth, the signal can be decimated to alleviate the hardware cost. The following code snippet shows the decimation process.
```

Dn = fix(fs/(2*fb_max));
for m = size(xr,2):-1:1
xr_d(:,m) = decimate(xr(:,m),Dn,'FIR');
end
fs_d = fs/Dn;

```

To estimate the range, firstly, the beat frequency is estimated using the coherently integrated sweeps and then converted to the range.
```

fb_rng = rootmusic(pulsint(xr_d,'coherent'),1,fs_d);
rng_est = beat2range(fb_rng,sweep_slope,c)
rng_est =

```

Second, the Doppler shift is estimated across the sweeps at the range where the target is present.
```

peak_loc = val2ind(rng_est,c/(fs_d*2));
fd =- rootmusic(xr_d(peak_loc,:),1,1/tm);
v_est = dop2speed(\overline{fd,lamb\overline{da})/2}
v_est =
1.0830

```

Note that both range and Doppler estimation are quite accurate.

\section*{Range Doppler Coupling Effect}

One issue associated with linear FM signals, such as an FMCW signal, is the range Doppler coupling effect. As discussed earlier, the target range corresponds to the beat frequency. Hence, an accurate range estimation depends on an accurate estimate of beat frequency. However, the presence of Doppler shift changes the beat frequency, resulting in a biased range estimation.

For the situation outlined in this example, the range error caused by the relative speed between the target and the radar is
```

deltaR = rdcoupling(fd,sweep_slope,c)
deltaR =
-0.0041

```

This error is so small that we can safely ignore it.
Even though the current design is achieving the desired performance, one parameter warrants further attention. In the current configuration, the sweep time is about 7 microseconds. Therefore, the system needs to sweep a 150 MHz band within a very short period. Such an automotive radar may not be able to meet the cost requirement. Besides, given the velocity of a car, there is no need to make measurements every 7 microseconds. Hence, automotive radars often use a longer sweep time. For example, the waveform used in [2] has the same parameters as the waveform designed in this example except a sweep time of 2 ms .

A longer sweep time makes the range Doppler coupling more prominent. To see this effect, first reconfigure the waveform to use 2 ms as the sweep time.
```

waveform_tr = clone(waveform);
release(waveform_tr);
tm = 2e-3;
waveform_tr.SweepTime = tm;
sweep_slope = bw/tm;

```

Now calculate the range Doppler coupling.
```

deltaR = rdcoupling(fd,sweep_slope,c)

```
deltaR =
\(-1.1118\)

A range error of 1.14 m can no longer be ignored and needs to be compensated. Naturally, one may think of doing so following the same procedure outlined in earlier sections, estimating both range and Doppler, figuring out the range Doppler coupling from the Doppler shift, and then remove the error from the estimate.

Unfortunately this process doesn't work very well with the long sweep time. The longer sweep time results in a lower sampling rate across the sweeps, thus reducing the radar's capability of unambiguously detecting high speed vehicles. For instance, using a sweep time of 2 ms , the maximum unambiguous speed the radar system can detect using the traditional Doppler processing is
```

v_unambiguous = dop2speed(1/(2*tm),lambda)/2

```
```

v_unambiguous =
0.4870

```

The unambiguous speed is only \(0.48 \mathrm{~m} / \mathrm{s}\), which means that the relative speed, \(1.11 \mathrm{~m} / \mathrm{s}\), cannot be unambiguously detected. This means that not only the target car will appear slower in Doppler processing, but the range Doppler coupling also cannot be correctly compensated.

One way to resolve such ambiguity without Doppler processing is to adopt a triangle sweep pattern. Next section shows how the triangle sweep addresses the issue.

\section*{Triangular Sweep}

In a triangular sweep, there are one up sweep and one down sweep to form one period, as shown in the following figure.


The two sweeps have the same slope except different signs. From the figure, one can see that the presence of Doppler frequency, \(f_{d}\), affects the beat frequencies ( \(f_{b u}\) and \(f_{b d}\) ) differently in up and
down sweeps. Hence by combining the beat frequencies from both up and down sweep, the coupling effect from the Doppler can be averaged out and the range estimate can be obtained without ambiguity.

First, set the waveform to use triangular sweep.
```

waveform_tr.SweepDirection = 'Triangle';

```

Now simulate the signal return. Because of the longer sweep time, fewer sweeps (16 vs. 64) are collected before processing.
```

Nsweep = 16;
xr = helperFMCWSimulate(Nsweep,waveform_tr,radarmotion,carmotion,...
transmitter,channel,cartarget,receiver);

```

The up sweep and down sweep are processed separately to obtain the beat frequencies corresponding to both up and down sweep.
```

fbu rng = rootmusic(pulsint(xr(:,1:2:end),'coherent'),1,fs);
fbd_rng = rootmusic(pulsint(xr(:,2:2:end),'coherent'),1,fs);

```

Using both up sweep and down sweep beat frequencies simultaneously, the correct range estimate is obtained.
```

rng_est = beat2range([fbu_rng fbd_rng],sweep_slope,c)
rng_est =
42.9658

```

Moreover, the Doppler shift and the velocity can also be recovered in a similar fashion.
```

fd = -(fbu_rng+fbd_rng)/2;

```

```

v_est =
1.1114

```

The estimated range and velocity match the true values, 43 m and \(1.11 \mathrm{~m} / \mathrm{s}\), very well.

\section*{Two-ray Propagation}

To complete the discussion, in reality, the actual signal propagation between the radar and the target vehicle is more complicated than what is modeled so far. For example, the radio wave can also arrive at the target vehicle via reflections. A simple yet widely used model to describe such a multipath scenario is a two-ray model, where the signal propagates from the radar to the target vehicle via two paths, one direct path and one reflected path off the road, as shown in the following figure.


The reflection off the road impacts the phase of the signal and the receiving signal at the target vehicle is a coherent combination of the signals via the two paths. Same thing happens on the return trip too where the reflected signal off the target vehicle travels back to the radar. Hence depending on the distance between the vehicles, the signals from different paths may add constructively or destructively, making signal strength fluctuating over time. Such fluctuation can pose some challenge in the successive detection stage.

To showcase the multipath effect, next section uses the two ray channel model to propagate the signal between the radar and the target vehicle.
```

txchannel = phased.TwoRayChannel('PropagationSpeed',c,...
'OperatingFrequency',fc,'SampleRate',fs);
rxchannel = phased.TwoRayChannel('PropagationSpeed',c,...
'OperatingFrequency',fc,'SampleRate',fs);
Nsweep = 64;
xr = helperFMCWTwoRaySimulate(Nsweep,waveform,radarmotion,carmotion,...
transmitter,txchannel,rxchannel,cartarget,receiver);
plotResponse(rngdopresp,xr); % Plot range Doppler map
axis([-v max v_max 0 range_max]);
caxis(clìm);

```


With all settings remaining same, the comparison of the resulting range-Doppler map with two-ray propagation and the range-Doppler map obtained before with a line of sight (LOS) propagation channel suggests that the signal strength dropped almost 40 dB , which is significant. Therefore, such effect must be considered during the design. One possible choice is to form a very sharp beam on the vertical direction to null out the reflections.

\section*{Summary}

This example shows how to use FMCW signal to perform range and Doppler estimation in an automotive automatic cruise control application. The example also shows how to generate a range Doppler map from the received signal and discussed how to use triangle sweep to compensate for the range Doppler coupling effect for the FMCW signal. Finally, the effect on the signal level due to the multipath propagation is discussed.

\section*{References}
[1] Karnfelt, C. et al.. 77 GHz ACC Radar Simulation Platform, IEEE International Conferences on Intelligent Transport Systems Telecommunications (ITST), 2009.
[2] Rohling, H. and M. Meinecke. Waveform Design Principle for Automotive Radar Systems, Proceedings of CIE International Conference on Radar, 2001.

\section*{Automotive Adaptive Cruise Control Using FMCW and MFSK Technology}

This example shows how to model an automotive radar in Simulink that includes adaptive cruise control (ACC), which is an important function of an advanced driver assistance system (ADAS). The example explores scenarios with a single target and multiple targets. It shows how frequencymodulated continuous-wave (FMCW) and multiple frequency-shift keying (MFSK) waveforms can be processed to estimate the range and speed of surrounding vehicles.

\section*{Available Example Implementations}

This example includes four Simulink \({ }^{\circledR}\) models:
- FMCW Radar Range Estimation: slexFMCWExample.slx
- FMCW Radar Range and Speed Estimation of Multiple Targets: slexFMCWMultiTargetsExample.slx
- MFSK Radar Range and Speed Estimation of Multiple Targets: slexMFSKMultiTargetsExample.slx
- FMCW Radar Range, Speed, and Angle Estimation of Multiple Targets: slexFMCWMultiTargetsDOAExample.slx

\section*{FMCW Radar Range Estimation}

The following model shows an end-to-end FMCW radar system. The system setup is similar to the MATLAB "Automotive Adaptive Cruise Control Using FMCW Technology" on page 17-367 example. The only difference between this model and the aforementioned example is that this model has an FMCW waveform sweep that is symmetric around the carrier frequency.


The figure shows the signal flow in the model. The Simulink blocks that make up the model are divided into two major sections, the Radar section and the Channel and Target section. The shaded block on the left represents the radar system. In this section, the FMCW signal is generated and
transmitted. This section also contains the receiver that captures the radar echo and performs a series of operations, such as dechirping and pulse integration, to estimate the target range. The shaded block on the right models the propagation of the signal through space and its reflection from the car. The output of the system, the estimated range in meters, is shown in the display block on the left.

\section*{Radar}

The radar system consists of a co-located transmitter and receiver mounted on a vehicle moving along a straight road. It contains the signal processing components needed to extract the information from the returned target echo.
- FMCW - Creates an FMCW signal. The FMCW waveform is a common choice in automotive radar, because it provides a way to estimate the range using a continuous wave (CW) radar. The distance is proportional to the frequency offset between the transmitted signal and the received echo. The signal sweeps a bandwidth of 150 MHz .
- Transmitter - Transmits the waveform. The operating frequency of the transmitter is 77 GHz .
- Receiver Preamp - Receives the target echo and adds the receiver noise.
- Radar Platform - Simulates the radar vehicle trajectory.
- Signal Processing - Processes the received signal and estimates the range of the target vehicle.

Within the Radar, the target echo goes through several signal processing steps before the target range can be estimated. The signal processing subsystem consists of two high-level processing stages.
- Stage 1: The first stage dechirps the received signal by multiplying it with the transmitted signal. This operation produces a beat frequency between the target echo and the transmitted signal. The target range is proportional to the beat frequency. This operation also reduces the bandwidth required to process the signal. Next, 64 sweeps are buffered to form a datacube. The datacube dimensions are fast-time versus slow-time. This datacube is then passed to a Matrix Sum block, where the slow-time samples are integrated to boost the signal-to-noise ratio. The data is then passed to the Range Response block, which performs an FFT operation to convert the beat frequency to range. Radar signal processing lends itself well to parallelization, so the radar data is then partitioned in range into 5 parts prior to further processing.
- Stage 2: The second stage consists of 5 parallel processing chains for the detection and estimation of the target.


Within Stage 2, each Detection and Estimation Chain block consists of 3 processing steps.
- Detection Processing: The radar data is first passed to a 1 -dimensional cell-averaging (CA) constant false alarm rate (CFAR) detector that operates in the range dimension. This block identifies detections or hits.
- Detection Clustering: The detections are then passed to the next step where they are aggregated into clusters using the Density-Based Spatial Clustering of Applications with Noise algorithm in the DBSCAN Clusterer block. The clustering block clusters the detections in range using the detections identified by the CA CFAR block.
- Parameter Estimation: After detections and clusters are identified, the last step is the Range Estimator block. This step estimates the range of the detected targets in the radar data.

Parameter
Estimation

Detection Clustering

Detection
Processing


\section*{Channel and Target}

The Channel and Target part of the model simulates the signal propagation and reflection off the target vehicle.
- Channel - Simulates the signal propagation between the radar vehicle and the target vehicle. The channel can be set as either a line-of-sight free space channel or a two-ray channel where the signal arrives at the receiver via both the direct path and the reflected path off the ground. The default choice is a free space channel.

- Car - Reflects the incident signal and simulates the target vehicle trajectory. The subsystem, shown below, consist of two parts: a target model to simulate the echo and a platform model to simulate the dynamics of the target vehicle.


In the Car subsystem, the target vehicle is modeled as a point target with a specified radar cross section. The radar cross section is used to measure how much power can be reflected from a target.

In this model's scenario, the radar vehicle starts at the origin, traveling at \(100 \mathrm{~km} / \mathrm{h}(27.8 \mathrm{~m} / \mathrm{s})\), while the target vehicle starts at 43 meters in front of the radar vehicle, traveling at \(96 \mathrm{~km} / \mathrm{h}(26.7 \mathrm{~m} / \mathrm{s})\). The positions and velocities of both the radar and the target vehicles are used in the propagation channel to calculate the delay, Doppler, and signal loss.

\section*{Exploring the Model}

Several dialog parameters of the model are calculated by the helper function helperslexFMCWParam. To open the function from the model, click on Modify Simulation Parameters block. This function is executed once when the model is loaded. It exports to the workspace a structure whose fields are referenced by the dialogs. To modify any parameters, either change the values in the
structure at the command prompt or edit the helper function and rerun it to update the parameter structure.

\section*{Results and Displays}

The spectrogram of the FMCW signal below shows that the signal linearly sweeps a span of 150 MHz approximately every 7 microseconds. This waveform provides a resolution of approximately 1 meter.


The spectrum of the dechirped signal is shown below. The figure indicates that the beat frequency introduced by the target is approximately 100 kHz . Note that after dechirp, the signal has only a single frequency component. The resulting range estimate calculated from this beat frequency, as displayed in the overall model above, is well within the 1 meter range resolution.


However, this result is obtained with the free space propagation channel. In reality, the propagation between vehicles often involves multiple paths between the transmitter and the receiver. Therefore, signals from different paths may add either constructively or destructively at the receiver. The following section sets the propagation to a two-ray channel, which is the simplest multipath channel.


Run the simulation and observe the spectrum of the dechirped signal.


Note that there is no longer a dominant beat frequency, because at this range, the signal from the direct path and the reflected path combine destructively, thereby canceling each other out. This can also be seen from the estimated range, which no longer matches the ground truth.

\section*{FMCW Radar Range and Speed Estimation of Multiple Targets}

The example model below shows a similar end-to-end FMCW radar system that simulates 2 targets. This example estimates both the range and the speed of the detected targets.


The model is essentially the same as the previous example with 4 primary differences. This model:
- contains two targets,
- uses range-Doppler joint processing, which occurs in the Range-Doppler Response block,
- processes only a subset of the data in range rather than the whole datacube in multiple chains, and
- performs detection using a 2-dimensional CA CFAR.

\section*{Radar}

This model uses range-Doppler joint processing in the signal processing subsystem. Joint processing in the range-Doppler domain makes it possible to estimate the Doppler across multiple sweeps and then to use that information to resolve the range-Doppler coupling, resulting in better range estimates.

The signal processing subsystem is shown in detail below.


The stages that make up the signal processing subsystem are similar to the prior example. Each stage performs the following actions.
- Stage 1: The first stage again performs dechirping and assembly of a datacube with 64 sweeps. The datacube is then passed to the Range-Doppler Response block to compute the rangeDoppler map of the input signal. The datacube is then passed to the Range Subset block, which obtains a subset of the datacube that will undergo further processing.
- Stage 2: The second stage is where the detection processing occurs. The detector in this example is the CA CFAR 2-D block that operates in both the range and Doppler dimensions.
- Stage 3: Clustering occurs in the DBSCAN Clusterer block using both the range and Doppler dimensions. Clustering results are then displayed by the Plot Clusters block.
- Stage 4: The fourth and final stage estimates the range and speed of the targets from the rangeDoppler map using the Range Estimator and Doppler Estimator blocks, respectively.

As mentioned in the beginning of the example, FMCW radar uses a frequency shift to derive the range of the target. However, the motion of the target can also introduce a frequency shift due to the Doppler effect. Therefore, the beat frequency has both range and speed information coupled.
Processing range and Doppler at the same time lets us remove this ambiguity. As long as the sweep is fast enough so that the target remains in the same range gate for several sweeps, the Doppler can be calculated across multiple sweeps and then be used to correct the initial range estimates.

\section*{Channel and Target}

There are now two target vehicles in the scene, labeled as Car and Truck, and each vehicle has an associated propagation channel. The Car starts 50 meters in front of the radar vehicle and travels at a speed of \(60 \mathrm{~km} / \mathrm{h}(16.7 \mathrm{~m} / \mathrm{s})\). The Truck starts at 150 meters in front of the radar vehicle and travels at a speed of \(130 \mathrm{~km} / \mathrm{h}(36.1 \mathrm{~m} / \mathrm{s})\).

\section*{Exploring the Model}

Several dialog parameters of the model are calculated by the helper function helperslexFMCWMultiTargetsParam. To open the function from the model, click on Modify Simulation Parameters block. This function is executed once when the model is loaded. It exports to the workspace a structure whose fields are referenced by the dialogs. To modify any parameters, either change the values in the structure at the command prompt or edit the helper function and rerun it to update the parameter structure.

\section*{Results and Displays}

The FMCW signal shown below is the same as in the previous model.


The two targets can be visualized in the range-Doppler map below.


The map correctly shows two targets: one at 50 meters and one at 150 meters. Because the radar can only measure the relative speed, the expected speed values for these two vehicles are \(11.1 \mathrm{~m} / \mathrm{s}\) and \(-8.3 \mathrm{~m} / \mathrm{s}\), respectively, where the negative sign indicates that the Truck is moving away from the radar vehicle. The exact speed estimates may be difficult to infer from the range-Doppler map, but the estimated ranges and speeds are shown numerically in the display blocks in the model on the left. As can be seen, the speed estimates match the expected values well.

\section*{MFSK Radar Range and Speed Estimation of Multiple Targets}

To be able to do joint range and speed estimation using the above approach, the sweep needs to be fairly fast to ensure the vehicle is approximately stationary during the sweep. This often translates to higher hardware cost. MFSK is a new waveform designed specifically for automotive radar so that it can achieve simultaneous range and speed estimation with longer sweeps.

The example below shows how to use MFSK waveform to perform the range and speed estimation. The scene setup is the same as the previous model.


The primary differences between this model and the previous are in the waveform block and the signal processing subsystem. The MFSK waveform essentially consists of two FMCW sweeps with a fixed frequency offset. The sweep in this case happens at discrete steps. From the parameters of the MFSK waveform block, the sweep time can be computed as the product of the step time and the number of steps per sweep. In this example, the sweep time is slightly over 2 ms , which is several orders larger than the 7 microseconds for the FMCW used in the previous model. For more information on the MFSK waveform, see the "Simultaneous Range and Speed Estimation Using MFSK Waveform" on page 17-143 example.


The signal processing subsystem describes how the signal gets processed for the MFSK waveform. The signal is first sampled at the end of each step and then converted to the frequency domain via an FFT. A 1-dimensional CA CFAR detector is used to identify the peaks, which correspond to targets, in the spectrum. Then the frequency at each peak location and the phase difference between the two sweeps are used to estimate the range and speed of the target vehicles.


\section*{Exploring the Model}

Several dialog parameters of the model are calculated by the helper function helperslexMFSKMultiTargetsParam. To open the function from the model, click on Modify Simulation Parameters block. This function is executed once when the model is loaded. It exports to the workspace a structure whose fields are referenced by the dialogs. To modify any parameters, either change the values in the structure at the command prompt or edit the helper function and rerun it to update the parameter structure.

\section*{Results and Displays}

The estimated results are shown in the model, matching the results obtained from the previous model.

\section*{FMCW Radar Range, Speed, and Angle Estimation of Multiple Targets}

One can improve the angular resolution of the radar by using an array of antennas. This example shows how to resolve three target vehicles traveling in separate lanes ahead of a vehicle carrying an antenna array.


In this scenario, the radar is traveling in the center lane of a highway at \(100 \mathrm{~km} / \mathrm{h}(27.8 \mathrm{~m} / \mathrm{s})\). The first target vehicle is traveling 20 meters ahead in the same lane as the radar at \(85 \mathrm{~km} / \mathrm{h}(23.6 \mathrm{~m} / \mathrm{s})\). The second target vehicle is traveling at \(125 \mathrm{~km} / \mathrm{h}(34.7 \mathrm{~m} / \mathrm{s})\) in the right lane and is 40 meters ahead. The third target vehicle is traveling at \(110 \mathrm{~km} / \mathrm{h}(30.6 \mathrm{~m} / \mathrm{s})\) in the left lane and is 80 meters ahead. The antenna array of the radar vehicle is a 4 -element uniform linear array (ULA).

The origin of the scenario coordinate system is at the radar vehicle. The ground truth range, speed, and angle of the target vehicles with respect to the radar are
\begin{tabular}{|c|c|c|c|}
\hline & Range (m) & Speed (m/s) & Angle (deg) \\
\hline Car 1 & 20 & 4.2 & 0 \\
\hline Car 2 & 40.05 & -6.9 & -2.9 \\
\hline Car 3 & 80.03 & -2.8 & 1.4 \\
\hline
\end{tabular}

The signal processing subsystem now includes direction of arrival estimation in addition to the range and Doppler processing.


The processing is very similar to the previously discussed FMCW Multiple Target model. However, in this model, there are 5 stages instead of 4.
- Stage 1: Similar to the previously discussed FMCW Multiple Target model, this stage performs dechirping, datacube formation, and range-Doppler processing. The datacube is then passed to the Range Subset block, thereby obtaining the subset of the datacube that will undergo further processing.
- Stage 2: The second stage is the Phase Shift Beamformer block where beamforming occurs based on the specified look angles that are defined in the parameter helper function helperslexFMCWMultiTargetsDOAParam.
- Stage 3: The third stage is where the detection processing occurs. The detector in this example is again the CA CFAR 2-D block that operates in both the range and Doppler dimensions.
- Stage 4: Clustering occurs in the DBSCAN Clusterer block using the range, Doppler, and angle dimensions. Clustering results are then displayed by the Plot Clusters block.
- Stage 5: The fourth and final stage estimates the range and speed of the targets from the rangeDoppler map using the Range Estimator and Doppler Estimator blocks, respectively. In addition, direction of arrival (DOA) estimation is performed using a custom block that features an implementation of the Phased Array System Toolbox Root MUSIC Estimator.

\section*{Exploring the Model}

Several dialog parameters of the model are calculated by the helper function helperslexFMCWMultiTargetsDOAParam. To open the function from the model, click on Modify Simulation Parameters block. This function is executed once when the model is loaded. It exports to the workspace a structure whose fields are referenced by the dialogs. To modify any parameters, either change the values in the structure at the command prompt or edit the helper function and rerun it to update the parameter structure.

\section*{Results and Displays}

The estimated results are shown in the model and match the expected values well.

\section*{Summary}

The first model shows how to use an FMCW radar to estimate the range of a target vehicle. The information derived from the echo, such as the distance to the target vehicle, are necessary inputs to a complete automotive ACC system.

The example also discusses how to perform combined range-Doppler processing to derive both range and speed information of target vehicles. However, it is worth noting that when the sweep time is long, the system capability for estimating the speed is degraded, and it is possible that the joint processing can no longer provide accurate compensation for range-Doppler coupling. More discussion on this topic can be found in the MATLAB "Automotive Adaptive Cruise Control Using FMCW Technology" on page 17-367 example.

The following model shows how to perform the same range and speed estimation using an MFSK waveform. This waveform can achieve the joint range and speed estimation with longer sweeps, thus reducing the hardware requirements.

The last model is an FMCW radar featuring an antenna array that performs range, speed, and angle estimation.

\section*{Radar Signal Simulation and Processing for Automated Driving}

This example shows how to model a radar's hardware, signal processing, and propagation environment for a driving scenario. First you develop a model of the radar transmit and receive hardware, signal processing, detection, and estimation using Phased Array System Toolbox \({ }^{\mathrm{TM}}\). Then you model the vehicle motion and track the synthetic vehicle detections using Automated Driving Toolbox \({ }^{\mathrm{TM}}\). In this example, you use this radar model to track detections in a highway driving scenario.

This example requires Automated Driving Toolbox.

\section*{Introduction}

You can model vehicle motion by using the drivingScenario object from Automated Driving Toolbox. The vehicle ground truth can then be used to generate synthetic sensor detections, which you can track by using the multiObjectTracker object. For an example of this workflow, see "Sensor Fusion Using Synthetic Radar and Vision Data in Simulink" (Automated Driving Toolbox). The automotive radar used in this example uses a statistical model that is parameterized according to high-level radar specifications. The generic radar architecture modeled in this example does not include specific antenna configurations, waveforms, or unique channel propagation characteristics. When designing an automotive radar, or when a radar's specific architecture is known, using a radar model that includes this additional information is recommended.

Phased Array System Toolbox enables you to evaluate different radar architectures. You can explore different transmit and receive array configurations, waveforms, and signal processing chains. You can also evaluate your designs against different channel models to assess their robustness to different environmental conditions. This modeling helps you to identify the specific design that best fits your application requirements.

In this example, you learn how to define a radar model from a set of system requirements for a longrange radar. You then simulate a driving scenario to generate detections from your radar model. A tracker is used to process these detections to generate precise estimates of the position and velocity of the vehicles detected by your automotive radar.

\section*{Calculate Radar Parameters from Long-Range Radar Requirements}

The radar parameters are defined for the frequency-modulated continuous wave (FMCW) waveform, as described in the example "Automotive Adaptive Cruise Control Using FMCW Technology" on page \(17-367\). The radar operates at a center frequency of 77 GHz . This frequency is commonly used by automotive radars. For long-range operation, the radar must detect vehicles at a maximum range of 100 meters in front of the ego vehicle. The radar is required to resolve objects in range that are at least 1 meter apart. Because this is a forward-facing radar application, the radar also needs to handle targets with large closing speeds, as high as \(230 \mathrm{~km} / \mathrm{hr}\).

The radar is designed to use an FMCW waveform. These waveforms are common in automotive applications because they enable range and Doppler estimation through computationally efficient FFT operations.
```

% Set random number generator for repeatable results
rng(2017);
% Compute hardware parameters from specified long-range requirements
fc = 77e9; % Center frequency (Hz)
c = physconst('LightSpeed'); % Speed of light in air (m/s)

```
```

lambda = c/fc; % Wavelength (m)
% Set the chirp duration to be 5 times the max range requirement
rangeMax = 100; % Maximum range (m)
tm = 5*range2time(rangeMax,c); % Chirp duration (s)
% Determine the waveform bandwidth from the required range resolution
rangeRes = 1; % Desired range resolution (m)
bw = range2bw(rangeRes,c); % Corresponding bandwidth (Hz)
% Set the sampling rate to satisfy both the range and velocity requirements
% for the radar
sweepSlope = bw/tm; % FMCW sweep slope (Hz/s)
fbeatMax = range2beat(rangeMax,sweepSlope,c); % Maximum beat frequency (Hz)
vMax = 230*1000/3600; % Maximum Velocity of cars (m/s)
fdopMax = speed2dop(2*vMax,lambda); % Maximum Doppler shift (Hz)
fifMax = fbeatMax+fdopMax; % Maximum received IF (Hz)
fs = max(2*fifMax,bw); % Sampling rate (Hz)
% Configure the FMCW waveform using the waveform parameters derived from
% the long-range requirements
waveform = phased.FMCWWaveform('SweepTime',tm,'SweepBandwidth',bw,...
'SampleRate',fs,'SweepDirection','Up');
if strcmp(waveform.SweepDirection,'Down')
sweepSlope = -sweepSlope;
end
Nsweep = 192;

```

\section*{Model Automotive Radar Hardware}

The radar uses a uniform linear array (ULA) to transmit and receive the radar waveforms. Using a linear array enables the radar to estimate the azimuthal direction of the reflected energy received from the target vehicles. The long-range radar needs to detect targets across a coverage area that spans 15 degrees in front of the ego vehicle. A 6 -element receive array satisfies this requirement by providing a 16 degree half-power beamwidth. On transmit, the radar uses only a single array element, enabling it to cover a larger area than on receive.
```

% Model the antenna element
antElmnt = phased.IsotropicAntennaElement('BackBaffled',true);
% Construct the receive array
Ne = 6;
rxArray = phased.ULA('Element',antElmnt,'NumElements',Ne,...
'ElementSpacing',lambda/2);
% Form forward-facing beam to detect objects in front of the ego vehicle
beamformer = phased.PhaseShiftBeamformer('SensorArray',rxArray,...
'PropagationSpeed',c,'OperatingFrequency',fc,'Direction',[0;0]);
% Half-power beamwidth of the receive array
hpbw = helperAutoDrivingRadarSigProc('Array Beamwidth',rxArray,c,fc)
hpbw = 16.3636

```

Estimate the direction-of-arrival of the received signals using a root MUSIC estimator. A beamscan is also used for illustrative purposes to help spatially visualize the distribution of the received signal energy.
```

% Direction-of-arrival estimator for linear phased array signals
doaest = phased.RootMUSICEstimator(...
'SensorArray',rxArray,...
'PropagationSpeed',c,'OperatingFrequency',fc,...
'NumSignalsSource','Property','NumSignals',1);
% Scan beams in front of ego vehicle for range-angle image display
angscan = -80:80;
beamscan = phased.PhaseShiftBeamformer('Direction',[angscan;0*angscan],...
'SensorArray',rxArray,'OperatingFrequency',fc);

```

Model the radar transmitter for a single transmit channel, and model a receiver preamplifier for each receive channel, using the parameters defined in the example "Automotive Adaptive Cruise Control Using FMCW Technology" on page 17-367.
```

antAperture = 6.06e-4; % Antenna aperture (m^2)
antGain = aperture2gain(antAperture,lambda); % Antenna gain (dB)
txPkPower = db2pow(5)*1e-3; % Tx peak power (W)
txGain = antGain; % Tx antenna gain (dB)
rxGain = antGain; % Rx antenna gain (dB)
rxNF = 4.5; %Receiver noise figure (dB)
% Waveform transmitter
transmitter = phased.Transmitter('PeakPower',txPkPower,'Gain',txGain);
% Radiator for single transmit element
radiator = phased.Radiator('Sensor',antElmnt,'OperatingFrequency',fc);
% Collector for receive array
collector = phased.Collector('Sensor',rxArray,'OperatingFrequency',fc);
% Receiver preamplifier
receiver = phased.ReceiverPreamp('Gain',rxGain,'NoiseFigure',rxNF,...
'SampleRate',fs);

```

\section*{Define Radar Signal Processing Chain}

The radar collects multiple sweeps of the waveform on each of the linear phased array antenna elements. These collected sweeps form a data cube, which is defined in "Radar Data Cube". These sweeps are coherently processed along the fast- and slow-time dimensions of the data cube to estimate the range and Doppler of the vehicles.

Use the phased. RangeDopplerResponse object to perform the range and Doppler processing on the radar data cubes. Use a Hanning window to suppress the large sidelobes produced by the vehicles when they are close to the radar.
```

Nft = waveform.SweepTime*waveform.SampleRate; % Number of fast-time samples
Nst = Nsweep; % Number of slow-time samples
Nr = 2^nextpow2(Nft); % Number of range samples
Nd = 2^nextpow2(Nst); % Number of Doppler samples
rngdopresp = phased.RangeDopplerResponse('RangeMethod','FFT',...

```
```

'DopplerOutput','Speed','SweepSlope',sweepSlope,...
'RangeFFTLengthSource','Property','RangeFFTLength',Nr,...
'RangeWindow','Hann',...
'DopplerFFTLengthSource','Property','DopplerFFTLength',Nd,...
'DopplerWindow','Hann',...
'PropagationSpeed',c,'OperatingFrequency',fc,'SampleRate',fs);

```

Identify detections in the processed range and Doppler data by using a constant false alarm rate (CFAR) detector. CFAR detectors estimate the background noise level of the received radar data. Detections are found at locations where the signal power exceeds the estimated noise floor by a certain threshold. Low threshold values result in a higher number of reported false detections due to environmental noise. Increasing the threshold produces fewer false detections, but also reduces the probability of detection of an actual target in the scenario. For more information on CFAR detection, see the example "Constant False Alarm Rate (CFAR) Detection" on page 17-279.
```

% Guard cell and training regions for range dimension
nGuardRng = 4;
nTrainRng = 4;
nCUTRng = 1+nGuardRng+nTrainRng;
% Guard cell and training regions for Doppler dimension
dopOver = round(Nd/Nsweep);
nGuardDop = 4*dopOver;
nTrainDop = 4*dopOver;
nCUTDop = 1+nGuardDop+nTrainDop;
cfar = phased.CFARDetector2D('GuardBandSize',[nGuardRng nGuardDop],...
'TrainingBandSize',[nTrainRng nTrainDop],...
'ThresholdFactor','Custom','CustomThresholdFactor',db2pow(13),...
'NoisePowerOutputPort',true,'OutputFormat','Detection index');
% Perform CFAR processing over all of the range and Doppler cells
freqs = ((0:Nr-1)'/Nr-0.5)*fs;
rnggrid = beat2range(freqs,sweepSlope);
iRngCUT = find(rnggrid>0);
iRngCUT = iRngCUT((iRngCUT>=nCUTRng)\&(iRngCUT<=Nr-nCUTRng+1));
iDopCUT = nCUTDop:(Nd-nCUTDop+1);
[iRng,iDop] = meshgrid(iRngCUT,iDopCUT);
idxCFAR = [iRng(:) iDop(:)]';

```

The phased.RangeEstimator and phased.DopplerEstimator objects convert the locations of the detections found in the range-Doppler data into measurements and their corresponding measurement variances. These estimators fit quadratic curves to the range-Doppler data to estimate the peak location of each detection. The resulting measurement resolutions are a fraction of the range and Doppler sampling of the data.

The root-mean-square (RMS) range resolution of the transmitted waveform is needed to compute the variance of the range measurements. The Rayleigh range resolution for the long-range radar was defined previously as 1 meter. The Rayleigh resolution is the minimum separation at which two unique targets can be resolved. This value defines the distance between range resolution cells for the radar. However, the variance of the target within a resolution cell is determined by the waveform's RMS resolution. For an LFM chirp waveform, the relationship between the Rayleigh resolution and the RMS resolution is given by [1].
\[
\sigma_{R M S}=\sqrt{12} \Delta_{\text {Rayleigh }}
\]
where \(\sigma_{R M S}\) is the RMS range resolution and \(\Delta_{\text {Rayleigh }}\) is the Rayleigh range resolution.
The variance of the Doppler measurements depends on the number of sweeps processed.
Now, create the range and Doppler estimation objects using the parameters previously defined.
```

rmsRng = sqrt(12)*rangeRes;
rngestimator = phased.RangeEstimator('ClusterInputPort',true,...
'VarianceOutputPort',true,'NoisePowerSource','Input port',...
'RMSResolution',rmsRng);
dopestimator = phased.DopplerEstimator('ClusterInputPort',true,...
'VarianceOutputPort',true,'NoisePowerSource','Input port',...
'NumPulses',Nsweep);

```

To further improve the precision of the estimated vehicle locations, pass the radar's detections to a tracker. Configure the track to use an extended Kalman filter (EKF), which converts the spherical radar measurements into the ego vehicle's Cartesian coordinate frame. Also configure the tracker to use constant velocity dynamics for the detected vehicles. By comparing vehicle detections over multiple measurement time intervals, the tracker further improves the accuracy of the vehicle positions and provides vehicle velocity estimates.
```

tracker = multiObjectTracker('FilterInitializationFcn',@initcvekf,...
'AssignmentThreshold',50);

```

\section*{Model Free Space Propagation Channel}

Use the free space channel to model the propagation of the transmitted and received radar signals.
```

channel = phased.FreeSpace('PropagationSpeed',c,'OperatingFrequency',fc,...
'SampleRate',fs,'TwoWayPropagation',true);

```

In a free space model, the radar energy propagates along a direct line-of-sight between the radar and the target vehicles, as shown in the following illustration.


\section*{Simulate the Driving Scenario}

Create a highway driving scenario with three vehicles traveling in the vicinity of the ego vehicle. The vehicles are modeled as point targets, and have different velocities and positions defined in the driving scenario. The ego vehicle is moving with a velocity of \(80 \mathrm{~km} / \mathrm{hr}\) and the other three cars are moving at \(110 \mathrm{~km} / \mathrm{hr}, 100 \mathrm{~km} / \mathrm{hr}\), and \(130 \mathrm{~km} / \mathrm{hr}\) respectively. For details on modeling a driving scenario see the example "Create Actor and Vehicle Trajectories Programmatically" (Automated Driving Toolbox). The radar sensor is mounted on the front of the ego vehicle.

To create the driving scenario, use the helperAutoDrivingRadarSigProc function. To examine the contents of this function, use the edit('helperAutoDrivingRadarSigProc') command.
```

% Create driving scenario
[scenario,egoCar,radarParams,pointTgts] = ...
helperAutoDrivingRadarSigProc('Setup Scenario',c,fc);

```

The following loop uses the drivingScenario object to advance the vehicles in the scenario. At every simulation time step, a radar data cube is assembled by collecting 192 sweeps of the radar waveform. The assembled data cube is then processed in range and Doppler. The range and Doppler processed data is then beamformed, and CFAR detection is performed on the beamformed data. Range, radial speed, and direction of arrival measurements are estimated for the CFAR detections. These detections are then assembled into objectDetection objects, which are then processed by the multiObjectTracker object.
```

% Initialize display for driving scenario example
helperAutoDrivingRadarSigProc('Initialize Display',egoCar,radarParams,...
rxArray,fc,vMax,rangeMax);
tgtProfiles = actorProfiles(scenario);
tgtProfiles = tgtProfiles(2:end);
tgtHeight = [tgtProfiles.Height];
% Run the simulation loop
sweepTime = waveform.SweepTime;
while advance(scenario)
% Get the current scenario time
time = scenario.SimulationTime;
% Get current target poses in ego vehicle's reference frame
tgtPoses = targetPoses(egoCar);
tgtPos = reshape([tgtPoses.Position],3,[]);
% Position point targets at half of each target's height
tgtPos(3,:) = tgtPos(3,:)+0.5*tgtHeight;
tgtVel = reshape([tgtPoses.Velocity],3,[]);
% Assemble data cube at current scenario time
Xcube = zeros(Nft,Ne,Nsweep);
for m = 1:Nsweep
% Calculate angles of the targets viewed by the radar
tgtAngs = NaN(2,numel(tgtPoses));
for iTgt = 1:numel(tgtPoses)
tgtAxes = rotz(tgtPoses(iTgt).Yaw)*...
roty(tgtPoses(iTgt).Pitch)*rotx(tgtPoses(iTgt).Roll);
[~,tgtAngs(:,iTgt)] = rangeangle(radarParams.OriginPosition,...
tgtPos(:,iTgt),tgtAxes);
end
% Transmit FMCW waveform
sig = waveform();
[~,txang] = rangeangle(tgtPos,radarParams.OriginPosition,...
radarParams.Orientation);
txsig = transmitter(sig);
txsig = radiator(txsig,txang);
txsig = channel(txsig,radarParams.OriginPosition,tgtPos,...
radarParams.OriginVelocity,tgtVel);
% Propagate the signal and reflect off the target

```
```

 tgtsig = pointTgts(txsig,tgtAngs);
 % Collect received target echos
 rxsig = collector(tgtsig,txang);
 rxsig = receiver(rxsig);
 % Dechirp the received signal
 rxsig = dechirp(rxsig,sig);
 % Save sweep to data cube
 Xcube(:,:,m) = rxsig;
 % Move targets forward in time for next sweep
 tgtPos = tgtPos+tgtVel*sweepTime;
 end
% Calculate the range-Doppler response
[Xrngdop,rnggrid,dopgrid] = rngdopresp(Xcube);
% Beamform received data
Xbf = permute(Xrngdop,[$$
\begin{array}{lll}{1 3 2]);}\end{array}
$$]
Xbf = reshape(Xbf,Nr*Nd,Ne);
Xbf = beamformer(Xbf);
Xbf = reshape(Xbf,Nr,Nd);
% Detect targets
Xpow = abs(Xbf).^2;
[detidx,noisepwr] = cfar(Xpow,idxCFAR);
% Cluster detections
clusterIDs = helperAutoDrivingRadarSigProc('Cluster Detections',detidx);
% Estimate azimuth, range, and radial speed measurements
[azest,azvar,snrdB] = ...
helperAutoDrivingRadarSigProc('Estimate Angle',doaest,...
conj(Xrngdop),Xbf,detidx,noisepwr,clusterIDs);
azvar = azvar+radarParams.RMSBias(1)^2;
[rngest,rngvar] = rngestimator(Xbf,rnggrid,detidx,noisepwr,clusterIDs);
rngvar = rngvar+radarParams.RMSBias(2)^2;
[rsest,rsvar] = dopestimator(Xbf,dopgrid,detidx,noisepwr,clusterIDs);
% Convert radial speed to range rate for use by the tracker
rrest = -rsest;
rrvar = rsvar;
rrvar = rrvar+radarParams.RMSBias(3)^2;
% Assemble object detections for use by tracker
numDets = numel(rngest);
dets = cell(numDets,1);
for iDet = 1:numDets
dets{iDet} = objectDetection(time,...
[azest(iDet) rngest(iDet) rrest(iDet)]',...
'MeasurementNoise',diag([azvar(iDet) rngvar(iDet) rrvar(iDet)]),...
'MeasurementParameters',{radarParams},...
'ObjectAttributes',{struct('SNR',snrdB(iDet))});
end

```
```

% Track detections
tracks = tracker(dets,time);
% Update displays
helperAutoDrivingRadarSigProc('Update Display',egoCar,dets,tracks,...
dopgrid,rnggrid,Xbf,beamscan,Xrngdop);
% Publish snapshot
helperAutoDrivingRadarSigProc('Publish Snapshot',time>=1.1);
% Collect free space channel metrics
metricsFS = helperAutoDrivingRadarSigProc('Collect Metrics',...
radarParams,tgtPos,tgtVel,dets);

```
end


The previous figure shows the radar detections and tracks for the 3 target vehicles at 1.1 seconds of simulation time. The plot on the upper-left side shows the chase camera view of the driving scenario from the perspective of the ego vehicle (shown in blue). For reference, the ego vehicle is traveling at \(80 \mathrm{~km} / \mathrm{hr}\) and the other three cars are traveling at \(110 \mathrm{~km} / \mathrm{hr}\) (orange car), \(100 \mathrm{~km} / \mathrm{hr}\) (yellow car), and \(130 \mathrm{~km} / \mathrm{hr}\) (purple car).

The right side of the figure shows the bird's-eye plot, which presents a "top down" perspective of the scenario. All of the vehicles, detections, and tracks are shown in the ego vehicle's coordinate reference frame. The estimated signal-to-noise ratio (SNR) for each radar measurement is printed next to each detection. The vehicle location estimated by the tracker is shown in the plot using black squares with text next to them indicating each track's ID. The tracker's estimated velocity for each vehicle is shown as a black line pointing in the direction of the vehicle's velocity. The length of the
line corresponds to the estimated speed, with longer lines denoting vehicles with higher speeds relative to the ego vehicle. The purple car's track (ID2) has the longest line while the yellow car's track (ID1) has the shortest line. The tracked speeds are consistent with the modeled vehicle speeds previously listed.

The two plots on the lower-left side show the radar images generated by the signal processing. The upper plot shows how the received radar echos from the target vehicles are distributed in range and radial speed. Here, all three vehicles are observed. The measured radial speeds correspond to the velocities estimated by the tracker, as shown in the bird's-eye plot. The lower plot shows how the received target echos are spatially distributed in range and angle. Again, all three targets are present, and their locations match what is shown in the bird's-eye plot.

Due to its close proximity to the radar, the orange car can still be detected despite the large beamforming losses due to its position well outside of the beam's 3 dB beamwidth. These detections have generated a track (ID3) for the orange car.

\section*{Model a Multipath Channel}

The previous driving scenario simulation used free space propagation. This is a simple model that models only direct line-of-sight propagation between the radar and each of the targets. In reality, the radar signal propagation is much more complex, involving reflections from multiple obstacles before reaching each target and returning back to the radar. This phenomenon is known as multipath propagation. The following illustration shows one such case of multipath propagation, where the signal impinging the target is coming from two directions: line-of-sight and a single bounce from the road surface.


The overall effect of multipath propagation is that the received radar echoes can interfere constructively and destructively. This constructive and destructive interference results from path length differences between the various signal propagation paths. As the distance between the radar and the vehicles changes, these path length differences also change. When the differences between these paths result in echos received by the radar that are almost 180 degrees out of phase, the echos destructively combine, and the radar makes no detection for that range.

Replace the free space channel model with a two-ray channel model to demonstrate the propagation environment shown in the previous illustration. Reuse the remaining parameters in the driving scenario and radar model, and run the simulation again.
```

% Reset the driving scenario
[scenario,egoCar,radarParams,pointTgts] = ...
helperAutoDrivingRadarSigProc('Setup Scenario',c,fc);
% Create two-ray propagation channels. One channel is used for the transmit

```
```

% path and a different channel is used for the receive path.
txchannel = phased.TwoRayChannel('PropagationSpeed',c,...
'OperatingFrequency' ,fc,'SampleRate',fs);
rxchannel = phased.TwoRayChannel('PropagationSpeed',c,...
'OperatingFrequency',fc,'SampleRate',fs);
% Run the simulation again, now using the two-ray channel model
metrics2Ray = helperAutoDrivingRadarSigProc('Run Simulation',...
c,fc,rangeMax,vMax,waveform,Nsweep,... % Waveform parameters
transmitter,radiator,collector,receiver,... % Hardware models
rngdopresp,beamformer,cfar,idxCFAR,... % Signal processing
rngestimator,dopestimator,doaest,beamscan,tracker,... % Estimation
txchannel,rxchannel); % Propagation channel models

```


The previous figure shows the chase plot, bird's-eye plot, and radar images at 1.1 seconds of simulation time, just as was shown for the free space channel propagation scenario. Comparing these two figures, observe that for the two-ray channel, no detection is present for the purple car at this simulation time. This detection loss is because the path length differences for this car are destructively interfering at this range, resulting in a total loss of detection.

Plot the SNR estimates generated from the CFAR processing against the purple car's range estimates from the free space and two-ray channel simulations.
helperAutoDrivingRadarSigProc('Plot Channels',metricsFS,metrics2Ray);


As the car approaches a range of 72 meters from the radar, a large loss in the estimated SNR from the two-ray channel is observed with respect to the free space channel. It is near this range that the multipath interference combines destructively, resulting in a loss in signal detections. However, observe that the tracker is able to coast the track during these times of signal loss and provide a predicted position and velocity for the purple car.

\section*{Summary}

This example demonstrated how to model an automotive radar's hardware and signal processing using Phased Array System Toolbox. You also learned how to integrate this radar model with the Automated Driving Toolbox driving scenario simulation. First you generated synthetic radar detections. Then you processed these detections further by using a tracker to generate precise position and velocity estimates in the ego vehicle's coordinate frame. Finally, you learned how to simulate multipath propagation effects by using the phased. TwoRayChannel model provided in the Phased Array System Toolbox.

The presented workflow enables you to understand how your radar architecture design decisions impact higher-level system requirements. Using this workflow enables you select a radar design that satisfies your unique application requirements.

\section*{Reference}
[1] Richards, Mark. Fundamentals of Radar Signal Processing. New York: McGraw Hill, 2005.

\section*{Improve SNR and Capacity of Wireless Communication Using Antenna Arrays}

The goal of a wireless communication system is to serve as many users with the highest possible data rate given constraints such as radiation power limit and operating budget. To improve the data rate, the key is to improve the signal to noise ratio (SNR). To serve more users, the key is to reuse the resources. Over the last several decades, numerous algorithms have been adopted to improve the SNR and reuse the resources in time, frequency, and coding spaces. This example shows how the adoption of antenna arrays can help improve the SNR and capacity of a wireless link.

\section*{Introduction}

Antenna arrays have become part of the standard configuration in 5 G wireless communication systems. Because there are multiple elements in an antenna array, such wireless communications systems are often referred to as multiple input multiple output (MIMO) systems. Antenna arrays can help improve the SNR by exploring the redundancy across the multiple transmit and receive channels. They also make it possible to reuse the spatial information in the system to improve the coverage.

For this example, assume the system is deployed at 60 GHz , which is a frequency being considered for the 5G system.
```

c = 3e8; %propagation speed
fc = 60e9; % carrier frequency
lambda = c/fc; % wavelength
rng(6466);

```

With no loss in generality, place the transmitter at the origin and place the receiver approximately 1.6 km away.
```

txcenter = [0;0;0];
rxcenter = [1500;500;0];

```

Throughout this example, the scatteringchanmtx function will be used to create a channel matrix for different transmit and receive array configurations. The function simulates multiple scatterers between the transmit and receive arrays. The signal travels from the transmit array to all the scatterers first and then bounces off the scatterers and arrives at the receive array. Therefore, each scatterer defines a signal path between the transmit and the receive array and the resulting channel matrix describes a multipath environment. The function works with antenna arrays of arbitrary size at any designated frequency band.

\section*{Improve SNR by Array Gain for Line of Sight Propagation}

The simplest wireless channel is a line of sight (LOS) propagation. Although simple, such channel can often be found in rural areas. Adopting an antenna array under such situation can improve the signal to noise ratio at the receiver and in turn improve the communication link's bit error rate (BER).

\section*{SISO LOS Channel}

Before discussing the performance of a MIMO system, it is useful to build a baseline with a single input single output (SISO) communication system. A SISO LOS channel has a direct path from the transmitter to the receiver. Such a channel can be modeled as a special case of the multipath channel.
```

[~,txang] = rangeangle(rxcenter,txcenter);
[~,rxang] = rangeangle(txcenter,rxcenter);
txsipos = [0;0;0];
rxsopos = [0;0;0];
g = 1; % gain for the path
sisochan = scatteringchanmtx(txsipos,rxsopos,txang,rxang,g);

```

Using BPSK modulation, the bit error rate (BER) for such a SISO channel can be plotted as
```

Nsamp = le6;
x = randi([0 1],Nsamp,1);
ebn0_param = -10:2:10;
Nsnr = numel(ebn0_param);
ber_siso = helperMIMOBER(sisochan,x,ebn0_param)/Nsamp;
helperBERPlot(ebn0_param,ber_siso);
legend('SISO')

```


\section*{SIMO LOS Channel}

With the baseline established for a SISO system, this section focuses on the single input multiple output (SIMO) system. In such system, there is one transmit antenna but multiple receive antennas. Again, it is assumed that there is a direct path between the transmitter and the receiver.

Assume the receive array is a 4-element ULA with half-wavelength spacing, then the SIMO channel can be modeled as
```

rxarray = phased.ULA('NumElements',4,'ElementSpacing',lambda/2);
rxmopos = getElementPosition(rxarray)/lambda;
simochan = scatteringchanmtx(txsipos,rxmopos,txang,rxang,g);

```

In the SIMO system, because the received signals across receive array elements are coherent, it is possible to steer the receive array toward the transmitter to improve the SNR. Note that this assumes that the signal incoming direction is known to the receiver. In reality, the angle is often obtained using direction of arrival estimation algorithms.
```

rxarraystv = phased.SteeringVector('SensorArray',rxarray,...
'PropagationSpeed',c);
wr = conj(rxarraystv(fc,rxang));
ber_simo = helperMIMOBER(simochan,x,ebn0_param,1,wr)/Nsamp;
helperBERPlot(ebn0_param,[ber_siso(:) ber_simo(:)]);
legend('SISO','SIMO')

```


The BER curve shows a gain of 6 dB provided by the receive array.

\section*{MISO LOS Channel}

The multiple input single output (MISO) system works in a similar way. In this case, the transmitter is a 4 -element ULA with half-wavelength spacing.
```

txarray = phased.ULA('NumElements',4,'ElementSpacing',lambda/2);
txmipos = getElementPosition(txarray)/lambda;
misochan = scatteringchanmtx(txmipos,rxsopos,txang,rxang,g);

```

A line of sight MISO system achieves best SNR when the transmitter has the knowledge of the receiver and steers the beam toward the receiver. In addition, to do a fair comparison with the SISO system, the total transmitter power should be the same under both situations.
```

txarraystv = phased.SteeringVector('SensorArray',txarray,...
'PropagationSpeed',c);
wt = txarraystv(fc,txang)';
ber_miso = helperMIMOBER(misochan,x,ebn0_param,wt,1)/Nsamp;
helperBERPlot(ebn0_param,[ber_siso(:) ber_simo(:) ber_miso(:)]);
legend('SISO','SIMO','MISO')

```


Note that with the pre-steering, the performance of MISO matches the performance of a SIMO system, gaining 6 dB in SNR. It may not be as intuitive compared to the SIMO case because the total transmit power does not increase. However, by replacing a single isotropic antenna with a 4 -element transmit array, a 6 dB gain is achieved.

\section*{MIMO LOS Channel}

Because a SIMO system provides an array gain from the received array and a MISO system provides an array gain from the transmit array, a MIMO system with an LOS propagation can benefit from both the transmit and receive array gain.

Assume a MIMO system with a 4 -element transmit array and a 4 -element receive array.
```

mimochan = scatteringchanmtx(txmipos,rxmopos,txang,rxang,g);

```

To achieve the best SNR, the transmit array and the receive array need to be steered toward each other. With this configuration, the BER curve can be computed as
```

wt = txarraystv(fc,txang)';
wr = conj(rxarraystv(fc,rxang));
ber_mimo = helperMIMOBER(mimochan,x,ebn0_param,wt,wr)/Nsamp;
helperBERPlot(ebn0_param,[ber_siso(:) ber_simo(:) ber_mimo(:)]);
legend('SISO','SIMO','MIMO')

```


As expected, the BER curve shows that both the transmit array and the receive array contributes a 6 dB array gain, resulting in a total gain of 12 dB over the SISO case.

\section*{Improve SNR by Diversity Gain for Multipath Channel}

All the channels in the previous sections are line-of-sight channels. Although such channels are found in some wireless communication systems, in general wireless communications occurs in multipath fading environments. The rest of this example explores how using arrays can help in a multipath environment.

\section*{SISO Multipath Channel}

Assume there are 10 randomly placed scatterers in the channel, then there will be 10 paths from the transmitter to the receiver, as illustrated in the following figure.
```

Nscat = 10;

```
[~,~,~,scatpos] = ...
    helperComputeRandomScatterer(txcenter,rxcenter,Nscat);
helperPlotSpatialMIMOScene(txsipos,rxsopos,...
    txcenter,rxcenter,scatpos);


For simplicity, assume that signals traveling along all paths arrive within the same symbol period so the channel is frequency flat.

To simulate the BER curve for a fading channel, the channel needs to change over time. Assume we have 1000 frames and each frame has 10000 bits. The baseline SISO multipath channel BER curve is constructed as
```

Nframe = 1e3;
Nbitperframe = 1e4;
Nsamp = Nframe*Nbitperframe;
x = randi([0 1],Nbitperframe,1);
nerr = zeros(1,Nsnr);
for m = 1:Nframe
sisompchan = scatteringchanmtx(txsipos,rxsopos,Nscat);
wr = sisompchan'/norm(sisompchan);
nerr = nerr+helperMIMOBER(sisompchan,x,ebn0_param,1,wr);
end

```
ber_sisomp = nerr/Nsamp;
helperBERPlot(ebn0_param,[ber_siso(:) ber_sisomp(:)]);
legend('SISO LOS','SISO Multipath');


Compared to the BER curve derived from an LOS channel, the BER falls off much slower with the increase of energy per bit to noise power spectral density ratio ( \(\mathrm{Eb} / \mathrm{N} 0\) ) due to the fading caused by the multipath propagation.

\section*{SIMO Multipath Channel}

As more receive antennas are used in the receive array, more copies of the received signals are available at the receiver. Again, assume a 4 -element ULA at the receiver.

The optimal combining weights can be derived by matching the channel response. Such a combining scheme is often termed as maximum ratio combining (MRC). Although in theory such scheme requires the knowledge of the channel, in practice the channel response can often be estimated at the receive array.
```

nerr = zeros(1,Nsnr);
for m = 1:Nframe
simompchan = scatteringchanmtx(txsipos,rxmopos,Nscat);
wr = simompchan'/norm(simompchan);
nerr = nerr+helperMIMOBER(simompchan,x,ebn0_param,1,wr);
end
ber_simomp = nerr/Nsamp;

```
helperBERPlot(ebn0_param,[ber_sisomp(:) ber_simomp(:)]);
legend('SISO Multipath','SIMO Multipath');


Note that the received signal is no longer weighted by a steering vector toward a specific direction. Instead, the receiving array weights in this case are given by the complex conjugate of the channel response. Otherwise it is possible that multipath could make the received signal out of phase with the transmitted signal. This assumes that the channel response is known to the receiver. If the channel response is unknown, pilot signals can be used to estimate the channel response.

It can be seen from the BER curve that not only the SIMO system provides some SNR gains compared to the SISO system, but the slope of the BER curve of the SIMO system is also steeper compared to the BER curve of the SISO system. The gain resulted from the slope change is often referred to as the diversity gain.

\section*{MISO Multipath Channel}

Things get more interesting when there is multipath propagation in a MISO system. First, if the channel is known to the transmitter, then the strategy to improve the SNR is similar to maximum ratio combining. The signal radiated from each element of the transmit array should be weighted so that the propagated signal can be added coherently at the receiver.
```

nerr = zeros(1,Nsnr);
for m = 1:Nframe
misompchan = scatteringchanmtx(txmipos,rxsopos,Nscat);
wt = misompchan'/norm(misompchan);
nerr = nerr+helperMIMOBER(misompchan,x,ebn0_param,wt,1);

```
end
ber_misomp = nerr/Nsamp;
helperBERPlot(ebn0_param,[ber_sisomp(:) ber_simomp(:) ber_misomp(:)]);
legend('SISO Multipath','SIMO Multipath','MISO Multipath');


Note the transmit diversity gain shown in the BER curve. Compared to the SIMO multipath channel case, the performance of a MISO multipath system is not as good. This is because there is only one copy of the received signal yet the transmit power gets spread among multiple paths. It is certainly possible to amplify the signal at the transmit side to achieve an equivalent gain, but that introduces additional cost.

If the channel is not known to the transmitter, there are still ways to explore the diversity via space time coding. For example, Alamouti code is a well known coding scheme that can be used to achieve diversity gain when the channel is not known. Interested readers are encouraged to explore the Introduction to MIMO Systems example in Communication System Toolbox \({ }^{\mathrm{TM}}\).

\section*{MIMO Multipath Channel}

The rest of this example focuses on a multipath MIMO channel. In particular, this section illustrates the case where the number of scatterers in the environment is larger than the number of elements in the transmit and receive arrays. Such environment is often termed as a rich scattering environment.

Before diving into the specific performance measures, it is helpful to get a quick illustration of what the channel looks like. The following helper function creates a \(4 \times 4\) MIMO channel where both transmitter and receiver are 4-element ULAs.
[txang,rxang,scatg,scatpos] = ...
helperComputeRandomScatterer(txcenter,rxcenter,Nscat);
mimompchan \(=\) scatteringchanmtx(txmipos,rxmopos,txang,rxang,scatg);
There are multiple paths available between the transmit array and the receive array because of the existence of the scatterers. Each path consists of a single bounce off the corresponding scatterer.
helperPlotSpatialMIMOScene(txmipos,rxmopos,txcenter,rxcenter,scatpos);


There are two ways to take advantage of a MIMO channel. The first way is to explore the diversity gain offered by a MIMO channel. Assuming the channel is known, the following figure shows the diversity gain with the BER curve.
```

nerr = zeros(1,Nsnr);
for m = 1:Nframe
mimompchan = scatteringchanmtx(txmipos,rxmopos,Nscat);
[u,s,v] = svd(mimompchan);
wt = u(:,1)';
wr = v(:,1);
nerr = nerr+helperMIMOBER(mimompchan,x,ebn0_param,wt,wr);
end
ber_mimomp = nerr/Nsamp;
helperBERPlot(ebn0_param,[ber_sisomp(:) ber_simomp(:) ber_mimomp(:)]);
legend('SISO Multipath','SIMO Multipath','MİMO Multipath');

```


Compare the BER curve from a MIMO channel with the BER curve obtained from a SIMO system. In the multipath case, the diversity gain from a MIMO channel is not necessarily better than the diversity gain provided by a SIMO channel. This is because to obtain the best diversity gain, only the dominant mode in a MIMO channel is used yet there are other modes in the channel that are not used. So is there an alternative way to utilize the channel?

\section*{Improve Capacity by Spatial Multiplexing for MIMO Multipath Channel}

The answer to the previous question lies in a scheme called spatial multiplexing. The idea behind spatial multiplexing is that a MIMO multipath channel with a rich scatterer environment can send multiple data streams simultaneously across the channel. For example, the channel matrix of a \(4 \times 4\) MIMO channel becomes full rank because of the scatterers. This means that it is possible to send as many as 4 data streams at once. The goal of spatial multiplexing is less about increasing the SNR but more about increasing the information throughput.

The idea of spatial multiplexing is to separate the channel matrix to multiple mode so that the data stream sent from different elements in the transmit array can be independently recovered from the received signal. To achieve this, the data stream is precoded before the transmission and then combined after the reception. The precoding and combining weights can be computed from the channel matrix by
```

[wp,wc] = diagbfweights(mimompchan);

```

To see why the combination of the precoding and combining weights can help transmit multiple data streams at the same time, examine the product of the weights and the channel matrix.
wp*mimompchan*wc
```

ans =

| $10.3543-0.0000 i$ | $-0.0000-0.0000 i$ | $-0.0000+0.0000 i$ | $-0.0000-0.0000 i$ |
| ---: | ---: | ---: | ---: |
| $-0.0000+0.0000 i$ | $6.0693+0.0000 i$ | $0.0000+0.0000 i$ | $0.0000+0.0000 i$ |
| $-0.0000+0.0000 i$ | $-0.0000+0.0000 i$ | $2.4446-0.0000 i$ | $-0.0000+0.0000 i$ |
| $-0.0000-0.0000 i$ | $0.0000-0.0000 i$ | $-0.0000-0.0000 i$ | $1.1049-0.0000 i$ |

```

Note that the product is a diagonal matrix, which means that the information received by each receive array element is simply a scaled version of the transmit array element. So it behaves like multiple orthogonal subchannels within the original channel. The first subchannel corresponds to the dominant transmit and receive directions so there is no loss in the diversity gain. In addition, it is now possible to use other subchannels to carry information too, as shown in the BER curve for the first two subchannels.
```

Ntx = 4
Nrx = 4;
x = randi([0 1],Nbitperframe,Ntx);
nerr = zeros(Nrx,Nsnr);
for m = 1:Nframe
mimompchan = scatteringchanmtx(txmipos,rxmopos,Nscat);
[wp,wc] = diagbfweights(mimompchan);
nerr = nerr+helperMIMOMultistreamBER(mimompchan,x,ebn0_param,wp,wc);
end
ber_mimompdiag = nerr/Nsamp;
helperBERPlot(ebn0_param,[ber_sisomp(:) ber_mimomp(:)...
ber mimompdiag(1,:).' ber mimompdiag(2,:).']);
legend('SISO LOS','MIMO Multip}ath','MIMO Multipath Stream 1',...
'MIMO Multipath Stream 2');

```


Although the second stream can not provide a gain as high as the first stream as it uses a less dominant subchannel, the overall information throughput is improved. Therefore, next section measures the performance by the channel capacity instead of the BER curve.
The most intuitive way to transmit data in a MIMO system is to uniformly split the power among transmit elements. However, the capacity of the channel can be further improved if the channel is known at the transmitter. In this case, the transmitter could use the waterfill algorithm to make the choice of transmitting only in the subchannels where a satisfying SNR can be obtained. The following figure shows the comparison of the system capacity between the two power distribution schemes. The result confirms that the waterfill algorithm provides a better system capacity compared to the uniform power distribution. The difference gets smaller when the system level SNR improves.
```

C_mimo_cu = zeros(1,Nsnr);
C_mimo_ck = zeros(1,Nsnr);
Ntrial = 1000;
for m = 1:Nsnr
for n = 1:Ntrial
mimompchan = scatteringchanmtx(txmipos,rxmopos,Nscat);
N0 = db2pow(-ebn0_param(m));
[~,~,~,~,cu] = diagbfweights(mimompchan,1,N0,'uniform');
[~,~,~,~,ck] = diagbfweights(mimompchan,1,N0,'waterfill');
C_mimo_cu(m) = C_mimo_cu(m)+cu;
C_mimo_ck(m) = C_mimo_ck(m)+ck;
end
end
C_mimo_cu = C_mimo_cu/Ntrial;
C_mimo_ck = C_mimo_ck/Ntrial;

```
```

plot(ebn0_param,C_mimo_cu(:),'-*',ebn0_param,C_mimo_ck(:),'-^');
xlabel('SNR (dB)');
ylabel('Capacity (bps/Hz)');
legend('Uniform Power Distribution','Waterfill Power Distribution');
grid on;

```


For more details on spatial multiplexing and its detection techniques, refer to the Spatial Multiplexing example in Communication System Toolbox.

\section*{From Beamforming To Precoding}

Finally, it is worth looking at how these different ways of using arrays relate to each other. Starting from the LOS channel, as mentioned in the previous sections, the benefit provided by the array is an improvement in the SNR.
```

[~,txang] = rangeangle(rxcenter,txcenter);
[~,rxang] = rangeangle(txcenter,rxcenter);
mimochan = scatteringchanmtx(txmipos,rxmopos,txang,rxang,1);
wt = txarraystv(fc,txang)';
wr = conj(rxarraystv(fc,rxang));
helperPlotSpatialMIMOScene(txmipos,rxmopos,txcenter,rxcenter,...
(txcenter+rxcenter)/2,wt,wr)

```


It is clear from the sketch that in this case, the transmit and receive weights form two beams that points to each other. Thus, the array gain is achieved by the beamforming technique. On the other hand, if one tries to create a similar sketch for a MIMO channel, it looks like the following figure.
```

[txang,rxang,scatg,scatpos] = ...
helperComputeRandomScatterer(txcenter,rxcenter,Nscat);
mimompchan = scatteringchanmtx(txmipos,rxmopos,txang,rxang,scatg);
[wp,wc] = diagbfweights(mimompchan);
helperPlotSpatialMIMOScene(txmipos,rxmopos,txcenter,rxcenter,...
scatpos,wp(1,:),wc(:,1))

```


Note that the figure only depicts the pattern for the first data stream but nevertheless it is clear that the pattern no longer necessarily has a dominant main beam. However, if the number of scatterers is reduced to one, then the scene becomes
[txang,rxang,scatg,scatpos] = ... helperComputeRandomScatterer(txcenter,rxcenter,1);
mimompchan \(=\) scatteringchanmtx(txmipos,rxmopos,txang,rxang,scatg);
[wp,wc] = diagbfweights(mimompchan);
helperPlotSpatialMIMOScene(txmipos,rxmopos,txcenter,rxcenter,...
scatpos,wp(1,:),wc(:,1))


Therefore, the LOS channel case, or more precisely, the one scatterer case, can be considered as a special case of the precoding. When there is only one path available between the transmit and receive arrays, the precoding degenerates to a beamforming scheme.

\section*{Summary}

This example explains how array processing can be used to improve the quality of a MIMO wireless communication system. Depending on the nature of the channel, the arrays can be used to either improve the SNR via array gain or diversity gain, or improve the capacity via spatial multiplexing. The example also shows how to use functions like scatteringchanmtx and diagbfweights to simulate those scenarios. For more information on MIMO systems modeling, interested readers may refer to examples provided in Communications Toolbox \({ }^{\mathrm{TM}}\).

\section*{Reference}
[1] David Tse and Pramod Viswanath, Fundamentals of Wireless Communications, Cambridge, 2005
[2] Arogyswami Paulraj, Introduction to Space-Time Wireless Communication, Cambridge, 2003

\section*{Introduction to Hybrid Beamforming}

This example introduces the basic concept of hybrid beamforming and shows how to simulate such a system.

\section*{Introduction}

Modern wireless communication systems use spatial multiplexing to improve the data throughput within the system in a scatterer rich environment. In order to send multiple data streams through the channel, a set of precoding and combining weights are derived from the channel matrix. Then each data stream can be independently recovered. Those weights contain both magnitude and phase terms and are normally applied in the digital domain. One example of simulating such a system can be found in the "Improve SNR and Capacity of Wireless Communication Using Antenna Arrays" on page 17-406 example. In the system diagram shown below, each antenna is connected to a unique transmit and receive (TR) module.


The ever growing demand for high data rate and more user capacity increases the need to use the spectrum more efficiently. As a result, the next generation, 5G, wireless systems will use millimeter wave (mmWave) band to take advantage of its wider bandwidth. In addition, 5G systems deploy large scale antenna arrays to mitigate severe propagation loss in the mmWave band. However, these configurations bring their unique technical challenges.

Compared to current wireless systems, the wavelength in the mmWave band is much smaller. Although this allows an array to contain more elements with the same physical dimension, it becomes much more expensive to provide one TR module for each antenna element. Hence, as a compromise, a TR switch is often used to supply multiple antenna elements. This is the same concept as the subarray configuration used in the radar community. One such configuration is shown in the following figure.


The figure above shows that on the transmit side, the number of TR switches, \(N_{T R F}\), is smaller than the number of antenna elements, \(N_{T}\). To provide more flexibility, each antenna element can be connected to one or more TR modules. In addition, analog phase shifters can be inserted between each TR module and antenna to provide some limited steering capability.

The configuration on the receiver side is similar, as shown in the figure. The maximum number of data streams, \(N_{S}\), that can be supported by this system is the smaller of \(N_{T R F}\) and \(N_{R R F}\).

In this configuration, it is no longer possible to apply digital weights on each antenna element. Instead, the digital weights can only be applied at each RF chain. At the element level, the signal is adjusted by analog phase shifters, which only changes the phase of the signal. Thus, the precoding or combining are actually done in two stages. Because this approach performs beamforming in both digital and analog domains, it is referred to as hybrid beamforming.

\section*{System Setup}

This section simulates a \(64 \times 16\) MIMO hybrid beamforming system, with a 64 -element square array with 4 RF chains on the transmitter side and a 16 -element square array with 4 RF chains on the receiver side.
```

Nt = 64;
NtRF = 4;
Nr = 16;
NrRF = 4;

```

In this simulation, it is assumed that each antenna is connected to all RF chains. Thus, each antenna is connected to 4 phase shifters. Such an array can be modeled by partitioning the array aperture into 4 completely connected subarrays.
```

rng(4096);
c = 3e8;
fc = 28e9;
lambda = c/fc;
txarray = phased.PartitionedArray(...
'Array',phased.URA([sqrt(Nt) sqrt(Nt)],lambda/2),...
'SubarraySelection',ones(NtRF,Nt),'SubarraySteering','Custom');
rxarray = phased.PartitionedArray(...

```
```

'Array',phased.URA([sqrt(Nr) sqrt(Nr)],lambda/2),...
'SubarraySelection',ones(NrRF,Nr),'SubarraySteering ','Custom');

```

To maximize the spectral efficiency, each RF chain can be used to send an independent data stream. In this case, the system can support up to 4 streams.

Next, assume a scattering environment with 6 scattering clusters randomly distributed in space. Within each cluster, there are 8 closely located scatterers with a angle spread of 5 degrees, for a total of 48 scatterers. The path gain for each scatterer is obtained from a complex circular symmetric Gaussian distribution.
```

Ncl = 6;
Nray = 8;
Nscatter = Nray*Ncl;
angspread = 5;
% compute randomly placed scatterer clusters
txclang = [rand(1,Ncl)*120-60;rand(1,Ncl)*60-30];
rxclang = [rand(1,Ncl)*120-60; rand(1,Ncl)*60-30];
txang = zeros(2,Nscatter);
rxang = zeros(2,Nscatter);
% compute the rays within each cluster
for m = 1:Ncl
txang(:,(m-1)*Nray+(1:Nray)) = randn(2,Nray)*sqrt(angspread)+txclang(:,m);
rxang(:,(m-1)*Nray+(1:Nray)) = randn(2,Nray)*sqrt(angspread)+rxclang(:,m);
end
g = (randn(1,Nscatter)+1i*randn(1,Nscatter))/sqrt(Nscatter);

```

The channel matrix can be formed as
```

txpos = getElementPosition(txarray)/lambda;
rxpos = getElementPosition(rxarray)/lambda;
H = scatteringchanmtx(txpos,rxpos,txang,rxang,g);

```

\section*{Hybrid Weights Computation}

In a spatial multiplexing system with all digital beamforming, the signal is modulated by a set of precoding weights, propagated through the channel, and recovered by a set of combining weights. Mathematically, this process can be described by \(\mathrm{Y}=(\mathrm{X} * \mathrm{~F} * \mathrm{H}+\mathrm{N}) * \mathrm{~W}\) where X is an Ns-column matrix whose columns are data streams, \(F\) is an \(N s \times N t\) matrix representing the precoding weights, \(W\) is an \(\mathrm{Nr} \times \mathrm{Ns}\) matrix representing the combining weights, N is an Nr -column matrix whose columns are the receiver noise at each element, and Y is an Ns -column matrix whose columns are recovered data streams. Since the goal of the system is to achieve better spectral efficiency, obtaining the precoding and combining weights can be considered as an optimization problem where the optimal precoding and combining weights make the product of \(\mathrm{F} * \mathrm{H} * \mathrm{~W}\) ' a diagonal matrix so each data stream can be recovered independently.

In a hybrid beamforming system, the signal flow is similar. Both the precoding weights and the combining weights are combinations of baseband digital weights and RF band analog weights. The baseband digital weights convert the incoming data streams to input signals at each RF chain and the analog weights then convert the signal at each RF chain to the signal radiated or collected at each antenna element. Note that the analog weights can only contain phase shifts.

Mathematically, it can be written as \(\mathrm{F}=\mathrm{Fbb} * \mathrm{Frf}\) and \(\mathrm{W}=\mathrm{Wbb} * \mathrm{Wrf}\), where Fbb is an \(\mathrm{Ns} \times\) NtRF matrix, Frf an NtRF \(\times\) Nt matrix, Wbb an NrRF \(\times\) Ns matrix, and Wrf an Nr \(\times\) NrRF matrix. Since both Frf and Wrf can only be used to modify the signal phase, there are extra constraints in the optimization
process to identify the optimal precoding and combining weights. Ideally, the resulting combination of Fbb*Frf and Wrf*Wbb are close approximations of F and W that are obtained without those constraints.

Unfortunately, optimizing all four matrix variables simultaneously is quite difficult. Therefore, many algorithms are proposed to arrive at suboptimal weights with a reasonable computational load. This example uses the approach proposed in [1] which decouples the optimizations for the precoding and combining weights. It first uses the orthogonal matching pursuit algorithm to derive the precoding weights. Once the precoding weights are computed, the result is then used to obtain the corresponding combining weights.

Assuming the channel is known, the unconstrained optimal precoding weights can be obtained by diagonalizing the channel matrix and extracting the first NtRF dominating modes. The transmit beam pattern can be plotted as.
```

F = diagbfweights(H);
F = F(1:NtRF,:);
pattern(txarray,fc,-90:90,-90:90,'Type','efield',...
'ElementWeights',F','PropagationSpeed',c);

```


The response pattern above shows that even in a multipath environment, there are limited number of dominant directions.

The hybrid weights, on the other hand, can be computed as
```

At = steervec(txpos,txang);
Ar = steervec(rxpos,rxang);

```
```

Ns = NtRF;
[Fbb,Frf] = omphybweights(H,Ns,NtRF,At);

```

The beam pattern of the hybrid weights is shown below
```

pattern(txarray,fc,-90:90,-90:90,'Type','efield',...
'ElementWeights',Frf'*Fbb','PropagationSpeed',c);

```


Compared to the beam pattern obtained using the optimal weights, the beam pattern using the hybrid weights is similar, especially for dominant beams. This means that the data streams can be successfully transmitted through those beams using hybrid weights.

\section*{Spectral Efficiency Comparison}

One of the system level performance metrics of a 5G system is the spectral efficiency. The next section compares the spectral efficiency achieved using the optimal weights with that of the proposed hybrid beamforming weights. The simulation assumes 1 or 2 data streams as outlined in [1]. The transmit antenna array is assumed to be at a base station, with a focused beamwidth of 60 degrees in azimuth and 20 degrees in elevation. The signal can arrive at the receive array from any direction. The resulting spectral efficiency curve is obtained from 50 Monte-Carlo trials for each SNR.
```

snr_param = -40:5:0;
Nsnr = numel(snr param);
Ns_param = [1 2];
NNs = numel(Ns_param);

```
```

NtRF = 4;
NrRF = 4;
Ropt = zeros(Nsnr,NNs);
Rhyb = zeros(Nsnr,NNs);
Niter = 50;
for m = 1:Nsnr
snr = db2pow(snr_param(m));
for n = 1:Niter
% Channel realization
txang = [rand(1,Nscatter)*60-30;rand(1,Nscatter)*20-10];
rxang = [rand(1,Nscatter)*180-90;rand(1,Nscatter)*90-45];
At = steervec(txpos,txang);
Ar = steervec(rxpos,rxang);
g = (randn(1,Nscatter)+1i*randn(1,Nscatter))/sqrt(Nscatter);
H = scatteringchanmtx(txpos,rxpos,txang,rxang,g);
for k = 1:NNs
Ns = Ns_param(k);
% Compute optimal weights and its spectral efficiency
[Fopt,Wopt] = helperOptimalHybridWeights(H,Ns,1/snr);
Ropt(m,k) = Ropt(m,k)+helperComputeSpectralEfficiency(H,Fopt,Wopt,Ns,snr);
% Compute hybrid weights and its spectral efficiency
[Fbb,Frf,Wbb,Wrf] = omphybweights(H,Ns,NtRF,At,NrRF,Ar,1/snr);
Rhyb(m,k) = Rhyb(m,k)+helperComputeSpectralEfficiency(H,Fbb*Frf,Wrf*Wbb,Ns,snr);
end
end
end
Ropt = Ropt/Niter;
Rhyb = Rhyb/Niter;
plot(snr_param,Ropt(:,1),'--sr',...
snr_param,Ropt(:,2),'--b',...
snr_param,Rhyb(:,1),'-sr',...
snr_param,Rhyb(:,2),'-b');
xlabel('SNR (dB)');
ylabel('Spectral Efficiency (bits/s/Hz');
legend('Ns=1 optimal','Ns=2 optimal','Ns=1 hybrid', 'Ns=2 hybrid',...
'Location','best');
grid on;

```


This figure shows that the spectral efficiency improves significantly when we increase the number of data streams. In addition, the hybrid beamforming can perform close to what optimal weights can offer using less hardware.

\section*{Summary}

This example introduces the basic concept of hybrid beamforming and shows how to split the precoding and combining weights using orthogonal matching pursuit algorithm. It shows that hybrid beamforming can closely match the performance offered by optimal digital weights.

\section*{References}
[1] Omar El Ayach, et al. Spatially Sparse Precoding in Millimeter wave MIMO Systems, IEEE Transactions on Wireless Communications, Vol. 13, No. 3, March 2014.

\section*{MIMO-OFDM Precoding with Phased Arrays}

This example shows how phased arrays are used in a MIMO-OFDM communication system employing beamforming. Using components from Communications Toolbox \({ }^{\mathrm{TM}}\) and Phased Array System Toolbox \({ }^{\mathrm{TM}}\), it models the radiating elements that comprise a transmitter and the front-end receiver components, for a MIMO-OFDM communication system. With user-specified parameters, you can validate the performance of the system in terms of bit error rate and constellations for different spatial locations and array sizes.

The example uses functions and System objects \({ }^{\mathrm{TM}}\) from Communications Toolbox and Phased Array System Toolbox and requires
- WINNER II Channel Model for Communications Toolbox

\section*{Introduction}

MIMO-OFDM systems are the norm in current wireless systems (e.g. 5G NR, LTE, WLAN) due to their robustness to frequency-selective channels and high data rates enabled. With ever-increasing demands on data rates supported, these systems are getting more complex and larger in configurations with increasing number of antenna elements, and resources (subcarriers) allocated.

With antenna arrays and spatial multiplexing, efficient techniques to realize the transmissions are necessary [ 6 ]. Beamforming is one such technique, that is employed to improve the signal to noise ratio (SNR) which ultimately improves the system performance, as measured here in terms of bit error rate (BER) [ 1 ].

This example illustrates an asymmetric MIMO-OFDM single-user system where the maximum number of antenna elements on transmit and receive ends can be 1024 and 32 respectively, with up to 16 independent data streams. It models a spatial channel where the array locations and antenna patterns are incorporated into the overall system design. For simplicity, a single point-to-point link (one base station communicating with one mobile user) is modeled. The link uses channel sounding to provide the transmitter with the channel information it needs for beamforming.

The example offers the choice of a few spatially defined channel models, specifically a WINNER II Channel model and a scattering-based model, both of which account for the transmit/receive spatial locations and antenna patterns.
```

s = rng(61); % Set RNG state for repeatability

```

\section*{System Parameters}

Define parameters for the system. These parameters can be modified to explore their impact on the system.
```

% Single-user system with multiple streams
prm.numUsers = 1; % Number of users
prm.numSTS = 16; % Number of independent data streams, 4/8/16/32/64
prm.numTx = 32; % Number of transmit antennas
prm.numRx = 16; % Number of receive antennas
prm.bitsPerSubCarrier = 6; % 2: QPSK, 4: 16QAM, 6: 64QAM, 8: 256QAM
prm.numDataSymbols = 10; % Number of OFDM data symbols
prm.fc = 4e9; % % GHz system
prm.chanSRate = 100e6; % Channel sampling rate, 100 Msps
prm.ChanType = 'Scattering'; % Channel options: 'WINNER', 'Scattering',

```
```

% Array locations and angles
prm.posTx = [0;0;0]; % BS/Transmit array position, [x;y;z], meters
prm.mobileRange = 300; % meters
% Angles specified as [azimuth;elevation], az=[-90 90], el=[-90 90]
prm.mobileAngle = [33; 0]; % degrees
prm.steeringAngle = [30; -20]; % Transmit steering angle (close to mobileAngle)
prm.enSteering = true; % Enable/disable steering

```

Parameters to define the OFDM modulation employed for the system are specified below.
```

prm.FFTLength = 256;
prm.CyclicPrefixLength = 64;
prm.numCarriers = 234;
prm.NumGuardBandCarriers = [7 6];
prm.PilotCarrierIndices = [26 54 90 118 140 168 204 232];
nonDataIdx = [(1:prm.NumGuardBandCarriers(1))'; prm.FFTLength/2+1; ...
(prm.FFTLength-prm.NumGuardBandCarriers(2)+1:prm.FFTLength)'; ...
prm.PilotCarrierIndices.';];
prm.CarriersLocations = setdiff((1:prm.FFTLength)',sort(nonDataIdx));
numTx = prm.numTx;
numRx = prm.numRx;
numSTS = prm.numSTS;
prm.numFrmBits = numSTS*prm.numDataSymbols*prm.numCarriers* ...
prm.bitsPerSubCarrier*1/3-6; % Account for termination bits
prm.modMode = 2^prm.bitsPerSubCarrier; % Modulation order
% Account for channel filter delay
prm.numPadZeros = 3*(prm.FFTLength+prm.CyclicPrefixLength);
% Get transmit and receive array information
prm.numSTSVec = numSTS;
[isTxURA, expFactorTx,isRxURA, expFactorRx] = helperArrayInfo(prm,true);

```

The processing for channel sounding, data transmission and reception modeled in the example are shown in the following block diagrams.


The free space path loss is calculated based on the base station and mobile station positions for the spatially-aware system modeled.
```

prm.cLight = physconst('LightSpeed');
prm.lambda = prm.cLight/prm.fc;
% Mobile position

```
```

[xRx,yRx,zRx] = sph2cart(deg2rad(prm.mobileAngle(1)),...
deg2rad(prm.mobileAngle(2)),prm.mobileRange);
prm.posRx = [xRx;yRx;zRx];
[toRxRange,toRxAng] = rangeangle(prm.posTx,prm.posRx);
spLoss = fspl(toRxRange,prm.lambda);
gainFactor = 1;

```

\section*{Channel Sounding}

For a spatially multiplexed system, availability of channel information at the transmitter allows for precoding to be applied to maximize the signal energy in the direction and channel of interest. Under the assumption of a slowly varying channel, this is facilitated by sounding the channel first, wherein for a reference transmission, the receiver estimates the channel and feeds this information back to the transmitter.

For the chosen system, a preamble signal is sent over all transmitting antenna elements, and processed at the receiver accounting for the channel. The receiver components perform preamplification, OFDM demodulation, frequency domain channel estimation, and calculation of the feedback weights based on channel diagonalization using singular value decomposition (SVD) per data subcarrier.
```

% Generate the preamble signal
preambleSigSTS = helperGenPreamble(prm);
% repeat over numTx
preambleSig = zeros(size(preambleSigSTS,1),numTx);
for i = 1:numSTS
preambleSig(:,(i-1)*expFactorTx+(1:expFactorTx)) = ...
repmat(preambleSigSTS(:,i),1,expFactorTx);
end
% Transmit preamble over channel
[rxPreSig,chanDelay] = helperApplyChannel(preambleSig,prm,spLoss);
% Front-end amplifier gain and thermal noise
rxPreAmp = phased.ReceiverPreamp(...
'Gain',gainFactor*spLoss, ... % account for path loss
'NoiseFigure',prm.NFig, ...
'ReferenceTemperature',290, ...
'SampleRate',prm.chanSRate);
rxPreSigAmp = rxPreAmp(rxPreSig);
rxPreSigAmp = rxPreSigAmp * ... % scale power
(sqrt(prm.FFTLength-sum(prm.NumGuardBandCarriers)-1)/(prm.FFTLength));
% OFDM Demodulation
demodulatorOFDM = comm.OFDMDemodulator(. . .
'FFTLength',prm.FFTLength, ...
'NumGuardBandCarriers',prm.NumGuardBandCarriers.', ...
'RemoveDCCarrier',true, ...
'PilotOutputPort',true, ...
'PilotCarrierIndices',prm.PilotCarrierIndices.', ...
'CyclicPrefixLength',prm.CyclicPrefixLength, ...
'NumSymbols',numSTS, ... % preamble symbols alone
'NumReceiveAntennas',numRx);
rx0FDM = demodulator0FDM(...
rxPreSigAmp(chanDelay+1:end-(prm.numPadZeros-chanDelay),:));

```
```

% Channel estimation from preamble
% numCarr, numSTS, numRx
hD = helperMIMOChannelEstimate(rx0FDM(:,1:numSTS,:),prm);
% Calculate the feedback weights
v = diagbfweights(hD);

```

For conciseness in presentation, front-end synchronization including carrier and timing recovery are assumed. The weights computed using diagbfweights are hence fed back to the transmitter, for subsequent application for the actual data transmission.

\section*{Data Transmission}

Next, we configure the system's data transmitter. This processing includes channel coding, bit mapping to complex symbols, splitting of the individual data stream to multiple transmit streams, precoding of the transmit streams, OFDM modulation with pilot mapping and replication for the transmit antennas employed.
```

% Convolutional encoder
encoder = comm.ConvolutionalEncoder(...
'TrellisStructure',poly2trellis(7,[133 171 165]), ...
'TerminationMethod','Terminated');
% Generate mapped symbols from bits
txBits = randi([0, 1],prm.numFrmBits,1);
encodedBits = encoder(txBits);
% Bits to QAM symbol mapping
mappedSym = qammod(encodedBits,prm.modMode,'InputType','Bit', ...
'UnitAveragePower',true);
% Map to layers: per symbol, per data stream
gridData = reshape(mappedSym,prm.numCarriers,prm.numDataSymbols,numSTS);
% Apply precoding weights to the subcarriers, assuming perfect feedback
preData = complex(zeros(prm.numCarriers,prm.numDataSymbols,numSTS));
for symIdx = 1:prm.numDataSymbols
for carrIdx = 1:prm.numCarriers
Q = squeeze(v(carrIdx,:,:));
normQ = Q * sqrt(numTx)/norm(Q,'fro');
preData(carrIdx,symIdx,:) = ...
squeeze(gridData(carrIdx,symIdx,:)).' * normQ;
end
end
% OFDM modulation of the data
modulatorOFDM = comm.OFDMModulator(...
'FFTLength',prm.FFTLength, ...
'NumGuardBandCarriers',prm.NumGuardBandCarriers.',...
'InsertDCNull',true,
'PilotInputPort',true,...
'PilotCarrierIndices',prm.PilotCarrierIndices.',...
'CyclicPrefixLength',prm.CyclicPrefixLength,...
'NumSymbols',prm.numDataSymbols,...
'NumTransmitAntennas',numSTS);
% Multi-antenna pilots
pilots = helperGenPilots(prm.numDataSymbols,numSTS);

```
```

txOFDM = modulator0FDM(preData,pilots);
txOFDM = tx0FDM * (prm.FFTLength/ ...
sqrt(prm.FFTLength-sum(prm.NumGuardBandCarriers)-1)); % scale power
% Generate preamble with the feedback weights and prepend to data
preambleSigD = helperGenPreamble(prm,v);
txSigSTS = [preambleSigD;tx0FDM];
% Repeat over numTx
txSig = zeros(size(txSigSTS,1),numTx);
for i = 1:numSTS
txSig(:,(i-1)*expFactorTx+(1:expFactorTx)) = ...
repmat(txSigSTS(:,i),1,expFactorTx);
end

```

For precoding, the preamble signal is regenerated to enable channel estimation. It is prepended to the data portion to form the transmission packet which is then replicated over the transmit antennas.

\section*{Transmit Beam Steering}

Phased Array System Toolbox offers components appropriate for the design and simulation of phased arrays used in wireless communications systems.

For the spatially aware system, the signal transmitted from the base station is steered towards the direction of the mobile, so as to focus the radiated energy in the desired direction. This is achieved by applying a phase shift to each antenna element to steer the transmission.

The example uses a linear or rectangular array at the transmitter, depending on the number of data streams and number of transmit antennas selected.
```

% Gain per antenna element
amplifier = phased.Transmitter('PeakPower',1/numTx,'Gain',0);
% Amplify to achieve peak transmit power for each element
for n = 1:numTx
txSig(:,n) = amplifier(txSig(:,n));
end
% Transmit antenna array definition
if isTxURA
% Uniform Rectangular array
arrayTx = phased.URA([expFactorTx,numSTS],[0.5 0.5]*prm.lambda, ...
'Element',phased.IsotropicAntennaElement('BackBaffled',true));
else
% Uniform Linear array
arrayTx = phased.ULA(numTx, ...
'ElementSpacing',0.5*prm.lambda, ...
'Element',phased.IsotropicAntennaElement('BackBaffled',true));
end
% For evaluating weights for steering
SteerVecTx = phased.SteeringVector('SensorArray',arrayTx, ...
'PropagationSpeed',prm.cLight);
% Generate weights for steered direction
wT = SteerVecTx(prm.fc,prm.steeringAngle);

```
```

% Radiate along the steered direction, without signal combining
radiatorTx = phased.Radiator('Sensor',arrayTx, ...
'WeightsInputPort',true, ...
'PropagationSpeed',prm.cLight, ...
'OperatingFrequency',prm.fc, ...
'CombineRadiatedSignals',false);
if prm.enSteering
txSteerSig = radiatorTx(txSig,repmat(prm.mobileAngle,1,numTx), ...
conj(wT));
else
txSteerSig = txSig;
end
% Visualize the array
h = figure('Position',figposition([10 55 22 35]),'MenuBar','none');
h.Name = 'Transmit Array Geometry';
viewArray(arrayTx);
% Visualize the transmit pattern and steering
h = figure('Position',figposition([32 55 22 30]),'MenuBar','none');
h.Name = 'Transmit Array Response Pattern';
pattern(arrayTx,prm.fc,'PropagationSpeed',prm.cLight,'Weights',wT);
h = figure('Position',figposition([54 55 22 35]),'MenuBar','none');
h.Name = 'Transmit Array Azimuth Pattern';
patternAzimuth(arrayTx,prm.fc,'PropagationSpeed',prm.cLight,'Weights',wT);
if isTxURA
h = figure('Position',figposition([76 55 22 35]),'MenuBar','none');
h.Name = 'Transmit Array Elevation Pattern';
patternElevation(arrayTx,prm.fc,'PropagationSpeed',prm.cLight, ...
'Weights',wT);
end

```


Azimuth Cut (eleygation angle \(=0.0^{\circ}\) )


Directivity (dBi), Broadside at \(0.00^{\circ}\)

\section*{Elevation Cut (azipputh angle \(=0.0^{\circ}\) )}


Directivity (dBi), Broadside at \(0.00^{\circ}\)

The plots indicate the array geometry and the transmit array response in multiple views. The response shows the transmission direction as specified by the steering angle.

The example assumes the steering angle known and close to the mobile angle. In actual systems, this would be estimated from angle-of-arrival estimation at the receiver as a part of the channel sounding or initial beam tracking procedures.

\section*{Signal Propagation}

The example offers three options for spatial MIMO channels and a simpler static-flat MIMO channel for evaluation purposes.

The WINNER II channel model [ 5 ] is a spatially defined MIMO channel that allows you to specify the array geometry and location information. It is configured to use the typical urban microcell indoor scenario with very low mobile speeds.

The two scattering based channels use a single-bounce path through each scatterer where the number of scatterers is user-specified. For this example, the number of scatterers is set to 100 . The 'Scattering' option models the scatterers placed randomly within a circle in between the transmitter and receiver, while the 'ScatteringFcn' models their placement completely randomly.

The models allow path loss modeling and both line-of-sight (LOS) and non-LOS propagation conditions. The example assumes non-LOS propagation and isotropic antenna element patterns with linear geometry.
```

% Apply a spatially defined channel to the steered signal
[rxSig,chanDelay] = helperApplyChannel(txSteerSig,prm,spLoss,preambleSig);

```

The same channel is used for both sounding and data transmission, with the data transmission having a longer duration controlled by the number of data symbols parameter, prm. numDataSymbols.

\section*{Receive Beam Steering}

The receiver steers the incident signals to align with the transmit end steering, per receive element. Thermal noise and receiver gain are applied. Uniform linear or rectangular arrays with isotropic responses are modeled to match the channel and transmitter arrays.
```

rxPreAmp = phased.ReceiverPreamp(...
'Gain',gainFactor*spLoss, ... % accounts for path loss
'NoiseFigure',prm.NFig, ...
'ReferenceTemperature',290, ...
'SampleRate',prm.chanSRate);
% Front-end amplifier gain and thermal noise
rxSigAmp = rxPreAmp(rxSig);
rxSigAmp = rxSigAmp * ... % scale power
(sqrt(prm.FFTLength - sum(prm.NumGuardBandCarriers)-1)/(prm.FFTLength));
% Receive array
if isRxURA
% Uniform Rectangular array
arrayRx = phased.URA([expFactorRx,numSTS],0.5*prm.lambda, ...
'Element',phased.IsotropicAntennaElement('BackBaffled',true));
else
% Uniform Linear array
arrayRx = phased.ULA(numRx, ...
'ElementSpacing',0.5*prm.lambda, ...
'Element',phased.IsotropicAntennaElement);
end

```
```

% For evaluating receive-side steering weights
SteerVecRx = phased.SteeringVector('SensorArray',arrayRx, ...
'PropagationSpeed',prm.cLight);
% Generate weights for steered direction towards mobile
wR = SteerVecRx(prm.fc,toRxAng);
% Steer along the mobile receive direction
if prm.enSteering
rxSteerSig = rxSigAmp.*(wR');
else
rxSteerSig = rxSigAmp;
end
% Visualize the array
h = figure('Position',figposition([10 20 22 35]),'MenuBar','none');
h.Name = 'Receive Array Geometry';
viewArray(arrayRx);
% Visualize the receive pattern and steering
h = figure('Position',figposition([32 20 22 30]));
h.Name = 'Receive Array Response Pattern';
pattern(arrayRx,prm.fc,'PropagationSpeed',prm.cLight,'Weights',wR);
h = figure('Position',figposition([54 20 22 35]),'MenuBar','none');
h.Name = 'Receive Array Azimuth Pattern';
patternAzimuth(arrayRx,prm.fc,'PropagationSpeed',prm.cLight,'Weights',wR);
if isRxURA
figure('Position',figposition([76 20 22 35]),'MenuBar','none');
h.Name = 'Receive Array Elevation Pattern';
patternElevation(arrayRx,prm.fc,'PropagationSpeed',prm.cLight, ...
'Weights',wR);
end

```


Azimuth Cut (eleyafion angle \(=0.0^{\circ}\) )


Directivity (dBi), Broadside at \(0.00^{\circ}\)

The receive antenna pattern mirrors the transmission steering.

\section*{Signal Recovery}

The receive antenna array passes the propagated signal to the receiver to recover the original information embedded in the signal. Similar to the transmitter, the receiver used in a MIMO-OFDM system contains many components, including OFDM demodulator, MIMO equalizer, QAM demodulator, and channel decoder.
```

demodulatorOFDM = comm.OFDMDemodulator(...
'FFTLength',prm.FFTLength, ...
'NumGuardBandCarriers',prm.NumGuardBandCarriers.', ...
'RemoveDCCarrier',true, ...
'PilotOutputPort',true, ...
'PilotCarrierIndices',prm.PilotCarrierIndices.', ...
'CyclicPrefixLength',prm.CyclicPrefixLength, ...
'NumSymbols',numSTS+prm.numDataSymbols, ... % preamble \& data
'NumReceiveAntennas',numRx);
% OFDM Demodulation
rxOFDM = demodulatorOFDM(...
rxSteerSig(chanDelay+1:end-(prm.numPadZeros-chanDelay),:));
% Channel estimation from the mapped preamble
hD = helperMIMOChannelEstimate(rxOFDM(:,1:numSTS,:),prm);
% MIMO Equalization
[rxEq,CSI] = helperMIMOEqualize(rxOFDM(:,numSTS+1:end,:),hD);
% Soft demodulation
scFact = ((prm.FFTLength-sum(prm.NumGuardBandCarriers)-1) ...
/prm.FFTLength^2)/numTx;

```
```

nVar = noisepow(prm.chanSRate,prm.NFig,290)/scFact;
rxSymbs = rxEq(:)/sqrt(numTx);
rxLLRBits = qamdemod(rxSymbs,prm.modMode,'UnitAveragePower',true, ...
'OutputType','approxllr','NoiseVariance',nVar);
% Apply CSI prior to decoding
rxLLRtmp = reshape(rxLLRBits,prm.bitsPerSubCarrier,[], ...
prm.numDataSymbols,numSTS);
csitmp = reshape(CSI,1,[],1,numSTS);
rxScaledLLR = rxLLRtmp.*Csitmp;
% Soft-input channel decoding
decoder = comm.ViterbiDecoder(...
'InputFormat','Unquantized', ...
'TrellisStructure',poly2trellis(7, [133 171 165]), ...
'TerminationMethod','Terminated', ...
'OutputDataType','double');
rxDecoded = decoder(rxScaledLLR(:));
% Decoded received bits
rxBits = rxDecoded(1:prm.numFrmBits);

```

For the MIMO system modeled, the displayed receive constellation of the equalized symbols offers a qualitative assessment of the reception. The actual bit error rate offers the quantitative figure by comparing the actual transmitted bits with the received decoded bits.
```

% Display received constellation
constDiag = comm.ConstellationDiagram(...
'SamplesPerSymbol',1, ...
'ShowReferenceConstellation',true, ...
'ReferenceConstellation', ...
qammod((0:prm.modMode-1)',prm.modMode,'UnitAveragePower',true), ...
'ColorFading',false, ...
'Position',figposition([20 20 35 40]), ...
'Title','Equalized Symbols', ...
'EnableMeasurements',true, ...
'MeasurementInterval',length(rxSymbs));
constDiag(rxSymbs);
% Compute and display bit error rate
ber = comm.ErrorRate;
measures = ber(txBits,rxBits);
fprintf('BER = %.5f; No. of Bits = %d; No. of errors = %d\n', ...
measures(1),measures(3),measures(2));
rng(s); % Restore RNG state
BER = 0.00000; No. of Bits = 74874; No. of errors = 0

```


\section*{Conclusion and Further Exploration}

The example highlighted the use of phased antenna arrays for a beamformed MIMO-OFDM system. It accounted for the spatial geometry and location of the arrays at the base station and mobile station for a single user system. Using channel sounding, it illustrated how precoding is realized in current wireless systems and how steering of antenna arrays is modeled.

Within the set of configurable parameters, you can vary the number of data streams, transmit/receive antenna elements, station or array locations and geometry, channel models and their configurations to study the parameters' individual or combined effects on the system. E.g. vary just the number of transmit antennas to see the effect on the main lobe of the steered beam and the resulting system performance.

The example also made simplifying assumptions for front-end synchronization, channel feedback, user velocity and path loss models, which need to be further considered for a practical system. Individual systems also have their own procedures which must be folded in to the modeling [ \(2,3,4\) ].

Explore the following helper functions used:
- helperApplyChannel.m
- helperArrayInfo.m
- helperGenPilots.m
- helperGenPreamble.m
- helperGetP.m
- helperMIMOChannelEstimate.m
- helperMIMOEqualize.m

\section*{Selected Bibliography}

1 Perahia, Eldad, and Robert Stacey. Next Generation Wireless LANS: 802.11n and 802.11ac. Cambridge University Press, 2013.
2 IEEE® Std 802.11 \({ }^{\mathrm{Tm}}\)-2012 IEEE Standard for Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications.
3 3GPP TS 36.213. "Physical layer procedures." 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (EUTRA). URL: https://www.3gpp.org.
4 3GPP TS 36.101. "User Equipment (UE) Radio Transmission and Reception." 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA). URL: https://www.3gpp.org.
5 Kyosti, Pekka, Juha Meinila, et al. WINNER II Channel Models. D1.1.2, V1.2. IST-4-027756 WINNER II, September 2007.
6 George Tsoulos, Ed., "MIMO System Technology for Wireless Communications", CRC Press, Boca Raton, FL, 2006.

\section*{Acceleration of Clutter Simulation Using GPU and Code Generation}

\begin{abstract}
This example shows how to simulate clutter on a graphical processing unit (GPU) or through code generation (MEX) instead of the MATLAB interpreter. The example applies the sample matrix inversion (SMI) algorithm, one of the popular space time adaptive processing (STAP) techniques, to the signal received by an airborne radar with a 6 -element uniform linear array (ULA). The example focuses on comparing the performance of clutter simulation between GPU, code generation and the MATLAB interpreter. Interested readers can find details of the simulation and the algorithm in the example "Introduction to Space-Time Adaptive Processing" on page 17-231.
\end{abstract}

The full functionality of this example requires Parallel Computing Toolbox \({ }^{\mathrm{TM}}\) and MATLAB Coder \({ }^{\mathrm{TM}}\).

\section*{Clutter Simulation}

Radar system engineers often need to simulate the clutter return to test signal processing algorithms, such as STAP algorithms. However, generating a high fidelity clutter return involves many steps and therefore is often computationally expensive. For example, phased.ConstantGammaClutter simulates the clutter using the following steps:

1 Divide the entire terrain into small clutter patches. The size of the patch depends on the azimuth patch width and the range resolution.
2 For each patch, calculate its corresponding parameters, such as the random return, the grazing angle, and the antenna array gain.
3 Combine returns from all clutter patches to generate the total clutter return.
The number of clutter patches depends on the terrain coverage, but it is usually in the range of thousands to millions. In addition, all steps above need to be performed for each pulse (assuming a pulsed radar is used). Therefore, clutter simulation is often the tall pole in a system simulation.

To improve the speed of the clutter simulation, one can take advantage of parallel computing. Note that the clutter return from later pulses could depend on the signal generated in earlier pulses, so certain parallel solutions offered by MATLAB, such as parfor, are not always applicable. However, because the computation at each patch is independent of the computations at other patches, it is suitable for GPU acceleration.

If you have a supported GPU and have access to Parallel Computing Toolbox, then you can take advantage of the GPU in generating the clutter return by using phased.gpu.ConstantGammaClutter instead of phased.ConstantGammaClutter. In most cases, using a different System object is the only change you need to make to your existing program, as shown in the following figure.

\footnotetext{
\(\frac{42}{43}\) 'InitialPosition', [1000; 1732; 1000]);
Clutter phased.ConstantGammaClutter('Sensor', array, .
'SampleRate', Fs,
'Gamma',-15,'PlatformHeight', 1000,...
'OperatingFrequency',fc, ...
}
```

[33 unmodified lines hidden]
InitialPosition',[1000; 1732; 1000]);
% clutter
x clutter = phased.gpu.ConstantGammaClutter('Sensor',array,...
SampleRate',Fs,.
'GampleRate',Fs,...
OperatingFrequency',fc,...
[148 unmodified lines hidden]

```

If you have access to MATLAB Coder, you can also speed up clutter simulation by generating \(C\) code for phased. ConstantGammaClutter, compiling it and running the compiled version. When running in code generation mode, this example compiles stapclutter using the codegen command:
```

codegen('stapclutter','-args',...
{coder.Constant(maxRange),...
coder.Constant(patchAzWidth)});

```

All property values of phased. ConstantGammaClutter have to be passed as constant values. The codegen command will generate the mex file, stapclutter_mex, which will be called in the loop.

\section*{Comparing Clutter Simulation Times}

To compare the clutter simulation performance between the MATLAB interpreter, code generation and a GPU, launch the following GUI by typing stapcpugpu in the MATLAB command line. The launched GUI is shown in the following figure:


The left side of the GUI contains four plots, showing the raw received signal, the angle-Doppler response of the received signal, the processed signal, and the angle-Doppler response of the STAP processing weights. Again, the details can be found in the example "Introduction to Space-Time Adaptive Processing" on page 17-231. On the right side of the GUI, you control the number of clutter patches by modifying the clutter patch width in the azimuth direction (in degrees) and maximum
clutter range (in km ). You can then click the Start button to start the simulation, which simulates 5 coherent processing intervals (CPI) where each CPI contains 10 pulses. The processed signal and the angle-Doppler responses are updated once every CPI.

Next section shows timing for different simulation runs. In these simulations, each pulse consists of 200 range samples with a range resolution of 50 m . Combinations of the clutter patch width and the maximum clutter range result in various number of total clutter patches. For example, a clutter patch width of 10 degrees and a maximum clutter range of 5 km implies 3600 clutter patches. The simulations are carried out on the following system configurations:
- CPU: Xeon X5650, 2.66 GHz, 24 GB memory
- GPU: Tesla C2075, 6 GB memory

The timing results are shown in the following figure.
helperCPUGPUResultPlot


From the figure, you can see that in general the GPU improves the simulation speed by dozens of times, sometimes even hundred of times. Two interesting observations are:
- When the number of clutter patches are small, as long as the data can be fit into the GPU memory, the GPU's performance is almost constant. The same is not true for the MATLAB interpreter.
- Once the number of clutter patches gets large, the data can no longer be fit into the GPU memory. Therefore, the speed up provided by GPU over the MATLAB interpreter starts to decrease.
However, for close to ten millions of clutter patches, the GPU still provides an acceleration of over 50 times.

Simulation speed improvement due to code generation is less than the GPU speed improvement, but is still significant. Code generation for the phased. ConstantGammaClutter pre-calculates the collected clutter as an array of constant values. For larger number of clutter patches the size of the array becomes too big, thus reducing the speed improvement due to the overhead of memory management. Code generation requires access to MATLAB Coder but requires no special hardware.

\section*{Other Simulation Timing Results}

Even though the simulation used in this example calculates millions of clutter patches, the resulting data cube has a size of \(200 \times 6 \times 10\), indicating only 200 range samples within each pulse, 6 channels, and 10 pulses. This data cube is small compared to real problems. This example chooses these parameters to show the benefit you can get from using a GPU or code generation while ensuring that the example runs within a reasonable time in the MATLAB interpreter. Some simulations with larger data cube size yield the following results:
- 45 -fold acceleration using a GPU for a simulation that generates 50 pulses for a 50 -element ULA with 5000 range samples in each pulse, i.e., a \(5000 \times 50 \times 50\) data cube. The range resolution is 10 m . The radar covers a total azimuth of 60 degrees, with 1 degree in each clutter patch. The maximum clutter range is 50 km . The total number of clutter patches is 305,000 .
- 60 -fold acceleration using a GPU for a simulation like the one above, except with 180 -degree azimuth coverage and a maximum clutter range equal to the horizon range (about 130 km ). In this case, the total number of clutter patches is \(2,356,801\).

\section*{Summary}

This example compares the performance achieved by simulating clutter return using either the MATLAB interpreter, a GPU or code generation. The result indicates that the GPU and code generation offer big speed improvements over the MATLAB interpreter.

\section*{Designing a Basic Monostatic Pulse Radar}

This example shows how to design a monostatic pulse radar to estimate the target range. A monostatic radar has the transmitter collocated with the receiver. The transmitter generates a pulse which hits the target and produces an echo received by the receiver. By measuring the location of the echoes in time, we can estimate the range of a target.

This example focuses on a pulse radar system design which can achieve a set of design specifications. It outlines the steps to translate design specifications, such as the probability of detection and the range resolution, into radar system parameters, such as the transmit power and the pulse width. It also models the environment and targets to synthesize the received signal. Finally, signal processing techniques are applied to the received signal to detect the ranges of the targets.

\section*{Design Specifications}

The design goal of this pulse radar system is to detect non-fluctuating targets with at least one square meter radar cross section (RCS) at a distance up to 5000 meters from the radar with a range resolution of 50 meters. The desired performance index is a probability of detection (Pd) of 0.9 and probability of false alarm (Pfa) below 1e-6. Since coherent detection requires phase information and, therefore is more computationally expensive, we adopt a noncoherent detection scheme. In addition, this example assumes a free space environment.
```

pd = 0.9; % Probability of detection
pfa = le-6; % Probability of false alarm
max_range = 5000; % Maximum unambiguous range
range_res = 50; % Required range resolution
tgt_rcs = 1; % Required target radar cross section

```

\section*{Monostatic Radar System Design}

We need to define several characteristics of the radar system such as the waveform, the receiver, the transmitter, and the antenna used to radiate and collect the signal.

\section*{Waveform}

We choose a rectangular waveform in this example. The desired range resolution determines the bandwidth of the waveform, which, in the case of a rectangular waveform, determines the pulse width.

Another important parameter of a pulse waveform is the pulse repetition frequency (PRF). The PRF is determined by the maximum unambiguous range.
```

prop_speed = physconst('LightSpeed'); % Propagation speed
pulse_bw = prop_speed/(2*range_res); % Pulse bandwidth
pulse_width = 1/pulse_bw; % Pulse width
prf = prop_speed/(2*max_range); % Pulse repetition frequency
fs = 2*pul\overline{se_bw; - % Sampling rate}
waveform = ph̄ased.RectangularWaveform(...
'PulseWidth',1/pulse_bw,...
'PRF',prf,...
'SampleRate',fs);

```

Note that we set the sampling rate as twice the bandwidth.

\section*{Receiver Noise Characteristics}

We assume that the only noise present at the receiver is the thermal noise, so there is no clutter involved in this simulation. The power of the thermal noise is related to the receiver bandwidth. The receiver's noise bandwidth is set to be the same as the bandwidth of the waveform. This is often the case in real systems. We also assume that the receiver has a 20 dB gain and a 0 dB noise figure.
```

noise_bw = pulse_bw;
receiver = phased.ReceiverPreamp(...
'Gain',20,...
'NoiseFigure',0,...
'SampleRate',fs,...
'EnableInputPort',true);

```

Note that because we are modeling a monostatic radar, the receiver cannot be turned on until the transmitter is off. Therefore, we set the EnableInputPort property to true so that a synchronization signal can be passed from the transmitter to the receiver.

\section*{Transmitter}

The most critical parameter of a transmitter is the peak transmit power. The required peak power is related to many factors including the maximum unambiguous range, the required SNR at the receiver, and the pulse width of the waveform. Among these factors, the required SNR at the receiver is determined by the design goal of Pd and Pfa, as well as the detection scheme implemented at the receiver.

The relation between Pd, Pfa and SNR can be best represented by a receiver operating characteristics (ROC) curve. We can generate the curve where Pd is a function of Pfa for varying SNRs using the following command
```

snr_db = [-inf, 0, 3, 10, 13];
rocsnr(snr_db,'SignalType','NonfluctuatingNoncoherent');

```


The ROC curves show that to satisfy the design goals of \(\mathrm{Pfa}=1 \mathrm{e}-6\) and \(\mathrm{Pd}=0.9\), the received signal's SNR must exceed 13 dB . This is a fairly high requirement and is not very practical. To make the radar system more feasible, we can use a pulse integration technique to reduce the required SNR. If we choose to integrate 10 pulses, the curve can be generated as
```

num_pulse_int = 10;
rocsnr([0-3 5],'SignalType','NonfluctuatingNoncoherent',...
'NumPulses',num_pulse_int);

```


We can see that the required power has dropped to around 5 dB . Further reduction of SNR can be achieved by integrating more pulses, but the number of pulses available for integration is normally limited due to the motion of the target or the heterogeneity of the environment.

The approach above reads out the SNR value from the curve, but it is often desirable to calculate only the required value. For the noncoherent detection scheme, the calculation of the required SNR is, in theory, quite complex. Fortunately, there are good approximations available, such as Albersheim's equation. Using Albersheim's equation, the required SNR can be derived as
```

snr_min = albersheim(pd, pfa, num_pulse_int)
snr_min =
4.9904

```

Once we obtain the required SNR at the receiver, the peak power at the transmitter can be calculated using the radar equation. Here we assume that the transmitter has a gain of 20 dB .

To calculate the peak power using the radar equation, we also need to know the wavelength of the propagating signal, which is related to the operating frequency of the system. Here we set the operating frequency to 10 GHz .
```

tx_gain = 20;
fc = 10e9;

```
```

lambda = prop_speed/fc;
peak_power = radareqpow(lambda,max_range,snr_min,pulse_width,...
'RCS',tgt_rcs,'Gain',tx_gain)
peak_power =
5.2265e+03

```

Note that the resulting power is about 5 kW , which is very reasonable. In comparison, if we had not used the pulse integration technique, the resulting peak power would have been 33 kW , which is huge.

With all this information, we can configure the transmitter.
```

transmitter = phased.Transmitter(...
'Gain',tx_gain,...
'PeakPower', peak_power,...
'InUse0utputPort',true);

```

Again, since this example models a monostatic radar system, the InUseOutputPort is set to true to output the status of the transmitter. This status signal can then be used to enable the receiver.

\section*{Radiator and Collector}

In a radar system, the signal propagates in the form of an electromagnetic wave. Therefore, the signal needs to be radiated and collected by the antenna used in the radar system. This is where the radiator and the collector come into the picture.

In a monostatic radar system, the radiator and the collector share the same antenna, so we will first define the antenna. To simplify the design, we choose an isotropic antenna. Note that the antenna needs to be able to work at the operating frequency of the system ( 10 GHz ), so we set the antenna's frequency range to \(5-15 \mathrm{GHz}\).

We assume that the antenna is stationary.
```

antenna = phased.IsotropicAntennaElement(...
'FrequencyRange',[5e9 15e9]);
sensormotion = phased.Platform(...
'InitialPosition',[0; 0; 0],...
'Velocity',[0; 0; 0]);

```

With the antenna and the operating frequency, we define both the radiator and the collector.
```

radiator = phased.Radiator(...
'Sensor',antenna,...
'OperatingFrequency',fc);
collector = phased.Collector(...
'Sensor',antenna,...
'OperatingFrequency',fc);

```

This completes the configuration of the radar system. In the following sections, we will define other entities, such as the target and the environment that are needed for the simulation. We will then simulate the signal return and perform range detection on the simulated signal.

\section*{System Simulation}

\section*{Targets}

To test our radar's ability to detect targets, we must define the targets first. Let us assume that there are 3 stationary, non-fluctuating targets in space. Their positions and radar cross sections are given below.
```

tgtpos = [[2024.66;0;0],[3518.63;0;0],[3845.04;0;0]];
tgtvel = [[0;0;0],[0;0;0],[0;0;0]];
tgtmotion = phased.Platform('InitialPosition',tgtpos,'Velocity',tgtvel);
tgtrcs = [1.6 2.2 1.05];
target = phased.RadarTarget('MeanRCS',tgtrcs,'OperatingFrequency',fc);

```

\section*{Propagation Environment}

To simulate the signal, we also need to define the propagation channel between the radar system and each target.
```

channel = phased.FreeSpace(...
'SampleRate',fs,...
'TwoWayPropagation',true,...
'OperatingFrequency',fc);

```

Because this example uses a monostatic radar system, the channels are set to simulate two way propagation delays.

\section*{Signal Synthesis}

We are now ready to simulate the entire system.
The synthesized signal is a data matrix with the fast time (time within each pulse) along each column and the slow time (time between pulses) along each row. To visualize the signal, it is helpful to define both the fast time grid and slow time grid.
```

fast_time_grid = unigrid(0,1/fs,1/prf,'[)');
slow_time_grid = (0:num_pulse_int-1)/prf;

```

The following loop simulates 10 pulses of the receive signal.
We set the seed for the noise generation in the receiver so that we can reproduce the same results.
```

receiver.SeedSource = 'Property';
receiver.Seed = 2007;
% Pre-allocate array for improved processing speed
rxpulses = zeros(numel(fast_time_grid),num_pulse_int);
for m = 1:num_pulse_int
% Update sensor and target positions
[sensorpos,sensorvel] = sensormotion(1/prf);
[tgtpos,tgtvel] = tgtmotion(1/prf);
% Calculate the target angles as seen by the sensor
[tgtrng,tgtang] = rangeangle(tgtpos,sensorpos);

```
```

 % Simulate propagation of pulse in direction of targets
 pulse = waveform();
 [txsig,txstatus] = transmitter(pulse);
 txsig = radiator(txsig,tgtang);
 txsig = channel(txsig,sensorpos,tgtpos,sensorvel,tgtvel);
 % Reflect pulse off of targets
 tgtsig = target(txsig);
 % Receive target returns at sensor
 rxsig = collector(tgtsig,tgtang);
 rxpulses(:,m) = receiver(rxsig,~(txstatus>0));
 end

```

\section*{Range Detection}

\section*{Detection Threshold}

The detector compares the signal power to a given threshold. In radar applications, the threshold is often chosen so that the Pfa is below a certain level. In this case, we assume the noise is white Gaussian and the detection is noncoherent. Since we are also using 10 pulses to do the pulse integration, the signal power threshold is given by
```

npower = noisepow(noise_bw,receiver.NoiseFigure,...
receiver.ReferenceTemperature);
threshold = npower * db2pow(npwgnthresh(pfa,num_pulse_int,'noncoherent'));

```

We plot the first two received pulses with the threshold
```

num pulse plot = 2;
helperRadarPulsePlot(rxpulses,threshold,...
fast_time_grid,slow_time_grid,num_pulse_plot);

```


The threshold in these figures is for display purpose only. Note that the second and third target returns are much weaker than the first return because they are farther away from the radar. Therefore, the received signal power is range dependent and the threshold is unfair to targets located at different ranges.

\section*{Matched Filter}

The matched filter offers a processing gain which improves the detection threshold. It convolves the received signal with a local, time-reversed, and conjugated copy of transmitted waveform. Therefore, we must specify the transmitted waveform when creating our matched filter. The received pulses are first passed through a matched filter to improve the SNR before doing pulse integration, threshold detection, etc.
```

matchingcoeff = getMatchedFilter(waveform);
matchedfilter = phased.MatchedFilter(...
'Coefficients',matchingcoeff,...
'GainOutputPort',true);
[rxpulses, mfgain] = matchedfilter(rxpulses);

```

The matched filter introduces an intrinsic filter delay so that the locations of the peak (the maximum SNR output sample) are no longer aligned with the true target locations. To compensate for this delay, in this example, we will move the output of the matched filter forward and pad the zeros at the end. Note that in real systems, because the data is collected continuously, there is really no end of it.
```

matchingdelay = size(matchingcoeff,1)-1;
rxpulses = buffer(rxpulses(matchingdelay+1:end),size(rxpulses,1));

```

The threshold is then increased by the matched filter processing gain.
```

threshold = threshold * db2pow(mfgain);

```

The following plot shows the same two pulses after they pass through the matched filter.
```

helperRadarPulsePlot(rxpulses,threshold,...
fast_time_grid,slow_time_grid,num_pulse_plot);

```

Pulse 1


Pulse 2


After the matched filter stage, the SNR is improved. However, because the received signal power is dependent on the range, the return of a close target is still much stronger than the return of a target farther away. Therefore, as the above figure shows, the noise from a close range bin also has a significant chance of surpassing the threshold and shadowing a target farther away. To ensure the threshold is fair to all the targets within the detectable range, we can use a time varying gain to compensate for the range dependent loss in the received echo.

To compensate for the range dependent loss, we first calculate the range gates corresponding to each signal sample and then calculate the free space path loss corresponding to each range gate. Once that information is obtained, we apply a time varying gain to the received pulse so that the returns are as if from the same reference range (the maximum detectable range).
```

range_gates = prop_speed*fast_time_grid/2;
tvg = phased.TimeVaryingGain(...
'RangeLoss',2*fspl(range_gates,lambda),...
'ReferenceLoss',2*fspl(max_range,lambda));

```
```

rxpulses = tvg(rxpulses);

```

Now let's plot the same two pulses after the range normalization
helperRadarPulsePlot(rxpulses,threshold,...
fast_time_grid,slow_time_grid,num_pulse_plot);


The time varying gain operation results in a ramp in the noise floor. However, the target return is now range independent. A constant threshold can now be used for detection across the entire detectable range.

Notice that at this stage, the threshold is above the maximum power level contained in each pulse. Therefore, nothing can be detected at this stage yet. We need to perform pulse integration to ensure the power of returned echoes from the targets can surpass the threshold while leaving the noise floor below the bar. This is expected since it is the pulse integration which allows us to use the lower power pulse train.

\section*{Noncoherent Integration}

We can further improve the SNR by noncoherently integrating (video integration) the received pulses.
```

rxpulses = pulsint(rxpulses,'noncoherent');
helperRadarPulsePlot(rxpulses,threshold,...
fast_time_grid,slow_time_grid,1);

```


After the video integration stage, the data is ready for the final detection stage. It can be seen from the figure that all three echoes from the targets are above the threshold, and therefore can be detected.

\section*{Range Detection}

Finally, the threshold detection is performed on the integrated pulses. The detection scheme identifies the peaks and then translates their positions into the ranges of the targets.
```

[~,range_detect] = findpeaks(rxpulses,'MinPeakHeight',sqrt(threshold));

```

The true ranges and the detected ranges of the targets are shown below:
```

true_range = round(tgtrng)
range_estimates = round(range_gates(range_detect))
true_range =
2025 3519 3845
range_estimates =
2025 3525 3850

```

Note that these range estimates are only accurate up to the range resolution ( 50 m ) that can be achieved by the radar system.

\section*{Summary}

In this example, we designed a radar system based on a set of given performance goals. From these performance goals, many design parameters of the radar system were calculated. The example also showed how to use the designed radar to perform a range detection task. In this example, the radar used a rectangular waveform. Interested readers can refer to "Waveform Design to Improve Performance of an Existing Radar System" on page 17-165 for an example using a chirp waveform.

\section*{Ground Clutter Mitigation with Moving Target Indication (MTI) Radar}

This example shows the design of a moving target indication (MTI) radar to mitigate the clutter and identify moving targets. For a radar system, clutter refers to the received echoes from environmental scatters other than targets, such as land, sea or rain. Clutter echoes can be many orders of magnitude larger than target echoes. An MTI radar exploits the relatively high Doppler frequencies of moving targets to suppress clutter echoes, which usually have zero or very low Doppler frequencies.

A typical MTI radar uses a high pass filter to remove energy at low Doppler frequencies. Since the frequency response of an FIR high pass filter is periodic, some energy at high Doppler frequencies is also removed. Targets at those high Doppler frequencies thus will not be detectable by the radar. This issue is called the blind speed problem. This example shows how to use a technique, called staggered PRFs, to address the blind speed problem.

\section*{Construct a Radar System}

First, define the components of a radar system. The focus of this example is on MTI processing, so we'll use the radar system built in the example "Designing a Basic Monostatic Pulse Radar" on page 17-449. Readers are encouraged to explore the details of the radar system design through that example. Change the antenna's height to 100 meters to simulate a radar mounted on top of a building. Notice that the PRF in the system is approximately 30 kHz , which corresponds to a maximum unambiguous range of 5 km .
```

load BasicMonostaticRadarExampleData;
sensorheight = 100;
sensormotion.InitialPosition = [0 0 sensorheight]';
prf = waveform.PRF;

```

Retrieve the sampling frequency, the operating frequency, and the propagation speed.
```

fs = waveform.SampleRate;
fc = radiator.OperatingFrequency;
wavespeed = radiator.PropagationSpeed;

```

In many MTI systems, especially low-end ones, the transmitter's power source is a magnetron. Thus, the transmitter adds a random phase to each transmitted pulse. Hence, it is often necessary to restore the coherence at the receiver. Such setup is referred to as coherent on receive. In these systems, the receiver locks onto the random phased added by transmitter for each pulse. Then, the receiver removes the phase impact from the received samples received within the corresponding pulse interval. We can simulate a coherent on receive system by setting the transmitter and receiver as following:
```

transmitter.CoherentOnTransmit = false;
transmitter.PhaseNoiseOutputPort = true;
receiver.PhaseNoiseInputPort = true;

```

\section*{Define Targets}

Next, define two moving targets.
The first target is located at position [1600 0 1300]. Given the radar position shown in the preceding sections, it has a range of 2 km from the radar. The velocity of the target is [100 800 ], corresponding to a radial speed of \(-80 \mathrm{~m} / \mathrm{s}\) relative to the radar. The target has a radar cross section of 25 square meters.

The second target is located at position [2900 0 800], corresponding to a range of 3 km from the radar. Set the speed of this target to a blind speed, where the target's Doppler signature is aliased to the pulse repetition frequency. This setting prevents the MTI radar from detecting the target. We use the dop2speed() function to calculate a blind speed which has a corresponding Doppler frequency equal to the pulse repetition frequency.
```

wavelength = wavespeed/fc;
blindspd = dop2speed(prf,wavelength)/2; % half to compensate round trip
tgtpos = [[1600 0 1300]',[2900 0 800]'];
tgtvel = [[100 80 0]',[-blindspd 0 0]'];
tgtmotion = phased.Platform('InitialPosition',tgtpos,'Velocity',tgtvel);
tgtrcs = [25 25];
target = phased.RadarTarget('MeanRCS',tgtrcs,'OperatingFrequency',fc);

```

\section*{Clutter}

The clutter signal was generated using the simplest clutter model, the constant gamma model, with the gamma value set to -20 dB. Such a gamma value is typical for flatland clutter. Assume that the clutter patches exist at all ranges, and that each patch has an azimuth width of 10 degrees. Also assume that the main beam of the radar points horizontally. Note that the radar is not moving.
```

trgamma = surfacegamma('flatland');
clutter = phased.ConstantGammaClutter('Sensor',antenna,...
'PropagationSpeed',radiator.PropagationSpeed,...
'OperatingFrequency',radiator.OperatingFrequency,...
'SampleRate',waveform.SampleRate,'TransmitSignalInputPort',true,...
'PRF',waveform.PRF,'Gamma',trgamma,'PlatformHeight',sensorheight,...
'PlatformSpeed',0,'PlatformDirection',[0;0],...
'BroadsideDepressionAngle',0,'MaximumRange',5000,...
'AzimuthCoverage',360,'PatchAzimuthWidth',10,...
'SeedSource','Property','Seed ', 2011);

```

\section*{Simulate the Received Pulses and Matched Filter}

Now we simulate 10 received pulses for the radar and targets defined earlier.
```

pulsenum = 10;
% Set the seed of the receiver to duplicate results
receiver.SeedSource = 'Property';
receiver.Seed = 2010;
rxPulse = helperMTISimulate(waveform,transmitter,receiver,...
radiator,collector,sensormotion,...
target,tgtmotion,clutter,pulsenum);

```

We then pass the received signal through a matched filter.
```

matchingcoeff = getMatchedFilter(waveform);
matchedfilter = phased.MatchedFilter('Coefficients',matchingcoeff);
mfiltOut = matchedfilter(rxPulse);
matchingdelay = size(matchingcoeff,1)-1;
mfiltOut = buffer(mfilt0ut(matchingdelay+1:end),size(mfilt0ut,1));

```

\section*{Perform MTI Processing Using a Three-Pulse Canceller}

MTI processing uses MTI filters to remove low frequency components in slow time sequences. Because land clutter usually is not moving, removing low frequency components can effectively suppress it. The three-pulse canceller is a popular and simple MTI filter. The canceller is an all-zero FIR filter with filter coefficients [1-2 1].
h = [11-2 1];
mtiseq \(=\) filter(h,1,mfilt0ut,[],2);
Use noncoherent pulse integration to combine the slow time sequences. Exclude the first two pulses because they are in the transient period of the MTI filter.
```

mtiseq = pulsint(mtiseq(:,3:end));
% For comparison, also integrate the matched filter output
mfiltOut = pulsint(mfiltOut(:,3:end));
% Calculate the range for each fast time sample
fast_time_grid = (0:size(mfilt0ut,1)-1)/fs;
rangeidx = wavespeed*fast_time_grid/2;
% Plot the received pulse energy again range
plot(rangeidx,pow2db(mfilt0ut.^2),'r--',...
rangeidx,pow2db(mtiseq.^2),'b-'); grid on;
title('Fast Time Sequences Using a Uniform PRF');
xlabel('Range (m)'); ylabel('Power (dB)');
legend('Before MTI filter','After MTI filter');

```


Recall that there are two targets (at 2 km and 3 km ). In the case before MTI filtering, both targets are buried in clutter returns. The peak at 100 m is the direct path return from the ground right below the radar. Notice that the power is decreasing as the range increases, which is due to the signal propagation loss.

After MTI filtering, most clutter returns are removed except for the direct path peak. The noise floor is now no longer a function of range, so the noise is now receiver noise rather than clutter noise. This change shows the clutter suppression capability of the three-pulse canceller. At the 2 km range, we see a peak representing the first target. However, there is no peak at 3 km range to represent the second target. The peak disappears because the three-pulse canceller suppresses the second target which travels at the canceller's blind speed.

To better understand the blind speed problem, let us look at the frequency response of the threepulse canceller.
```

f = linspace(0,prf*9,1000);
hresp = freqz(h,1,f,prf);
plot(f/1000,20*log10(abs(hresp)));
grid on; xlabel('Doppler Frequency (kHz)'); ylabel('Magnitude (dB)');
title('Frequency Response of the Three-Pulse Canceller');

```


Notice the recurring nulls in the frequency response. The nulls correspond to the Doppler frequencies of the blind speeds. Targets with these Doppler frequencies are cancelled by the threepulse canceller. The plot shows that the nulls occur at integer multiples of the PRF (approximately \(30 \mathrm{kHz}, 60 \mathrm{kHz}, \ldots\) ). If we can remove these nulls or push them away from the Doppler frequency region of the radar specifications, we can avoid the blind speed problem.

\section*{Simulate the Received Pulses Using Staggered PRFs}

One solution to the blind speed problem is to use a nonuniform PRF, or staggered PRFs. Adjacent pulses are transmitted at different pulse repetition frequencies. Such configuration pushes the lower bound of blind speeds to a much higher value. To illustrate this idea, we will use a two-staggered PRF, and plot the frequency response of the three-pulse canceller.

Let us choose a second PRF at around 25 kHz , which corresponds to a maximum unambiguous range of 6 km .
```

prf = wavespeed./(2*[6000 5000]);
% Calculate the magnitude frequency response for the three-pulse canceller
pf1 = @(f)(1-2*exp(1j*2*pi/prf(1)*f)+exp(1j*2*pi*2/prf(1)*f));
pf2 = @(f)(1-2*exp(1j*2*pi/prf(2)*f)+exp(1j*2*pi*2/prf(2)*f));
sfq = (abs(pf1(f)).^2 + abs(pf2(f)).^2)/2;
% Plot the frequency response
hold on;
plot(f/1000,pow2db(sfq),'r--');
ylim([-50, 30]);
legend('Uniform PRF','2-staggered PRF');

```


From the plot of the staggered PRFs we can see the first blind speed corresponds to a Doppler frequency of 150 kHz , five times larger than the uniform PRF case. Thus the target with the 30 kHz Doppler frequency will not be suppressed.

Now, simulate the reflected signals from the targets using the staggered PRFs.
```

% Assign the new PRF
release(waveform);
waveform.PRF = prf;
release(clutter);
clutter.PRF = prf;
% Reset noise seed
release(receiver);
receiver.Seed = 2010;
% Reset platform position
reset(sensormotion);
reset(tgtmotion);
% Simulate target return
rxPulse = helperMTISimulate(waveform,transmitter,receiver,...
radiator,collector,sensormotion,...
target,tgtmotion,clutter,pulsenum);

```

\section*{Perform MTI Processing for Staggered PRFs}

We process the pulses as before by first passing them through a matched filter and then integrating the pulses noncoherently.
```

mfilt0ut = matchedfilter(rxPulse);
% Use the same three-pulse canceller to suppress the clutter.
mtiseq = filter(h,1,mfiltOut,[],2);
% Noncoherent integration
mtiseq = pulsint(mtiseq(:,3:end));
mfiltOut = pulsint(mfiltOut(:,3:end));
% Calculate the range for each fast time sample
fast_time_grid = (0:size(mfilt0ut,1)-1)/fs;
rangeidx = wavespeed*fast_time_grid/2;
% Plot the fast time sequences against range.
clf;
plot(rangeidx,pow2db(mfilt0ut.^2),'r--',...
rangeidx,pow2db(mtiseq.^2),'b-'); grid on;
title('Fast Time Sequences Using Staggered PRFs');
xlabel('Range (m)'); ylabel('Power (dB)');
legend('Before MTI filter','After MTI filter');

```


The plot shows both targets are now detectable after MTI filtering, and the clutter is also removed.

\section*{Summary}

With very simple operations, MTI processing can be effective at suppressing low speed clutter. A uniform PRF waveform will miss targets at blind speeds, but this issue can be addressed by using staggered PRFs. For clutters having a wide spectrum, the MTI processing could be poor. That type of clutter can be suppressed using space-time adaptive processing. See the example "Introduction to Space-Time Adaptive Processing" on page 17-231 for details.

\section*{Appendix}

Reference: Mark A. Richards, Fundamentals of Radar Signal Processing, McGraw-Hill, 2005.

\section*{Scan Radar Using a Uniform Rectangular Array}

This example simulates a phased array radar that periodically scans a predefined surveillance region. A 900-element rectangular array is used in this monostatic radar. Steps are introduced to derive the radar parameters according to specifications. After synthesizing the received pulses, detection and range estimation are performed. Finally, Doppler estimation is used to obtain the speed of each target.

\section*{Radar Definition}

First we create a phased array radar. We reuse most of the subsystems built in the example "Designing a Basic Monostatic Pulse Radar" on page 17-449. Readers are encouraged to explore the details of radar system design through that example. A major difference is that we use a 30 -by- 30 uniform rectangular array (URA) in place of the original single antenna.

The existing radar design meets the following specifications.
```

pd = 0.9; % Probability of detection
pfa = le-6; % Probability of false alarm
max_range = 5000; % Maximum unambiguous range
tgt_rcs = 1; % Required target radar cross section
int_pulsenum = 10; % Number of pulses to integrate

```

Load the radar system and retrieve system parameters.
load BasicMonostaticRadarExampleData;
```

fc = radiator.OperatingFrequency; % Operating frequency (Hz)
v = radiator.PropagationSpeed; % Wave propagation speed (m/s)
lambda = v/fc; %Wavelength (m)
fs = waveform.SampleRate; % Sampling frequency (Hz)
prf = waveform.PRF; % Pulse repetition frequency (Hz)

```

Next, we define a 30 -by- 30 uniform rectangular array.
```

ura = phased.URA('Element',antenna,...
'Size',[30 30],'ElementSpacing',[lambda/2, lambda/2]);
% Configure the antenna elements such that they only transmit forward
ura.Element.BackBaffled = true;
% Visualize the response pattern.
pattern(ura,fc,'PropagationSpeed',physconst('LightSpeed'),...
'Type','powerdb');

```


Associate the array with the radiator and collector.
```

radiator.Sensor = ura;
collector.Sensor = ura;
% We need to set the WeightsInputPort property to true to enable it to
% accept transmit beamforming weights
radiator.WeightsInputPort = true;

```

Now we need to recalculate the transmit power. The original transmit power was calculated based on a single antenna. For a 900-element array, the power required for each element is much less.
```

% Calculate the array gain
arraygain = phased.ArrayGain('SensorArray',ura,'PropagationSpeed',v);
ag = arraygain(fc,[0;0]);
% Use the radar equation to calculate the peak power
snr_min = albersheim(pd, pfa, int_pulsenum);
pea\overline{k}_power = radareqpow(lambda,max_range,snr_min,waveform.PulseWidth,...
'RCS',tgt_rcs,'Gain',transmittēr.Gain + àg)
peak_power = 0.0065

```

The new peak power is 0.0065 Watts.
```

% Set the peak power of the transmitter
transmitter.PeakPower = peak_power;

```

We also need to design the scanning schedule of the phased array. To simplify the example, we only search in the azimuth dimension. We require the radar to search from 45 degrees to -45 degrees in azimuth. The revisit time should be less than 1 second, meaning that the radar should revisit the same azimuth angle within 1 second.
```

initialAz = 45; endAz = -45;
volumnAz = initialAz - endAz;

```

To determine the required number of scans, we need to know the beamwidth of the array response. We use an empirical formula to estimate the 3 - dB beamwidth.
\[
G=\frac{4 \pi}{\theta^{2}}
\]
where \(G\) is the array gain and \(\theta\) is the \(3-\mathrm{dB}\) beamwidth.
```

% Calculate 3-dB beamwidth
theta = radtodeg(sqrt(4*pi/db2pow(ag)))
theta = 6.7703

```

The 3-dB beamwidth is 6.77 degrees. To allow for some beam overlap in space, we choose the scan step to be 6 degrees.
```

scanstep = -6;
scangrid = initialAz+scanstep/2:scanstep:endAz;
numscans = length(scangrid);
pulsenum = int_pulsenum*numscans;
% Calculate revisit time
revisitTime = pulsenum/prf
revisitTime = 0.0050

```

The resulting revisit time is 0.005 second, well below the prescribed upper limit of 1 second.

\section*{Target Definition}

We want to simulate the pulse returns from two non-fluctuating targets, both at 0 degrees elevation. The first target is approaching to the radar, while the second target is moving away from the radar.
```

tgtpos = [[3532.63; 800; 0],[2020.66; 0; 0]];
tgtvel = [[-100; 50; 0],[60; 80; 0]];
tgtmotion = phased.Platform('InitialPosition',tgtpos,'Velocity',tgtvel);
tgtrcs = [1.6 2.2];
target = phased.RadarTarget('MeanRCS',tgtrcs,'OperatingFrequency',fc);
% Calculate the range, angle, and speed of the targets
[tgtrng,tgtang] = rangeangle(tgtmotion.InitialPosition,...
sensormotion.InitialPosition);
numtargets = length(target.MeanRCS);

```

\section*{Pulse Synthesis}

Now that all subsystems are defined, we can proceed to simulate the received signals. The total simulation time corresponds to one pass through the surveillance region. Because the reflected
signals are received by an array, we use a beamformer pointing to the steering direction to obtain the combined signal.
```

% Create the steering vector for transmit beamforming
steeringvec = phased.SteeringVector('SensorArray',ura,...
'PropagationSpeed',v);
% Create the receiving beamformer
beamformer = phased.PhaseShiftBeamformer('SensorArray',ura,...
'OperatingFrequency',fc,'PropagationSpeed',v,...
'DirectionSource','Input port');
% Define propagation channel for each target
channel = phased.FreeSpace(...
'SampleRate',fs,...
'TwoWayPropagation',true,...
'OperatingFrequency',fc);
fast_time_grid = unigrid(0, 1/fs, 1/prf, '[)');
% Pre-allocate array for improved processing speed
rxpulses = zeros(numel(fast_time_grid),pulsenum);
for m = 1:pulsenum
% Update sensor and target positions
[sensorpos,sensorvel] = sensormotion(1/prf);
[tgtpos,tgtvel] = tgtmotion(1/prf);
% Calculate the target angles as seen by the sensor
[tgtrng,tgtang] = rangeangle(tgtpos,sensorpos);
% Calculate steering vector for current scan angle
scanid = floor((m-1)/int_pulsenum) + 1;
sv = steeringvec(fc,scangrid(scanid));
w = conj(sv);
% Form transmit beam for this scan angle and simulate propagation
pulse = waveform();
[txsig,txstatus] = transmitter(pulse);
txsig = radiator(txsig,tgtang,w);
txsig = channel(txsig,sensorpos,tgtpos,sensorvel,tgtvel);
% Reflect pulse off of targets
tgtsig = target(txsig);
% Beamform the target returns received at the sensor
rxsig = collector(tgtsig,tgtang);
rxsig = receiver(rxsig,~(txstatus>0));
rxpulses(:,m) = beamformer(rxsig,[scangrid(scanid);0]);
end

```

Matched Filter
To process the received signal, we first pass it through a matched filter, then integrate all pulses for each scan angle.
```

% Matched filtering
matchingcoeff = getMatchedFilter(waveform);
matchedfilter = phased.MatchedFilter(...
'Coefficients',matchingcoeff,...
'GainOutputPort',true);
[mf_pulses, mfgain] = matchedfilter(rxpulses);
mf_pulses = reshape(mf_pulses,[],int_pulsenum,numscans);
matchingdelay = size(matchingcoeff,1)-1;
sz_mfpulses = size(mf_pulses);
mf_pulses = [mf_pulses(matchingdelay+1:end) zeros(1,matchingdelay)];
mf_pulses = reshape(mf_pulses,sz_mfpulses);
% Pulse integration
int_pulses = pulsint(mf_pulses,'noncoherent');
int_pulses = squeeze(int_pulses);
% Visualize
r = v*fast_time_grid/2;
X = r'*cosd(scangrid); Y = r'*sind(scangrid);
clf;
pcolor(X,Y,pow2db(abs(int_pulses).^2));
axis equal tight
shading interp
axis off
text(-800,0,'Array');
text((max(r)+10)*cosd(initialAz),(max(r)+10)*sind(initialAz),...
[num2str(initialAz) '^o']);
text((max}(r)+10)*\operatorname{cosd}(endAz),(max(r)+10)*sind(endAz),..
[num2str(endAz) '^o']);
text((max(r)+10)*cosd(0),(max(r)+10)*sind(0),[num2str(0) '^o']);
colorbar;

```


From the scan map, we can clearly see two peaks. The close one is at around 0 degrees azimuth, the remote one at around 10 degrees in azimuth.

\section*{Detection and Range Estimation}

To obtain an accurate estimation of the target parameters, we apply threshold detection on the scan map. First we need to compensate for signal power loss due to range by applying time varying gains to the received signal.
```

range_gates = v*fast_time_grid/2;
tvg = phased.TimeVaryingGain(...
'RangeLoss', 2*fspl(range_gates,lambda),...
'ReferenceLoss',2*fspl(max(range_gates),lambda));
tvg_pulses = tvg(mf_pulses);
% Pulse integration
int_pulses = pulsint(tvg_pulses,'noncoherent');
int_pulses = squeeze(int_pulses);
% Calculate the detection threshold
% sample rate is twice the noise bandwidth in the design system
noise_bw = receiver.SampleRate/2;
npower = noisepow(noise_bw,...
receiver.NoiseFigure,receiver.ReferenceTemperature);
threshold = npower * db2pow(npwgnthresh(pfa,int_pulsenum,'noncoherent'));

```
```

% Increase the threshold by the matched filter processing gain
threshold = threshold * db2pow(mfgain);

```

We now visualize the detection process. To better represent the data, we only plot range samples beyond 50 .
```

N = 51;
clf;
surf(X(N:end,:),Y(N:end,:),...
pow2db(abs(int_pulses(N:end,:)).^2));
hold on;
mesh(X(N:end,:),Y(N:end,:),...
pow2db(threshold*ones(size(X(N:end,:)))),'FaceAlpha',0.8);
view(0,56);
axis off

```


There are two peaks visible above the detection threshold, corresponding to the two targets we defined earlier. We can find the locations of these peaks and estimate the range and angle of each target.
```

[~,peakInd] = findpeaks(int_pulses(:),'MinPeakHeight',sqrt(threshold));
[rngInd,angInd] = ind2sub(size(int_pulses),peakInd);
est_range = range_gates(rngInd); % Estimated range
est_}\mp@subsup{_}{-}{-

```

\section*{Doppler Estimation}

Next, we want to estimate the Doppler speed of each target. For details on Doppler estimation, refer to the example "Doppler Estimation" on page 17-295.
```

for m = numtargets:-1:1
[p, f] = periodogram(mf_pulses(rngInd(m),:,angInd(m)),[],256,prf, ...
'power','centered');
speed_vec = dop2speed(f,lambda)/2;
spectrum data = p/max(p);
[~,dop_detect1] = findpeaks(pow2db(spectrum_data),'MinPeakHeight',-5);
sp(m) = speed_vec(dop_detect1); % Estimated Doppler speed
end

```

Finally, we have estimated all the parameters of both detected targets. Below is a comparison of the estimated and true parameter values.
\(\qquad\)
Estimated (true) target parameters
\begin{tabular}{|c|c|c|c|}
\hline & Range (m) & Azimuth (deg) & Speed (m/s) \\
\hline Target 1: & 3625.00 (3622.08) & 12.00 (12.76) & 86.01 (86.49) \\
\hline Target 2: & 2025.00 (2020.66) & 0.00 (0.00) & -59.68 (-60.00) \\
\hline
\end{tabular}

\section*{Summary}

In this example, we showed how to simulate a phased array radar to scan a predefined surveillance region. We illustrated how to design the scanning schedule. A conventional beamformer was used to process the received multi-channel signal. The range, angle, and Doppler information of each target are extracted from the reflected pulses. This information can be used in further tasks such as high resolution direction-of-arrival estimation, or target tracking.

\section*{Simulating a Bistatic Polarimetric Radar}

This example shows how to simulate a polarimetric bistatic radar system to estimate the range and speed of targets. Transmitter, receiver and target kinematics are taken into account. For more information regarding polarization modeling capabilities, see "Modeling and Analyzing Polarization" on page 17-25.

\section*{System Setup}

The system operates at 300 MHz , using a linear FM waveform whose maximum unambiguous range is 48 km . The range resolution is 50 meters and the time-bandwidth product is 20.
```

maxrng = 48e3; % Maximum range
rngres = 50; % Range resolution
tbprod = 20; % Time-bandwidth product

```

The transmitter has a peak power of 2 kw and a gain of 20 dB . The receiver also provides a gain of 20 dB and the noise bandwidth is the same as the waveform's sweep bandwidth.

The transmit antenna array is a stationary 4 -element ULA located at origin. The array is made of vertical dipoles.
```

txAntenna = phased.ShortDipoleAntennaElement('AxisDirection','Z');
[waveform,transmitter,txmotion,radiator] = ...
helperBistatTxSetup(maxrng,rngres,tbprod,txAntenna);

```

The receive antenna array is also a 4 -element ULA; it is located at [20000;1000;100] meters away from the transmit antenna and is moving at a velocity of \([0 ; 20 ; 0] \mathrm{m} / \mathrm{s}\). Assume the elements in the receive array are also vertical dipoles. The received antenna array is oriented so that its broadside points back to the transmit antenna.
```

rxAntenna = phased.ShortDipoleAntennaElement('AxisDirection','Z');
[collector,receiver,rxmotion,rngdopresp,beamformer] = ...
helperBistatRxSetup(rngres,rxAntenna);

```

There are two targets present in space. The first one is a point target modeled as a sphere; it preserves the polarization state of the incident signal. It is located at [15000;1000;500] meters away from the transmit array and is moving at a velocity of \([100 ; 100 ; 0] \mathrm{m} / \mathrm{s}\).

The second target is located at [35000;-1000;1000] meters away from the transmit array and is approaching at a velocity of \([-160 ; 0 ;-50] \mathrm{m} / \mathrm{s}\). Unlike the first target, the second target flips the polarization state of the incident signal, which means that the horizontal/vertical polarization components of the input signal becomes the vertical/horizontal polarization components of the output signal.
```

[target,tgtmotion,txchannel,rxchannel] = ...
helperBistatTargetSetup(waveform.SampleRate);

```

A single scattering matrix is a fairly simple polarimetric model for a target. It assumes that no matter what the incident and reflecting directions are, the power distribution between the H and V components is fixed. However, even such a simple model can reveal complicated target behavior in the simulation because (1) the H and V directions vary for different incident and reflecting directions; and (2) the orientation, defined by the local coordinate system, of the targets also affects the polarization matching.

\section*{System Simulation}

Next section simulates 256 received pulses. The receiving array is beamformed toward the two targets. The first figure shows the system setting and how the receive array and the targets move. The second figure shows a range-Doppler map generated for every 64 pulses received at the receiver array.
```

Nblock = 64; % Burst size
dt = 1/waveform.PRF;
y = complex(zeros(round(waveform.SampleRate*dt),Nblock));
hPlots = helperBistatViewSetup(txmotion,rxmotion,tgtmotion,waveform,...
rngdopresp,y);
Npulse = Nblock*4;
for m = 1:Npulse
% Update positions of transmitter, receiver, and targets
[tpos,tvel,txax] = txmotion(dt);
[rpos,rvel,rxax] = rxmotion(dt);
[tgtp,tgtv,tgtax] = tgtmotion(dt);
% Calculate the target angles as seen by the transmitter
[txrng,radang] = rangeangle(tgtp,tpos,txax);
% Simulate propagation of pulse in direction of targets
wav = waveform();
wav = transmitter(wav);
sigtx = radiator(wav,radang,txax);
sigtx = txchannel(sigtx,tpos,tgtp,tvel,tgtv);
% Reflect pulse off of targets
for n = 2:-1:1
% Calculate bistatic forward and backward angles for each target
[~,fwang] = rangeangle(tpos,tgtp(:,n),tgtax(:,:,n));
[rxrng(n),bckang] = rangeangle(rpos,tgtp(:,n),tgtax(:,:,n));
sigtgt(n) = target{n}(sigtx(n),fwang,bckang,tgtax(:,:,n));
end
% Receive path propagation
sigrx = rxchannel(sigtgt,tgtp,rpos,tgtv,rvel);
[~,inang] = rangeangle(tgtp,rpos,rxax);
rspeed_t = radialspeed(tgtp,tgtv,tpos,tvel);
rspeed_r = radialspeed(tgtp,tgtv,rpos,rvel);
% Receive target returns at bistatic receiver
sigrx = collector(sigrx,inang,rxax);
yc = beamformer(sigrx,inang);
y(:,mod(m-1,Nblock)+1) = receiver(sum(yc,2));
helperBistatViewTrajectory(hPlots,tpos,rpos,tgtp);
if ~rem(m,Nblock)
rd_rng = (txrng+rxrng)/2;
rd_speed = rspeed_t+rspeed_r;
helperBistatViewSignal(hPlots,waveform,rngdopresp,y,rd_rng,...
rd_speed)

```
end end



The Range-Doppler map only shows the return from the first target. This is probably no surprise since both the transmit and receive array are vertically polarized and the second target maps the vertically polarized wave to horizontally polarized wave. The received signal from the second target is mostly orthogonal to the receive array's polarization, resulting in significant polarization loss.

One may also notice that the resulting range and radial speed do not agree with the range and radial speed of the target relative to the transmitter. This is because in a bistatic configuration, the estimated range is actually the geometric mean of the target range relative to the transmitter and the receiver. Similarly, the estimated radial speed is the sum of the target radial speed relative to the transmitter and the receiver. The circle in the map shows where the targets should appear in the range-Doppler map. Further processing is required to identify the exact location of the target, but those are beyond the scope of this example.

\section*{Using Circularly Polarized Receive Array}

Vertical dipole is a very popular choice of transmit antenna in real applications because it is low cost and have a omnidirectional pattern. However, the previous simulation shows that if the same antenna is used in the receiver, there is a risk that the system will miss certain targets. Therefore, a linear polarized antenna is often not the best choice as the receive antenna in such a configuration because no matter how the linear polarization is aligned, there always exists an orthogonal polarization. In
case the reflected signal bears a polarization state close to that direction, the polarization loss becomes huge.

One way to solve this issue is to use a circularly polarized antenna at the receive end. A circularly polarized antenna cannot fully match any linear polarization. But on the other hand, the polarization loss between a circular polarized antenna and a linearly polarized signal is 3 dB , regardless what direction the linear polarization is in. Therefore, although it never gives the maximum return, it never misses a target. A frequently used antenna with circular polarization is a crossed dipole antenna.

Next section shows what happens when crossed dipole antennas are used to form the receive array.
```

rxAntenna = phased.CrossedDipoleAntennaElement;
collector = clone(collector);
collector.Sensor.Element = rxAntenna;
helperBistatSystemRun(waveform,transmitter,txmotion,radiator,collector,...
receiver,rxmotion, rngdopresp,beamformer,target,tgtmotion,txchannel,...
rxchannel,hPlots,Nblock,Npulse);

```


The range-Doppler map now shows both targets at their correct locations.

\section*{Summary}

This example shows a system level simulation of a bistatic polarimetric radar. The example generates range-Doppler maps of the received signal for different transmit/receive array polarization configurations and shows how a circularly polarized antenna can be used to avoid losing linear polarized signals due to a target's polarization scattering property.

\section*{Stream and Accelerate Simulation of Radar System}

Phased Array System Toolbox can be used to model an end-to-end radar system - generate a transmitted waveform, simulate the target return, and then process the received signal to detect the target. This is shown in the examples: "Designing a Basic Monostatic Pulse Radar" on page 17-449 and "Waveform Design to Improve Performance of an Existing Radar System" on page 17-165. This example shows how to simulate such a system in streaming mode so you can run the simulation for a long time and observe the system dynamics.

\section*{Simulation Setup}

First, set up the radar system with some basic parameters. The entire radar system is similar to the one shown in the "Waveform Design to Improve Performance of an Existing Radar System" on page 17-165 example.
```

fs = 6e6;
bw = 3e6;
c = 3e8;
fc = 10e9;
prf = 18750;
num_pulse_int = 10;
[waveform,transmitter, radiator,collector,receiver,sensormotion,...
target,tgtmotion,channel,matchedfilter,tvg,threshold] = ...
helperRadarStreamExampleSystemSetup(fs,bw,prf,fc,c);

```

\section*{System Simulation}

Next, run the simulation for 100 pulses. During this simulation, four time-scopes are used to observe the signals at various stages. The first three scopes display the transmitted signal, received signal, and the post-matched-filter and gain-adjusted signal for 10-pulses. Although the transmitted signal is a high-power pulse train, scope 2 shows a much weaker received signal due to propagation loss. This signal cannot be detected using the preset detection threshold. Even after matched-filtering and gain compensation, it is still challenging to detect all three targets.
```

% pre-allocation
fast_time_grid = 0:1/fs:1/prf-1/fs;
num_\overline{pulse_samples = numel(fast_time_grid);}
rx_pulses = complex(zeros(num_pulse_samples,num_pulse_int));
mf_pulses = complex(zeros(num_pulse_samples,num_pulse_int));
de\overline{tect_pulse = zeros(num_pulse_samples,1);}
% simulation loop
for m = 1:10*num_pulse_int
% Update sensor and target positions
[sensorpos,sensorvel] = sensormotion(1/prf);
[tgtpos,tgtvel] = tgtmotion(1/prf);
% Calculate the target angles as seen by the sensor
[tgtrng,tgtang] = rangeangle(tgtpos,sensorpos);
% Simulate propagation of pulse in direction of targets
pulse = waveform();
[pulse,txstatus] = transmitter(pulse);
txsig = radiator(pulse,tgtang);

```
txsig = channel(txsig, sensorpos,tgtpos,sensorvel,tgtvel);
\% Reflect pulse off of targets
tgtsig = target(txsig);
\% Receive target returns at sensor
rxsig \(=\) collector(tgtsig,tgtang);
nn = mod(m-1, num_pulse_int)+1;
rx_pulses(:,nn) = receiver(rxsig,~(txstatus>0));
\% Detection processing
mf_pulses(:,nn) = matchedfilter(rx_pulses(:,nn));
mf_pulses(:,nn) = tvg(mf_pulses(:,nn));
\% Perform pulse integration every 'num_pulse_int' pulses
if nn == num_pulse_int detect_pulse =-pulsint(mf_pulses,'noncoherent');
end
helperRadarStreamDisplay(pulse,abs(rx_pulses(:,nn)),... abs(mf_pulses(:,nn)), detect_pulse,... sqrt(threshold)*ones(num_pulse_samples,1));
end
SCOPE
Channel 1

Processing
\(T=0.00533250\)


Improve Simulation Speed Using Code Generation
Because radar systems require intensive processing, simulation speed is a major concern. After you have run 100 pulse to check out your code, you may want to run 1000 pulses. When you run the simulation in interpreted MATLAB mode, you can measure the elapsed time using:
tic;
helperRadarStreamRun;
time_interpreted \(=\) toc
time_interpreted =
6.7692


Processing
\(\mathrm{T}=0.0586665\)


Processing
\(\mathrm{T}=0.0566395\)

If the simulation is too slow, you can speed it up using MATLAB Coder. MATLAB Coder can generate compiled MATLAB code resulting in significant improvement in processing speed. In this example, MATLAB Coder generates a helperRadarStreamRun_mex function from the helperRadarStreamRun function. The command used is shown below:
codegen helperRadarStreamRun.m
When the mex version is invoked, the simulation speed is improved.
tic;
helperRadarStreamRun_mex;
time_compiled = toc
time_compiled =
\[
1.3476
\]


Processing
\(T=0.109439\)


Speedup improvement depends on several factors such as machine CPU speed and available memory but is typically increased 3-4 times. Note that the visualization of data using scopes is not sped up by MATLAB Coder and is still handled by the MATLAB interpreter. If visualizations are not critical to your simulation, then you can remove them for further speed improvement.

Below are several trade-offs to consider when adopting this approach:
1 The visualization capability in generated code is very limited compared to what is available in MATLAB. If you need to keep the visualization in the simulation, use the coder.extrinsic trick; but this slows down the simulation.
2 The generated code does not allow dynamic changes of variable type and size compared to the original MATLAB code. The generated code is often optimized for a particular variable type and size; therefore, any change in a variable type and size, which can be caused, for example, by a change in PRF, requires a recompile.
3 The simulation speed benefit becomes more important when the MATLAB simulation time is long. If MATLAB simulation finishes in a few seconds, you do not gain much by generating the code from the original MATLAB simulation. As mentioned in the previous bullet, it is often necessary to recompile the code when parameters change. Therefore, it might be better to first use MATLAB simulation to identify appropriate parameter values and then use generated code to run long simulations.

\section*{Summary}

This example shows how to perform the radar system simulation in streaming mode. It also shows how the code generation can be used to speed up the simulation. The tradeoff between using the generated code and MATLAB code is discussed at the end.

\section*{Visualizing Radar and Target Trajectories in System Simulation}

This example shows how to use scenario viewer to visualize the radar system theater.

\section*{Introduction}

A radar system simulation often includes many moving objects. For example, both the radar and the targets can be in motion. In addition, each moving object may have its own orientations, so the bookkeeping becomes more and more challenging when more players present in the simulation.

Phased Array System Toolbox \({ }^{\mathrm{TM}}\) provides a scenario viewer to help visualize how radars and targets are moving in space. Through the scenario viewer, one can follow the trajectory of each moving platform and examine the relative motion between the radar and the target.

\section*{Visualize Trajectories}

In the first example, the scenario viewer is used to visualize the trajectories of a radar and a target. Assume that the radar is circling around the origin at 3 km away. The plane with radar flies at 250 \(\mathrm{m} / \mathrm{s}\) (about 560 mph ), and makes a circle approximately every 60 seconds.
```

v = 250;
deltaPhi = 360/60;
sensormotion = phased.Platform(...
'InitialPosition',[0;-3000;500],...
'VelocitySource','Input port',...
'InitialVelocity',[0;v;0]);

```

The target is traveling along a straight road with a velocity of \(30 \mathrm{~m} / \mathrm{s}\) along the x -axis. which is approximately 67 mph .
```

tgtmotion = phased.Platform('InitialPosition',[0;0;0],...
'Velocity',[30;0;0]);

```

The viewer is set to update at every 0.1 second. For the simplest case, the beam is not shown in the viewer.
```

tau = 0.5;
sceneview = phased.ScenarioViewer('ShowBeam','None');

```

This code simulates and displays radar and target's trajectories.
```

for m = 1:tau:60
[sensorpos,sensorvel] = sensormotion(tau,...
v*[cosd(m*deltaPhi);sind(m*deltaPhi);0]);
[tgtpos,tgtvel] = tgtmotion(tau);
sceneview(sensorpos,sensorvel,tgtpos,tgtvel);
drawnow;
end

```


\section*{Visualize Trajectories and Radar Beams}

The next natural step is to visualize the radar beams together with the trajectories in the viewer. The following example shows how to visualize two radars and three targets moving in space. In particular. the first radar has a beam tracking the first target.

First, setup radars and targets. Note the first radar and the first target match what used in the previous section.
```

sensormotion = phased.Platform(...
'InitialPosition',[0 0;-3000 500;500 1], ...
'VelocitySource','Input port', ...
'InitialVelocity',[0 100;v 0;0 0], ...
'OrientationAxesOutputPort', true);
tgtmotion = phased.Platform(...
'InitialPosition',[0 2000.66 3532.63;0 0 500;0 500 500],...
'Velocity',[30 120 -120; 0 0 -20; 0 0 60],...
'OrientationAxesOutputPort', true);

```

To properly point the beam, the scenario viewer needs to know the orientation information of radars and targets. Such information can be obtained from these moving platforms by setting the OrientationAxesOutputPort property to true at each simulation step, as shown in the code above. To pass this information to the viewer, set the scenario viewer's OrientationInputPort property to true.
```

sceneview = phased.ScenarioViewer('BeamRange',[3e3 3e3],...
'BeamWidth',[5 5], ...
'ShowBeam', 'All', ...
'CameraPerspective', 'Custom', ...
'CameraPosition', [-15453.85 -19716.96 13539], ...
'CameraOrientation', [-47 -27 0]', ...
'CameraViewAngle', 11.28, ...
'OrientationInputPort', true, ...
'UpdateRate',1/tau);

```

Note the displayed beam has a beamwidth of 5 degrees and a length of 3 km . The camera perspective is also adjusted to visualize all trajectories more clearly.
```

for m = 1:60
[sensorpos,sensorvel,sensoraxis] = sensormotion(tau,...
[v*[cosd(m*deltaPhi);sind(m*deltaPhi);0] [100; 0; 0]]);
[tgtpos,tgtvel,tgtaxis] = tgtmotion(tau);
% Radar 1 tracks Target 1
[lclrng, lclang] = rangeangle(tgtpos(:,1),sensorpos(:,1),...
sensoraxis(:,:,1));
% Update beam direction
sceneview.BeamSteering = [lclang [0;0]];
sceneview(sensorpos,sensorvel,sensoraxis,tgtpos,tgtvel,tgtaxis);
drawnow;
end

```


\section*{System Simulation Visualization}

The scenario viewer can also be combined together with other visualizations to provide more information of the system under simulation. Next example uses a scenario viewer together with a range time intensity (RTI) scope and a Doppler time intensity (DTI) scope so an engineer can examine whether the estimated ranges and range rates of targets match the ground truth.

The example uses the radar system created in the "Designing a Basic Monostatic Pulse Radar" on page 17-449 example.
load BasicMonostaticRadarExampleData.mat
Consider the scene where there are three targets.
```

fc = radiator.OperatingFrequency;
fs = waveform.SampleRate;
c = radiator.PropagationSpeed;
sensormotion = phased.Platform(...
'InitialPosition',[0; 0; 10],...
'Velocity',[0; 0; 0]);
target = phased.RadarTarget(...

```
```

 'MeanRCS',[1.6 2.2 1.05],...
 'OperatingFrequency',fc);
 tgtmotion = phased.Platform(...
'InitialPosition',[2000.66 3532.63 3845.04; 0 0 0;10 10 10], ...
'Velocity',[120 -120 0; 0 0 0; 0 0 0]);
channel = phased.FreeSpace(...
'SampleRate',fs,...
'TwoWayPropagation',true,...
'OperatingFrequency',fc);

```

Once the echo arrives at the receiver, a matched filter and a pulse integrator is used to perform the range estimation.
```

matchingcoeff = getMatchedFilter(waveform);
matchingdelay = size(matchingcoeff,1)-1;
matchedfilter = phased.MatchedFilter(...
'Coefficients',matchingcoeff,...
'GainOutputPort',true);
prf = waveform.PRF;
fast_time_grid = unigrid(0,1/fs,1/prf,'[)');
rangeGates = c*fast_time_grid/2;
lambda = c/fc;
max_range = 5000;
tvg = phased.TimeVaryingGain(...
'RangeLoss',2*fspl(rangeGates,lambda),...
'ReferenceLoss',2*fspl(max_range,lambda));
num_pulse_int = 10;

```

Because it is unnecessary to monitor the trajectory at the pulse repetition rate, this example assumes that the system reads the radar measurement at a rate of 20 Hz . The example uses a scenario viewer to monitor the scene and a range time intensity (RTI) plot as well as a Doppler time intensity (DTI) plot to examine the estimated range and range rate value.
```

r_update = 20;
sceneview = phased.ScenarioViewer('UpdateRate',r_update,...
'Title','Monostatic Radar with Three Targets');
rtiscope = phased.IntensityScope('Name','Range-Time Intensity Scope',...
'XLabel','Range (m)', ...
'XResolution',c/(2*fs), ...
'XOffset',-(matchingdelay-1)*c/(2*fs), ...
'TimeResolution',1/r_update,'TimeSpan',5,'IntensityUnits','dB');
nfft = 128;
df = prf/nfft;
dtiscope = phased.IntensityScope(...
'Name','Doppler-Time Intensity Scope',...
'XLabel','Velocity (m/sec)', ...
'XResolution',dop2speed(df,lambda)/2, ...
'XOffset', dop2speed(-prf/2,lambda)/2, ...
'TimeResolution',1/r_update,'TimeSpan',5,'IntensityUnits','dB');

```

Next section performs the system simulation and produces the visualizations.
```

% Pre-allocate array for improved processing speed
rxpulses = zeros(numel(rangeGates),num_pulse_int);
for k = 1:100
for m = 1:num_pulse_int
% Update sensor and target positions
[sensorpos,sensorvel] = sensormotion(1/prf);
[tgtpos,tgtvel] = tgtmotion(1/prf);
% Calculate the target angles as seen by the sensor
[~,tgtang] = rangeangle(tgtpos,sensorpos);
% Simulate propagation of pulse in direction of targets
pulse = waveform();
[txsig,txstatus] = transmitter(pulse);
txsig = radiator(txsig,tgtang);
txsig = channel(txsig,sensorpos,tgtpos,sensorvel,tgtvel);
% Reflect pulse off of targets
tgtsig = target(txsig);
% Receive target returns at sensor
rxsig = collector(tgtsig,tgtang);
rxpulses(:,m) = receiver(rxsig,~(txstatus>0));
end
rxpulses = matchedfilter(rxpulses);
% Correct for matched filter delay
rxpulses = buffer(...
rxpulses(matchingdelay+1:end),...
size(rxpulses,1));
rxpulses = tvg(rxpulses);
rx_int = pulsint(rxpulses,'noncoherent');
% display RTI
rtiscope(rx_int);
% display DTI
rx_dop = mean(fftshift(...
abs(fft(rxpulses,nfft,2)),2));
dtiscope(rx_dop.');
% display scene
sceneview(sensorpos,sensorvel,tgtpos,tgtvel);
% perform next detection when next update is needed
sensormotion(1/r_update);
tgtmotion(1/r_update);
end
hide(dtiscope);
hide(rtiscope);

```



Both the scenario viewer and the RTI are updated during the simulation so one can easily verify whether the simulation is running as expected and whether the range estimation matches the ground truth while the simulation is running.
hide(rtiscope);
show(dtiscope);


Similarly, the DTI provides the range rate estimates of each target.

\section*{Conclusions}

This example describes different ways to visualize the radar and target's trajectories. Such visualizations help provide an overall picture of the system dynamics.

\section*{End-to-End Monostatic Radar}

This example shows how to model an end-to-end monostatic radar using Simulink \({ }^{\circledR}\). A monostatic radar consists of a transmitter colocated with a receiver. The transmitter generates a pulse which hits the target and produces an echo received by the receiver. By measuring the time location of the echoes, you can estimate the range of the target. The first part of this example demonstrates how to detect the range of a single target using the equivalent of a single element antenna. The second part of the example will show how to build a monostatic radar with a 4 -element uniform linear array (ULA) that detects the range of 4 targets.

\section*{Available Example Implementations}

This example includes two Simulink® models:
- Monostatic Radar with One Target: slexMonostaticRadarExample.slx
- Monostatic ULA Radar with Four Targets: slexMonostaticRadarMultipleTargetsExample.slx

\section*{Monostatic Radar with One Target}

This model simulates a simple end-to-end monostatic radar. Using the transmitter block without the narrowband transmit array block is equivalent to modeling a single isotropic antenna element. Rectangular pulses are amplified by the transmitter block then propagated to and from a target in free-space. Noise and amplification are then applied in the receiver preamp block to the return signal, followed by a matched filter. Range losses are compensated for and the pulses are noncoherently integrated. Most of the design specifications are derived from the "Designing a Basic Monostatic Pulse Radar" on page 17-449 example provided for System objects.


The model consists of a transceiver, a channel, and a target. The blocks that corresponds to each section of the model are:

\section*{Transceiver}
- Rectangular - Creates rectangular pulses.
- Transmitter - Amplifies the pulses and sends a Transmit/Receive status to the Receiver Preamp block to indicate if it is transmitting.
- Receiver Preamp - Receives the pulses from free space when the transmitter is off. This block also adds noise to the signal.
- Constant - Used to set the position and velocity of the radar. Their values are received by the Freespace blocks using the Goto and From.
- Signal Processing - Subsystem performs match filtering and pulse integration.
- Target Range Scope - Displays the integrated pulse as a function of the range.

\section*{Signal Processing Subsystem}

- Matched Filter - Performs match filtering to improve SNR.
- TVG - Time varying gain to compensate for range loss.
- Pulse Integrator-Integrates several pulses noncoherently.

\section*{Channel}
- Freespace - Applies propagation delays, losses and Doppler shifts to the pulses. One block is used for the transmitted pulses and another one for the reflected pulses. The Freespace blocks require the positions and velocities of the radar and the target. Those are supplied using the Goto and From blocks.

\section*{Target}
- Target - Subsystem reflects the pulses according to the specified RCS. This subsystem includes a Platform block that models the speed and position of the target which are supplied to the Freespace blocks using the Goto and From blocks. In this example the target is stationary and positioned 1998 meters from the radar.

\section*{Exploring the Example}

Several dialog parameters of the model are calculated by the helper function helperslexMonostaticRadarParam. To open the function from the model, click on Modify Simulation Parameters block. This function is executed once when the model is loaded. It exports to the workspace a structure whose fields are referenced by the dialogs. To modify any parameters, either change the values in the structure at the command prompt or edit the helper function and rerun it to update the parameter structure.

\section*{Results and Displays}

The figure below shows the range of the target. Target range is computed from the round-trip delay of the reflected pulse. The delay is measured from the peak of the matched filter output. We can see that the target is approximately 2000 meters from the radar. This range is within the radar's 50 -meter range resolution from the actual range.


\section*{Monostatic Radar with Multiple Targets}

This model estimates the range of four stationary targets using a monostatic radar. The radar transceiver uses a 4 -element uniform linear antenna array (ULA) for improved directionality and gain. A beamformer is also included in the receiver. The targets are positioned at 1988, 3532, 3845 and 1045 meters from the radar.


The blocks added to the previous example are:
- Narrowband Tx Array - Models an antenna array for transmitting narrowband signals. The antenna array is configured using the "Sensor Array" tab of the block's dialog panel. The Narrowband Tx Array block models the transmission of the pulses through the antenna array in the four directions specified using the Ang port. The output of this block is a matrix of four columns. Each column corresponds to the pulses propagated towards the directions of the four targets.

- Narrowband Rx Array - Models an antenna array for receiving narrowband signals. The array is configured using the "Sensor Array" tab of the block's dialog panel. The block receives pulses from the four directions specified using the Ang port. The input of this block is a matrix of four columns. Each column corresponds to the pulses propagated from the direction of each target. The output of the block is a matrix of 4 columns. Each column corresponds to the signal received at each antenna element.
- Range Angle- Calculates the angles between the radar and the targets. The angles are used by the Narrowband Tx Array and the Narrowband Rx Array blocks to determine in which directions to model the pulses' transmission or reception.
- Phase Shift Beamformer - Beamforms the output of the Receiver Preamp. The input to the beamformer is a matrix of 4 columns, one column for the signal received at each antenna element. The output is a beamformed vector of the received signal.

This example illustrates how to use single Platform, Freespace and Target blocks to model all four round-trip propagation paths. In the Platform block, the initial positions and velocity parameters are specified as three-by-four matrices. Each matrix column corresponds to a different target. Position and velocity inputs to the Freespace block come from the outputs of the Platform block as three-by-four matrices. Again, each matrix column corresponds to a different target. The signal inputs and outputs of the Freespace block have four columns, one column for the propagation
path to each target. The Freespace block has two-way propagation setting enabled. The "Mean radar cross section" (RCS) parameter of the Target block is specified as a vector of four elements representing the RCS of each target.

\section*{Exploring the Example}

Several dialog parameters of the model are calculated by the helper function helperslexMonostaticRadarMultipleTargetsParam. To open the function from the model, click on Modify Simulation Parameters block. This function is executed once when the model is loaded. It exports to the workspace a structure whose fields are referenced by the dialogs. To modify any parameters, either change the values in the structure at the command prompt or edit the helper function and rerun it to update the parameter structure.

\section*{Results and Displays}

The figure below shows the detected ranges of the targets. Target ranges are computed from the round-trip time delay of the reflected signals from the targets. We can see that the targets are approximately 2000, 3550, and 3850 meters from the radar. These results are within the radar's \(50-\) meter range resolution from the actual range.


\section*{Modeling a Wideband Monostatic Radar in a Multipath Environment}

This example shows how to simulate a wideband radar system. A radar system is typically considered to be wideband when its bandwidth exceeds \(5 \%\) of the system's center frequency. For this example, a bandwidth of \(10 \%\) will be used.

\section*{Exploring the Example}

This example expands on the narrowband monostatic radar system explored in the "End-to-End Monostatic Radar" on page 17-497 example by modifying it for wideband radar simulation. For wideband signals, both propagation losses and target RCS can vary considerably across the system's bandwidth. It is for this reason that narrowband models cannot be used, as they only model propagation and target reflections at a single frequency. Instead, wideband models divide the system's bandwidth into multiple subbands. Each subband is then modeled as a narrowband signal and the received signals within each subband are recombined to determine the response across the entire system's bandwidth.

Wideband Radar with One Target in a Separable Multipath Environment


The model consists of a transceiver, a channel, and a target. The blocks that correspond to each section of the model are:

\section*{Transceiver}
- Linear FM - Creates linear FM pulses.
- Transmitter - Amplifies the pulses and sends a Transmit/Receive status to the Receiver Preamp block to indicate if it is transmitting.
- Receiver Preamp - Receives the propagated pulses when the transmitter is off. This block also adds noise to the signal.
- Platform - Used to model the radar's motion.
- Signal Processing - Subsystem performs stretch processing, Doppler processing, and noise floor estimation.
- Matrix Viewer - Displays the processed pulses as a function of the measured range, radial speed, and estimated signal power to interference plus noise power ratio (SINR).

\section*{Signal Processing Subsystem}

- Stretch Processor - Dechirps the received signal by mixing it in the analog domain with the transmitted linear FM waveform delayed to a selected reference range. A more detailed discussion on stretch processing is available in the Range Estimation Using Stretch Processing example.
- Decimator - Subsystem models the sample rate of the analog-to-digital converter (ADC) by reducing the simulation's sample rate according to the bandwidth required by the range span selected in the stretch processor.
- Buffer CPI - Subsystem collects multiple pulse repetition intervals (PRIs) to form a coherent processing interval (CPI), enabling radial speed estimation through Doppler processing.
- Range-Doppler Response - Computes DFTs along the range and Doppler dimensions to estimate the range and radial speed of the received pulses.
- CA CFAR 2-D - Estimates the noise floor of the received signals using the cell-averaging (CA) method in both range and Doppler.
- Compute SINR - Subsystem normalizes the received signal using the CFAR detector's computed threshold, returning the estimated SINR in decibels (dB).

\section*{Channel}
- Wideband Two-Ray - Applies propagation delays, losses, Doppler shifts and multipath reflections off of a flat ground to the pulses. One block is used for the transmitted pulses and another one for the reflected pulses. The Wideband Two-Ray blocks require the positions and velocities of the radar and the target. Those are supplied using the Goto and From blocks.

\section*{Target Subsystem}

The Target subsystem models the target's motion and reflects the pulses according to the wideband RCS model and the target's aspect angle presented to the radar. In this example, the target is positioned 3000 meters from the wideband radar and is moving away from the radar at \(100 \mathrm{~m} / \mathrm{s}\).

- Platform - Used to model the target's motion. The target's position and velocity values are used by the Wideband Two-Ray Channel blocks to model propagation and by the Range Angle block to compute the signal's incident angles at the target's location.
- Range Angle - Computes the propagated signal's incident angles in azimuth and elevation at the target's location.
- Wideband Backscatter Target - Models the wideband reflections of the target to the incident pulses. The extended wideband target model introduced in the Modeling Target Radar Cross Section example is used for this simulation.

\section*{Exploring the Model}

Several dialog parameters of the model are calculated by the helper function helperslexWidebandMonostaticRadarParam. To open the function from the model, click on Modify Simulation Parameters block. This function is executed once when the model is loaded. It exports to the workspace a structure whose fields are referenced by the dialogs. To modify any parameters, either change the values in the structure at the command prompt or edit the helper function and rerun it to update the parameter structure.

\section*{Results and Displays}

The figure below shows the range and radial speed of the target. Target range is computed from the round-trip delay of the reflected pulses. The target's radial speed is estimated by using the DFT to compare the phase progression of the received target returns across the coherent pulse interval (CPI). The target's range and radial speed are measured from the peak of the stretch and Doppler processed output.


Although only a single target was modeled in this example, three target returns are observed in the upper right-hand portion of the figure. The multipath reflections along the transmit and receive paths give rise to the second and third target returns, often referred to as the single- and double-bounce returns respectively. The expected range and radial speed for the target is computed from the simulation parameters.
tgtRange = rangeangle(paramWidebandRadar.targetPos,... paramWidebandRadar.sensorPos)
tgtRange \(=\)
3000
tgtSpeed \(=\) radialspeed \((\ldots\)
paramWidebandRadar.targetPos, paramWidebandRadar.targetVel,... paramWidebandRadar.sensorPos, paramWidebandRadar.sensorVel)
tgtSpeed =
- 100

This expected range and radial speed are consistent with the simulated results in the figure above.
The expected separation between the multipath returns can also be found. The figure below illustrates the line-of-sight \(\left(R_{\text {los }}\right)\) and reflected path \(\left(R_{r p}\right)\) geometries.


The modeled geometric parameters for this simulation are defined as follows.
```

zr = paramWidebandRadar.targetPos(3);
zs = paramWidebandRadar.sensorPos(3);
Rlos = tgtRange;

```

The length of each of these paths is easily derived.
\[
\begin{aligned}
& L=\sqrt{R_{l o s}^{2}-\left(z_{r}-z_{s}\right)^{2}} \\
& R_{1}=\frac{z_{r}}{z_{r}+z_{s}} \sqrt{\left(z_{r}+z_{s}\right)^{2}+L^{2}} \\
& R_{2}=\frac{z_{s}}{z_{r}+z_{s}} \sqrt{\left(z_{r}+z_{s}\right)^{2}+L^{2}} \\
& R_{r p}=R_{1}+R_{2}=\sqrt{\left(z_{r}+z_{s}\right)^{2}+L^{2}}
\end{aligned}
\]

Using these results, the reflected path range can be computed.
```

L = sqrt(Rlos^2-(zr-zs)^2);
Rrp = sqrt((zs+zr)^2+L^2)
Rrp =

```

For a monostatic system, the single bounce return can traverse two different paths.
1 Radar \(\xrightarrow{R_{\text {op }}}\) Target \(\xrightarrow{R_{\text {la }}}\) Radar
2 Radar \(\xrightarrow{R_{\text {la }}}\) Target \(\xrightarrow{R_{\text {T }}}\) Radar
In both cases, the same range will be observed by the radar.
\[
R_{o b s}=\frac{R_{l o s}+R_{r p}}{2}
\]

The range separation between all of the multipath returns is then found to be the difference between the observed and line-of-sight ranges.
```

 R\Delta}=\mp@subsup{R}{\mathrm{ cbs }}{}-\mp@subsup{R}{\mathrm{ los }}{}=\frac{\mp@subsup{R}{rp}{}-\mp@subsup{R}{\mathrm{ los }}{}}{2
 Rdelta = (Rrp-Rlos)/2
Rdelta =
3.3296

```

Which matches the multipath range separation observed in the simulated results.

\section*{Summary}

This example demonstrated how an end-to-end wideband radar system can be modeled within Simulink®. The variation of propagation losses and target RCS across the system's bandwidth required wideband propagation and target models to be used.

The signal to interference plus noise ratio (SINR) of the received target returns was estimated using the CA CFAR 2-D block. The CFAR estimator used cell-averaging to estimate the noise and interference power in the vicinity of the target returns which enabled calculation of the received signal's SINR.

The target was modeled in a multipath environment using the Wideband Two-Ray Channel, which gave rise to three target returns observed by the radar. These returns correspond to the line-of-sight, single-bounce, and double-bounce paths associated with the two-way signal propagation between the monostatic radar and the target. The simulated separation of the multipath returns in range was shown to match the expected separation computed from the modeled geometry.

\section*{Modeling RF Front End in Radar System Simulation}

In a radar system, the RF front end often plays an important role in defining the system performance. For example, because the RF front end is the first section in the receiver chain, the design of its low noise amplifier is critical to achieving the desired signal to noise ratio (SNR). This example shows how to incorporate RF front end behavior into an existing radar system design.

This example requires RF Blockset \({ }^{\text {TM }}\).

\section*{Available Example Implementations}

This example includes two Simulink \({ }^{\circledR}\) models:
- Monostatic Radar with One Target: slexMonostaticRadarRFExample.slx
- FMCW Radar Range and Speed Estimation: slexFMCWRFExample.slx

\section*{Introduction}

Several examples, such as "End-to-End Monostatic Radar" on page 17-497 and "Automotive Adaptive Cruise Control Using FMCW and MFSK Technology" on page 17-379 have shown that one can build end-to-end radar systems in Simulink using Phased Array System Toolbox. In many cases, once the system model is built, the next step could be adding more fidelity in different components. A popular candidate for such a component is the RF front end. One advantage of modeling the system in Simulink is the capability of performing multidomain simulations.

The following sections show two examples of incorporating RF Blockset modeling capability in radar systems built with Phased Array System Toolbox.

\section*{Monostatic Radar with One Target}

The first model is adopted from example "End-to-End Monostatic Radar" on page 17-497 which simulates a monostatic pulse radar with one target. From the diagram itself, the model below looks identical to the model shown in that example.


When the model is executed, the resulting plot is also the same.
However, a deeper look in the transmitter subsystem shows that now the transmitter is modeled by power amplifiers from RF Blockset.


Similar changes are also implemented in the receiver side.


With these changes, the model is capable of simulating RF behaviors. For example, the simulation result shown above assumes a perfect power amplifier. In real applications, the amplifier will suffer many nonlinearities. If one sets the IP3 of the transmitter to 70 dB and run the simulation again, the peak corresponding to the target is no longer as dominant. This gives the engineer some knowledge regarding the system's performance under different situations.

\section*{FMCW Radar Range and Speed Estimation}

The second example is adopted from "Automotive Adaptive Cruise Control Using FMCW and MFSK Technology" on page 17-379. However, this model uses a triangle sweep waveform instead so the system can estimate range and speed simultaneously. At the top level, the model is similar to what gets built from Phased Array System Toolbox. Once executed, the model shows the estimated range and speed values that matches the distance and relative speed of the target car.


However, similar to the first example, the transmitter and receiver subsystems are now built with RF Blockset blocks.

The following figure shows the transmitter subsystem.


The following figure shows the receiver subsystem.


In a continuous wave radar system, part of the transmitted waveform is used as a reference to dechirp the received target echo. From the diagrams above, one can see that the transmitted waveform is sent to the receiver via a coupler and the dechirp is performed via an I/Q mixer. Therefore, by adjusting parameters in those RF components, higher simulation fidelity can be achieved.

\section*{Summary}

This example shows two radar models that are originally built with Phased Array System Toolbox and later incorporated RF models from RF Blockset. The simulation fidelity is greatly improved by combining the two products together.

\section*{Simulating a Bistatic Radar with Two Targets}

This example shows how to simulates a bistatic radar system with two targets. The transmitter and the receiver of a bistatic radar are not co-located and move along different paths.

\section*{Exploring the Example}

The following model shows an end-to-end simulation of a bistatic radar system. The system is divided into three parts: the transmitter subsystem, the receiver subsystem, and the targets and their propagation channels. The model shows the signal flowing from the transmitter, through the channels to the targets and reflected back to the receiver. Range-Doppler processing is then performed at the receiver to generate the range-Doppler map of the received echoes.

\section*{Modify Simulation Parameters}

Bistatic Radar with Two Targets


\section*{Transmitter}
- Linear FM - Creates linear FM pulse as the transmitter waveform. The signal sweeps a 3 MHz bandwidth, corresponding to a 50 -meter range resolution.
- Radar Transmitter - Amplifies the pulse and simulates the transmitter motion. In this case, the transmitter is mounted on a stationary platform located at the origin. The operating frequency of the transmitter is 300 MHz .


Transmitter Platform

\section*{Targets}

This example includes two targets with similar configurations. The targets are mounted on the moving platforms.
- Tx to Targets Channel - Propagates signal from the transmitter to the targets. The signal inputs and outputs of the channel block have two columns, one column for the propagation path to each target.
- Targets to Rx Channel - Propagates signal from the targets to the receiver. The signal inputs and outputs of the channel block have two columns, one column for the propagation path from each target.
- Targets - Reflects the incident signal and simulates both targets motion. This first target with an RCS of 2.5 square meters is approximately 15 km from the transmitter and is moving at a speed of \(141 \mathrm{~m} / \mathrm{s}\). The second target with an RCS of 4 square meters is approximately 35 km from the transmitter and is moving at a speed of \(168 \mathrm{~m} / \mathrm{s}\). The RCS of both targets are specified as a vector of two elements in the Mean radar cross section parameter of the underlying Target block.


\section*{Receiver}
- Radar Receiver - Receives the target echo, adds receiver noise, and simulates the receiver motion. The distance between the transmitter and the receiver is 20 km , and the receiver is moving at a speed of \(20 \mathrm{~m} / \mathrm{s}\). The distance between the receiver and the two targets are approximately 5 km and 15 km , respectively.

- Range-Doppler Processing - Computes the range-Doppler map of the received signal. The received signal is buffered to form a 64 -pulse burst which is then passed to a range-Doppler processor. The processor performs a matched filter operation along the range dimension and an FFT along the Doppler dimension.


\section*{Exploring the Model}

Several dialog parameters of the model are calculated by the helper function helperslexBistaticParam. To open the function from the model, click on Modify Simulation Parameters block. This function is executed once when the model is loaded. It exports to the workspace a structure whose fields are referenced by the dialogs. To modify any parameters, either change the values in the structure at the command prompt or edit the helper function and rerun it to update the parameter structure.

\section*{Results and Displays}

The figure below shows the two targets in the range-Doppler map.


Because this is a bistatic radar, the range-Doppler map above actually shows the target range as the arithmetic mean of the distances from the transmitter to the target and from the target to the receiver. Therefore, the expected range of the first target is approximately \(10 \mathrm{~km},((15+5) / 2)\) and for second target approximately \(25 \mathrm{~km},((35+15) / 2)\). The range-Doppler map whos these two values as the measured values.

Similarly, the Doppler shift of a target in a bistatic configuration is the sum of the target's Doppler shifts relative to the transmitter and the receiver. The relative speeds to the transmitter are -106.4 \(\mathrm{m} / \mathrm{s}\) for the first target and \(161.3 \mathrm{~m} / \mathrm{s}\) for the second target while the relative speeds to the receiver are \(99.7 \mathrm{~m} / \mathrm{s}\) for the first target and \(158.6 \mathrm{~m} / \mathrm{s}\) for second target. Thus, the range-Doppler map shows the overall relative speeds as \(-6.7 \mathrm{~m} / \mathrm{s}(-24 \mathrm{~km} / \mathrm{h})\) and \(319.9 \mathrm{~m} / \mathrm{s}(1152 \mathrm{~km} / \mathrm{h})\) for the first target and the second target, respectively, which agree with the expected sum values.

\section*{Summary}

This example shows an end-to-end bistatic radar system simulation with two targets. It explains how to analyze the target return by plotting a range-Doppler map.

\section*{Waveform Scheduling Based on Target Detection}

In radar operation, it is often necessary to adjust the operation mode based on the target return. This example shows how to model a radar that changes its pulse repetition frequency (PRF) based on the radar detection.

This example requires SimEvents \({ }^{\circledR}\).

\section*{Available Example Implementations}

This example includes one Simulink \({ }^{\circledR}\) model:
- Dynamic PRF Selection Based on Radar Detection: slexPRFSelectionSEExample.slx

\section*{Dynamic PRF Selection Based on Radar Detection}

This model simulates a monostatic radar that searches for targets with an unambiguous range of 5 km . If the radar detects a target within 2 km , then it will switch to a higher PRF to only look for targets with 2 km range and enhance its capability to detect high speed targets.

Modlfy simulation Parameters Waveform Scheduling Based on Radar Detection


Radar System

The model consists of two main subsystem, a radar system and its corresponding controller. From the top level, the radar system resides in a Simulink function block. Note that the underlying function is specified in the figure as \([d t, r]=f(i d x)\). This means that the radar takes one input, \(i d x\), which specifies the index of selected PRF of the transmitted signal and returns two outputs: dt , the time the next pulse should be transmitted and \(r\), the detected target range of the radar system. The radar controller, shown in the following figure, uses the detection and the time to schedule when and what to transmit next.


\section*{Radar System}

The radar system resides in a Simulink function block and is shown in the following figure.


The system is very similar to what is used in the "Waveform Scheduling Based on Target Detection" on page 17-517 example with the following notable difference:

1 The waveform block is no longer a source block. Instead, it takes an input, idx, to select which PRF to use. The available PRF values are specified in the PRF parameter of the waveform dialog.
2 The output of the waveform is also used to compute the time, dt , that the next pulse should be transmitted. Note that in this case, the time interval is proportional to the length of the transmitted signal.
3 At the end of the signal processing chain, the target range is estimated and returned in \(r\). The controller will use this information to decide which PRF to choose for next transmission.
4 Once the model is compiled, notice that the signal passing through the system can vary in length because of a possible change of the waveform PRF. In addition, because the sample rate cannot be derived inside a Simulink function subsystem, the sample rate is specified in the block diagrams, such as the Tx and Rx paths, the receiver preamp, and other blocks.



\section*{Exploring the Example}

Several dialog parameters of the model are calculated by the helper function helperslexPRFSelectionParam. To open the function from the model, click on Modify Simulation Parameters block. This function is executed once when the model is loaded. It exports to the workspace a structure whose fields are referenced by the dialogs. To modify any parameters, either change the values in the structure at the command prompt or edit the helper function and rerun it to update the parameter structure.

\section*{Results and Displays}

The figure below shows the detected ranges of the targets. Target ranges are computed from the round-trip time delay of the reflected signals from the targets. At the simulation start, the radar detects two targets, one is slightly over 2 km away and the other one is at approximately 3.5 km away.


After some time, the first target moves into the 2 km zone and triggers a change of PRF. Then the received signal only covers the range up to 2 km . The display is zero padded to ensure that the plot limits do not change. Notice that the target at 3.5 km gets folded to the 1.5 km range due to range ambiguity.


\section*{Summary}

This example shows how to build a radar system in Simulink \({ }^{\circledR}\) that dynamically changes its PRF based on the target detection range. A staggered PRF system can be modeled similarly.

\section*{Underwater Target Detection with an Active Sonar System}

This example shows how to simulate an active monostatic sonar scenario with two targets. The sonar system consists of an isotropic projector array and a single hydrophone element. The projector array is spherical in shape. The backscattered signals are received by the hydrophone. The received signals includes both direct and multipath contributions.

\section*{Underwater Environment}

Multiple propagation paths are present between the sound source and target in a shallow water environment. In this example, five paths are assumed in a channel with a depth of 100 meters and a constant sound speed of \(1520 \mathrm{~m} / \mathrm{s}\). Use a bottom loss of 0.5 dB in order to highlight the effects of the multiple paths.

Define the properties of the underwater environment, including the channel depth, the number of propagation paths, the propagation speed, and the bottom loss.
```

numPaths = 5;
propSpeed = 1520;
channelDepth = 100;
isopath{1} = phased.IsoSpeedUnderwaterPaths(...
'ChannelDepth',channelDepth,...
'NumPathsSource','Property',...
'NumPaths',numPaths,...
'PropagationSpeed',propSpeed,...
'BottomLoss',0.5,...
'TwoWayPropagation',true);
isopath{2} = phased.IsoSpeedUnderwaterPaths(...
'ChannelDepth',channelDepth,...
'NumPathsSource','Property',...
'NumPaths',numPaths,...
'PropagationSpeed',propSpeed,...
'BottomLoss',0.5,...
'TwoWayPropagation',true);

```

Next, create a multipath channel for each target. The multipath channel propagates the waveform along the multiple paths. This two-step process is analogous to designing a filter and using the resulting coefficients to filter a signal.
```

fc = 20e3; % Operating frequency (Hz)
channel{1} = phased.MultipathChannel(...
'OperatingFrequency',fc);
channel{2} = phased.MultipathChannel(...
'OperatingFrequency',fc);

```

\section*{Sonar Targets}

The scenario has two targets. The first target is more distant but has a larger target strength, and the second is closer but has a smaller target strength. Both targets are isotropic and stationary with respect to the sonar system.
```

tgt{1} = phased.BackscatterSonarTarget(...
'TSPattern',-5*ones(181,361));

```
```

tgt{2} = phased.BackscatterSonarTarget(...
TSPattern', -15*ones(181,361)) ;
tgtplat{1} = phased.Platform(...
'InitialPosition',[500; 1000; -70],'Velocity',[0; 0; 0]);
tgtplat{2} = phased.Platform(...
'InitialPosition',[500; 0; -40],'Velocity',[0; 0; 0]);

```

The target positions, along with the channel properties, determine the underwater paths along which the signals propagate. Plot the paths between the sonar system and each target. Note that the zcoordinate determines depth, with zero corresponding to the top surface of the channel, and the distance in the \(x-y\) plane is plotted as the range between the source and target.
```

helperPlotPaths([0;0;-60],[500 500; 1000 0; -70 -40], ...
channelDepth,numPaths)

```


\section*{Transmitter and Receiver}

\section*{Transmitted Waveform}

Next, specify a rectangular waveform to transmit to the targets. The maximum target range and desired range resolution define the properties of the waveform.
```

maxRange = 5000;
rangeRes = 10;

```
\% Maximum unambiguous range
\% Required range resolution
```

prf = propSpeed/(2*maxRange); % Pulse repetition frequency
pulse_width = 2*rangeRes/propSpeed;
pulse - bw = 1/pulse width;
fs = 2*pulse_bw;
wav = phased.RectangularWaveform(...
'PulseWidth',pulse_width,...
'PRF',prf,...
'SampleRate',fs);

```

Update the sample rate of the multipath channel with the transmitted waveform sample rate.
```

channel{1}.SampleRate = fs;
channel{2}.SampleRate = fs;

```

\section*{Transmitter}

The transmitter consists of a hemispherical array of back-baffled isotropic projector elements. The transmitter is located 60 meters below the surface. Create the array and view the array geometry.
```

plat = phased.Platform(...
'InitialPosition',[0; 0; -60],...
'Velocity',[0; 0; 0]);
proj = phased.IsotropicProjector(...
'FrequencyRange',[0 30e3],'VoltageResponse',80,'BackBaffled',true);
[ElementPosition,ElementNormal] = helperSphericalProjector(8,fc,propSpeed);
projArray = phased.ConformalArray(...
'ElementPosition',ElementPosition,...
'ElementNormal',ElementNormal,'Element',proj);
viewArray(projArray,'ShowNormals',true);

```

\section*{Array Geometry}


View the pattern of the array at zero degrees in elevation. The directivity shows peaks in azimuth corresponding to the azimuth position of the array elements.
```

pattern(projArray,fc,-180:180,0,'CoordinateSystem','polar',...

```
    'PropagationSpeed', propSpeed);


Directivity (dBi), Broadside at \(0.00^{\circ}\)

\section*{Receiver}

The receiver consists of a hydrophone and an amplifier. The hydrophone is a single isotropic element and has a frequency range from 0 to 30 kHz , which contains the operating frequency of the multipath channel. Specify the hydrophone voltage sensitivity as -140 dB .
```

hydro = phased.IsotropicHydrophone(...
'FrequencyRange',[0 30e3],'VoltageSensitivity',-140);

```

Thermal noise is present in the received signal. Assume that the receiver has 20 dB of gain and a noise figure of 10 dB .
```

rx = phased.ReceiverPreamp(...
'Gain',20,...
'NoiseFigure',10,...
'SampleRate',fs,...
'SeedSource','Property',...
'Seed', 2007);

```

\section*{Radiator and Collector}

In an active sonar system, an acoustic wave is propagated to the target, scattered by the target, and received by a hydrophone. The radiator generates the spatial dependence of the propagated wave due to the array geometry. Likewise, the collector combines the backscattered signals received by the hydrophone element from the far-field target.
```

radiator = phased.Radiator('Sensor',projArray,'OperatingFrequency',...
fc,'PropagationSpeed',propSpeed);

```
```

collector = phased.Collector('Sensor',hydro,'OperatingFrequency',fc,...
'PropagationSpeed',propSpeed);

```

\section*{Sonar System Simulation}

Next, transmit the rectangular waveform over ten repetition intervals and simulate the signal received at the hydrophone for each transmission.
```

x = wav(); % Generate pulse
xmits = 10;
rx_pulses = zeros(size(x,1),xmits);
t = (0:size(x,1)-1)/fs;
for j = 1:xmits
% Update target and sonar position
[sonar_pos,sonar_vel] = plat(1/prf);
for i = 1:2 %Loop over targets
[tgt_pos,tgt_vel] = tgtplat{i}(1/prf);
% Compute transmission paths using the method of images. Paths are
% updated according to the CoherenceTime property.
[paths,dop,aloss,tgtAng,srcAng] = isopath{i}(...
sonar_pos,tgt_pos,...
sonar_vel,tgt_vel,1/prf);
% Compute the radiated signals. Steer the array towards the target.
tsig = radiator(x,srcAng);
% Propagate radiated signals through the channel.
tsig = channel{i}(tsig,paths,dop,aloss);
% Target
tsig = tgt{i}(tsig,tgtAng);
% Collector
rsig = collector(tsig,srcAng);
rx_pulses(:,j) = rx_pulses(:,j) + ...
rx(rsig);
end
end

```

Plot the magnitude of non-coherent integration of the received signals to locate the returns of the two targets.
```

figure
rx_pulses = pulsint(rx_pulses,'noncoherent');
plot(t,abs(rx_pulses))
grid on
xlabel('Time (s)')
ylabel('Amplitude (V)')
title('Integrated Received Pulses')

```


The targets, which are separated a relatively large distance, appear as distinct returns. Zoom in on the first return.
```

xlim([0.55 0.85])

```


The target return is the superposition of pulses from multiple propagation paths, resulting in multiple peaks for each target. The resulting peaks could be misinterpreted as additional targets.

\section*{Active Sonar with Bellhop}

In the previous section, the sound speed was constant as a function of channel depth. In contrast, a ray tracing program like Bellhop can generate acoustic paths for spatially-varying sound speed profiles. You can use the path information generated by Bellhop to propagate signals via the multipath channel. Simulate transmission between an isotropic projector and isotropic hydrophone in a target-free environment with the 'Munk' sound speed profile. The path information is contained in a Bellhop arrival file (MunkB_eigenray_Arr.arr).

\section*{Bellhop Configuration}

In this example, the channel is 5000 meters in depth. The source is located at a depth of 1000 meters and the receiver is located at a depth of 800 meters. They are separated by 100 kilometers in range. Import and plot the paths computed by Bellhop.
```

[paths,dop,aloss,rcvAng,srcAng] = helperBellhopArrivals(fc,6,false);
helperPlotPaths('MunkB_eigenray')

```


For this scenario, there are two direct paths with no interface reflections, and eight paths with reflections at both the top and bottom surfaces. The sound speed in the channel is lowest at approximately 1250 meters in depth, and increases towards the top and bottom of the channel, to a maximum of 1550 meters/second.

Create a new channel and receiver to use with data from Bellhop.
```

release(collector)
channelBellhop = phased.MultipathChannel(...
'SampleRate',fs,...
'OperatingFrequency',fc);
rx = phased.ReceiverPreamp(...
'Gain',10,...
'NoiseFigure',10,...
'SampleRate',fs,...
'SeedSource','Property',...
'Seed',2007);

```

Specify a pulse for the new problem configuration.
```

maxRange = 150000;
pulse_width = 0.02;
wav =- phased.RectangularWaveform(...
'PulseWidth',pulse_width,...
'PRF',prf,...
'SampleRate',fs);

```
prf = propSpeed/(maxRange); \% Pulse repetition frequency

\section*{Bellhop Simulation}

Next, simulate the transmission of ten pulses from transmitter to receiver.
```

x = repmat(wav(),1,size(paths,2));
xmits = 10;
rx_pulses = zeros(size(x,1),xmits);
t = (0:size(x,1)-1)/fs;
for j = 1:xmits
% Projector
tsig = x.*proj(fc,srcAng)';
% Propagate radiated signals through the channel.
tsig = channelBellhop(tsig,paths,dop,aloss);
% Collector
rsig = collector(tsig,rcvAng);
rx_pulses(:,j) = rx_pulses(:,j) + ...
rx(rsig);
end

```

Plot the non-coherent integration of the transmitted pulses.
```

figure
rx_pulses = pulsint(rx_pulses,'noncoherent');
plöt(t,abs(rx_pulses))
grid on
xlim([66 70])
xlabel('Time (s)')
ylabel('Amplitude (V)')
title('Integrated Received Pulses')

```


The transmitted pulses appear as peaks in the response. Note that the two direct paths, which have no interface reflections, arrive first and have the highest amplitude. In comparing the direct path received pulses, the second pulse to arrive has the higher amplitude of the two, indicating a shorter propagation distance. The longer delay time for the shorter path can be explained by the fact that it propagates through the slowest part of the channel. The remaining pulses have reduced amplitude compared to the direct paths due to multiple reflections at the channel bottom, each contributing to the loss.

\section*{Summary}

In this example, acoustic pulses were transmitted and received in shallow-water and deep-water environments. Using a rectangular waveform, an active sonar system detected two well-separated targets in shallow water. The presence of multiple paths was apparent in the received signal. Next, pulses were transmitted between a projector and hydrophone in deep water with the 'Munk' sound speed profile using paths generated by Bellhop. The impact of spatially-varying sound speed was noted.

\section*{Reference}

Urick, Robert. Principles of Underwater Sound. Los Altos, California: Peninsula Publishing, 1983.

\section*{Locating an Acoustic Beacon with a Passive Sonar System}

This example shows how to simulate a passive sonar system. A stationary underwater acoustic beacon is detected and localized by a towed passive array in a shallow-water channel. The acoustic beacon transmits a 10 millisecond pulse at 37.5 kilohertz every second, and is modeled as an isotropic projector. The locator system tows a passive array beneath the surface, which is modeled as a uniform linear array. Once the acoustic beacon signal is detected, a direction of arrival estimator is used to locate the beacon.

\section*{Define the Underwater Channel}

In this example, the acoustic beacon is located at the bottom of a shallow water channel, which is 200 meters deep. A passive array is towed beneath the surface to locate the beacon.


First, create a multipath channel to transmit the signal between the beacon and passive array. Consider ten propagation paths including the direct path and reflections from the top and bottom surfaces. The paths generated by isopaths will be used by the multipath channel, channel, to simulate the signal propagation.
```

propSpeed = 1520;
channelDepth = 200;
OperatingFrequency = 37.5e3;
isopaths = phased.IsoSpeedUnderwaterPaths('ChannelDepth',channelDepth,...
'NumPathsSource','Property','NumPaths',10,'PropagationSpeed',propSpeed);
channel = phased.MultipathChannel('OperatingFrequency',OperatingFrequency);

```

\section*{Define the Acoustic Beacon and Passive Array}

\section*{Acoustic Beacon Waveform}

Define the waveform emitted by the acoustic beacon. The waveform is a rectangular pulse having a 1 second repetition interval and 10 millisecond width.
```

prf = 1;
pulseWidth = 10e-3;
pulseBandwidth = 1/pulseWidth;
fs = 2*pulseBandwidth;
wav = phased.RectangularWaveform('PRF',prf,'PulseWidth',pulseWidth,...
'SampleRate',fs);
channel.SampleRate = fs;

```

\section*{Acoustic Beacon}

Next, define the acoustic beacon, which is located 1 meter above the bottom of the channel. The acoustic beacon is modeled as an isotropic projector. The acoustic beacon waveform will be radiated to the far field.
```

projector = phased.IsotropicProjector('VoltageResponse',120);
projRadiator = phased.Radiator('Sensor',projector,...
'PropagationSpeed',propSpeed,'OperatingFrequency',OperatingFrequency);
beaconPlat = phased.Platform('InitialPosition',[5000; 2000; -199],...
'Velocity',[0; 0; 0]);

```

\section*{Passive Towed Array}

A passive towed array will detect and localize the source of the pings, and is modeled as a fiveelement linear array with half-wavelength spacing. The passive array has velocity of \(1 \mathrm{~m} / \mathrm{s}\) in the y direction. The array axis is oriented parallel to the direction of travel.
hydrophone = phased.IsotropicHydrophone('VoltageSensitivity',-150);
array \(=\) phased.ULA('Element' ,hydrophone, ...
'NumElements',5,'ElementSpacing',propSpeed/OperatingFrequency/2, ...
'ArrayAxis', 'y');
arrayCollector \(=\) phased.Collector('Sensor', array,...
'PropagationSpeed', propSpeed,'OperatingFrequency',OperatingFrequency);
arrayPlat \(=\) phased.Platform('InitialPosition',[0; 0; -10],...
'Velocity',[0; 1; 0]);
Define the receiver amplifier for each hydrophone element. Choose a gain of 20 dB and noise figure of 10 dB .
```

rx = phased.ReceiverPreamp(...
'Gain',20,...
'NoiseFigure',10,...
'SampleRate',fs,...
'SeedSource','Property',...
'Seed', 2007);

```

\section*{Simulate the Passive Sonar System}

Activate the acoustic beacon and transmit ten pings. After the propagation delay, the pings appear as a peaks in the received signals of the array.
```

x = wav();
numTransmits = 10;
rxsig = zeros(size(x,1),5,numTransmits);
for i = 1:numTransmits
% Update array and acoustic beacon positions
[pos_tx,vel_tx] = beaconPlat(1/prf);
[pos_rx,vel_rx] = arrayPlat(1/prf);
% Compute paths between the acoustic beacon and array
[paths,dop,aloss,rcvang,srcang] = ...
isopaths(pos_tx,pos_rx,vel_tx,vel_rx,1/prf);

```
```

% Propagate the acoustic beacon waveform
tsig = projRadiator(x,srcang);
rsig = channel(tsig,paths,dop,aloss);
% Collect the propagated signal
rsig = arrayCollector(rsig,rcvang);
% Store the received pulses
rxsig(:,:,i) = abs(rx(rsig));
end

```

Plot the last received pulse. Because of the multiple propagation paths, each ping is a superposition of multiple pulses.
```

t = (0:length(x)-1)'/fs;
plot(t,rxsig(:,end))
xlabel('Time (s)');
ylabel('Signal Amplitude (V)')

```


\section*{Estimate the Direction of Arrival}

Estimate the direction of arrival of the acoustic beacon with respect to the array. Create a MUSIC estimator object, specifying a single source signal and the direction of arrival as an output. Use a scan angle grid with 0.1 degree spacing.
```

musicspatialspect = phased.MUSICEstimator('SensorArray',array,...
'PropagationSpeed ',propSpeed,'OperatingFrequency', ...
OperatingFrequency,'ScanAngles',-90:0.1:90,'D0AOutputPort',true,...
'NumSignalsSource','Property','NumSignals',1);

```

Next, collect pings for 500 more repetition intervals. Estimate the direction of arrival for each repetition interval, and compare the estimates to the true direction of arrival.
```

numTransmits = 500;
angPassive = zeros(numTransmits,1);
angAct = zeros(numTransmits,1);
for i = 1:numTransmits
% Update array and acoustic beacon positions
[pos_tx,vel_tx] = beaconPlat(1/prf);
[pos_rx,vel_rx] = arrayPlat(1/prf);
% Compute paths between acoustic beacon and the array
[paths,dop,aloss,rcvang,srcang] = ...
isopaths(pos_tx,pos_rx,vel_tx,vel_rx,1/prf);
angAct(i) = rcvang(1,1);
% Propagate the acoustic beacon waveform
tsig = projRadiator(x,srcang);
rsig = channel(tsig,paths,dop,aloss);
% Collect the propagated signal
rsig = arrayCollector(rsig,rcvang);
rxsig = rx(rsig);
% Estimate the direction of arrival
[~,angPassive(i)] = musicspatialspect(rxsig);
end

```

Plot the estimated arrival angles and the true directions of arrival for each pulse repetition interval.
```

plot([angPassive angAct])
xlabel('Pulse Number')
ylabel('Arrival angle (degrees)')
legend('Estimated DOA','Actual DOA')

```


The estimated and actual directions of arrival agree to within less than one degree.

\section*{Summary}

In this example, the transmission of acoustic pings between a beacon and passive array was simulated in a shallow-water channel. Each ping was received along ten acoustic paths. The direction of arrival of the beacon was estimated with respect to the passive array for each received ping and compared to the true direction of arrival. The direction of arrival could be used to locate and recover the beacon.

\section*{Reference}

Urick, Robert. Principles of Underwater Sound. Los Altos, California: Peninsula Publishing, 1983.

\section*{Interference Mitigation Using Frequency Agility Techniques}

This example shows how to model frequency agility techniques to counter the effects of interference in radar, communications, and EW systems. Using Simulink, a scenario is created with a ground based radar and an approaching aircraft who can also emit jamming signals. A similar example in MATLAB can be found in "Frequency Agility in Radar, Communications, and EW Systems" on page 17-135.

\section*{Introduction}

In this model, a phased array radar is designed to detect an approaching aircraft. The aircraft is equipped with a jammer which can intercept the radar signal and transmit a spoofing signal back to confuse the radar. On the other hand, the radar system is capable of transmitting waveform with different operating frequencies to mitigate the jamming effect. The model includes blocks for waveform generation, signal propagation, and radar signal processing. It shows how the radar and jammer interact and gain advantage over each other.

Frequency Agility for Radar, Communications, and EW


The radar is operating at 300 MHz with a sampling rate of 2 MHz . The radar is located at the origin and is assumed to be stationary. The target is located about 10 km away and approaching at approximately 100 meters per second.

\section*{Waveform Generation}

The Waveform Generation subsystem includes a linear FM (LFM) waveform generator. By varying the input to the waveform generator a frequency hopped waveform at a shifted center frequency is genearted. Therefore, the radar system is capable of switching transmit waveform either following a fixed schedule or when it detects jamming signals. This example assumes that the waveform can be generated for two different frequencies, referred to as center band and hopped band. The center
band is the subband around the carrier frequency and the hopped band is the subband located quarter bandwidth above the carrier.


\section*{Propagation Channels}

The signal propagation is modeled for both the forward channel and the return channel. Once the transmitted signal hits the target aircraft, the reflected signal travels back to the radar system via the return channel. In addition, the jammer analyzes the incoming signal and send back a jamming signal to confuse the radar system. That jamming signal is also propagated through the return channel. Because different signals may occupy different frequency bands, wideband propagation channels are used.

\section*{Signal Processing}

The radar receives both the target return and the jamming signal. Upon receiving the signal, a series filters are used to extract the signal from different bands. In this example, there are two of them to extract the signal from the center band and the hopped band. The signal in each band then passes through the corresponding matched filter to improve the SNR and be ready for detection.


\section*{Exploring the Example}

Several dialog parameters of the model are calculated by the helper function helperslexFrequencyAgilityParam. To open the function from the model, click on Modify Simulation Parameters block. This function is executed once when the model is loaded. It exports to the workspace a structure whose fields are referenced by the dialogs. To modify any parameters, either change the values in the structure at the command prompt or edit the helper function and rerun it to update the parameter structure.

\section*{Results and Displays}

First run the model for the case when there is no jamming signal. The scopes shows that there is one strong echo in the center band with a delay of approximately 67 microseconds, which corresponds to
a target range of 10 km . Therefore, the target is correctly detected. Meanwhile, there is no return detected in the hopped band.


The spectrum analyzer shows that the received signal occupies the center band.


Now enable jammer by clicking the Jammer Switch block. In this situation, the target intercepts the signal, amplify it, and then sends it back with a delay corresponding to a different range. As a result, the scope now shows two returns in the center band. The true target return is still at the old position, but the ghost return generated by the jammer appears stronger and closer to the radar so the radar is likely to be confused and assign precious resource to track this fake target.


Note that both the jammer signal and the target return are in the center band, as shown in the spectrum analyzer.


If the radar has a pre-scheduled frequency hopping schedule or is smart enough to know that it might have been confused by a jamming signal, it could switch to a different frequency band to operate. Such scenario can be simulated by clicking the Hop Switch block so the radar signal is transmitted in the hopped band.


Because the radar now operates in the hopped band, the target echo is also in the hopped band. From the scope, the target echo is at the appropriate delay in the hopped band. Meanwhile, the jammer hasn't figured out the radar's new operating band yet so the jamming signal still appears in the center band. Yet the jamming signal can no longer fool the radar.

The spectrum analyzer shows that the received signal now occupies two bands.


\section*{Summary}

This models a radar system detecting a target equipped with a jammer. It shows how frequency agility techniques can be used to mitigate the jamming effect.

\section*{Signal Parameter Estimation in a Radar Warning Receiver}

Modern aircraft often carry a radar warning receiver (RWR) with them. The RWR detects the radar emission and warns the pilot when the radar signal shines on the aircraft. An RWR can not only detect the radar emission, but also analyze the intercepted signal and catalog what kind of radar is the signal coming from. This example shows how an RWR can estimate the parameters of intercepted signal. The example simulates a radar scenario for a ground surveillance radar (emitter) and a flying aircraft (target) equipped with an RWR. The RWR intercepts radar signals, extracts the waveform parameters from the intercepted signal, and estimates the location of the emitter. The extracted parameters can be utilized by the aircraft to take counter-measures.

This example requires Image Processing Toolbox \({ }^{\mathrm{TM}}\)

\section*{Introduction}

An RWR is a passive electronic warfare support system [1] that provides timely information to the pilot about its RF signal environment. The RWR intercepts an impinging signal, and uses signal processing techniques to extract information about the intercepted waveform characteristics, as well as the location of the emitter. This information can be used to invoke counter-measures, such as jamming to avoid being detected by the radar. The interaction between the radar and the aircraft is depicted in the following diagram.


In this example, we simulate a scenario where a ground surveillance radar and an airplane with an RWR present. The RWR detects the radar signal and extracts the following waveform parameters from the intercepted signal:

1 Pulse repetition interval
2 Center frequency
3 Bandwidth
4 Pulse duration
5 Direction of arrival
6 Position of the emitter
The RWR chain consists of a phased array antenna, a channelized receiver, an envelope detector, and a signal processor. The frequency band of the intercepted signal is estimated by the channelized receiver and the envelope detector, following which the detected sub-banded signal is fed to the signal processor. Beam steering is applied towards the direction of arrival of this sub-banded signal, and the waveform parameters are estimated using pseudo Wigner-Ville transform in conjunction with Hough transform. Using angle of arrival and single-baseline approach, the location of the emitter is also estimated.

\section*{Scenario Setup}

Assume the ground based surveillance radar operates in the L band, and transmits chirp signals of 3 \(\mu s\) duration at a pulse repetition interval of \(15 \mu \mathrm{~s}\). Bandwidth of the transmitted chirp is 30 MHz , and the carrier frequency is 1.8 GHz . The surveillance radar is located at the origin and is stationary, and the aircraft is flying at a constant speed of \(200 \mathrm{~m} / \mathrm{s}(\sim 0.6\) Mach \()\).
```

% Define the transmitted waveform parameters
fs = 4e9; % Sampling frequency for the systems (Hz)
fc = 1.8e9; % Operating frequency of the surveillance radar (Hz)
T = 3e-6; % Chirp duration (s)
PRF = 1/(15e-6); % Pulse repetition frequency (Hz)
BW = 30e6; % Chirp bandwidth (Hz)
C= physconst('LightSpeed'); % Speed of light in air (m/s)
% Assume the surveillance radar is at the origin and is stationary
radarPos= [0;0;0]; %Radar position (m)
radarVel= [0;0;0]; % Radar speed (m/s)
% Assume aircraft is moving with constant velocity
rwrPos= [-3000;1000;1000]; % Aircraft position (m)
rwrVel= [200; 0; 0]; % Aircraft speed (m/s)
% Configure objects to model ground radar and aircraft's relative motion
rwrPose = phased.Platform(rwrPos, rwrVel);
radarPose = phased.Platform(radarPos, radarVel);

```

The transmit antenna of the radar is a \(8 \times 8\) uniform rectangular phased array, having a spacing of \(\lambda / 2\) between its elements. The signal propagates from the radar to the aircraft and is intercepted and analyzed by the RWR. For simplicity, the waveform is chosen as a linear FM waveform with a peak power of 100 W .

\footnotetext{
\% Configure the LFM waveform using the waveform parameters defined above wavGen= phased.LinearFMWaveform('SampleRate',fs,'PulseWidth', T,'SweepBandwidth',BW,'PRF',PRF);
}
```

% Configure the Uniform Rectangular Array
antennaTx = phased.URA('ElementSpacing',repmat((c/fc)/2, 1, 2), 'Size', [8,8]);
% Configure objects for transmitting and propagating the radar signal
tx = phased.Transmitter('Gain', 5, 'PeakPower',100);
radiator = phased.Radiator('Sensor', antennaTx, 'OperatingFrequency', fc);
envIn = phased.FreeSpace('TwoWayPropagation',false,'SampleRate', fs,'OperatingFrequency',fc);

```

The ground surveillance radar is unaware of the direction of the target, therefore, it needs to scan the entire space to look for aircraft. In general, the radar will transmit a series of pulses at each direction before moving to the next direction. Therefore, without losing generality, this example assumes that the radar is transmitting toward zero degrees azimuth and elevation. The following figure shows the time frequency representation of a 4-pulse train arrived at the aircraft. Note that although the pulse train arrives at a specific delay, the time delay of the arrival of the first pulse is irrelevant for the RWR because it has no knowledge transmit time and has to constantly monitor its environment
```

% Transmit a train of pulses
numPulses = 4;
txPulseTrain = helperRWR('simulateTransmission',numPulses, wavGen, rwrPos,...
radarPos, rwrVel, radarVel, rwrPose, radarPose, tx, radiator, envIn,fs,fc,PRF);
% Observe the signal arriving at the RWR
pspectrum(txPulseTrain,fs,'spectrogram','FrequencyLimits',[1.7e9 1.9e9], 'Leakage',0.65)
title('Transmitted pulse train spectrogram'); caxis([-110 -90]);

```


The RWR is equipped with a \(10 x 10\) uniform rectangular array with a spacing of \(\lambda / 2\) between its elements. It operates in the entire L-band, with a center frequency of 2 GHz . The RWR listens to the environment, and continuously feeds the collected data into the processing chain.
```

% Configure the receive antenna
dip = phased.IsotropicAntennaElement('BackBaffled',true);
antennaRx = phased.URA('ElementSpacing',repmat((c/2e9)/2,1,2),'Size', [10,10],'Element',dip);
% Model the radar receiver chain
collector = phased.Collector('Sensor', antennaRx,'OperatingFrequency',fc);
rx = phased.ReceiverPreamp('Gain',0,'NoiseMethod','Noise power', 'NoisePower',2.5e-6,'SeedSource
% Collect the waves at the receiver
[~, tgtAng] = rangeangle(radarPos,rwrPos);
yr = collector(txPulseTrain,tgtAng);
yr = rx(yr);

```

\section*{RWR envelope detector}

The envelope detector in the RWR is responsible for detecting the presence of any signal. As the RWR is continuously receiving data, the receiver chain buffers and truncates the received data into \(50 \mu \mathrm{~s}\) segments.
```

% Truncate the received data
truncTime = 50e-6;
truncInd = round(truncTime*fs);
yr = yr(1:truncInd,:);

```

Since the RWR has no knowledge about the exact center frequency used in the transmit waveform, it first uses a bank of filters, each tuned to a slightly different RF center frequency, to divide the received data into subbands. Then the envelope detector is applied in each band to check whether a signal presents. In this example, the signal is divided into sub-bands of 100 MHz bandwidth. An added benefit for such operation is that instead of sampling the entire bandwidth covered by the RWR, the signal in each subband can be down-sampled to a sampling frequency of 100 MHz .
```

% Define the bandwidth of each frequency sub-band
stepFreq = 100e6;
% Calculate number of sub-bands and configure dsp.Channelizer
numChan = fs/stepFreq;
channelizer = dsp.Channelizer('NumFrequencyBands', numChan, 'StopbandAttenuation', 80);

```

The plot below shows the first four band created by the filter bank.
```

% Visualize the first four filters created in the filter bank of the
% channelizer
freqz(channelizer, 1:4)
title('Zoomed Channelizer response for first four filters')
xlim([0 0.2])

```

\% Pass the received data through the channelizer
subData \(=\) channelizer(yr);
The received data, subData, has 3 dimensions. The first dimension represents the fast-time, the second dimension represents the sub-bands, and the third dimension corresponds to the receiving elements of the receiving array. For the RWR's \(10 x 10\) antenna configuration used in this example, we have 100 receiving elements. Because the transmit power is low and the receiver noise is high, the radar signal is indistinguishable from the noise. Therefore the received power are summed across these elements to enhance the signal-to-nose ratio (SNR) and get a better estimates of the power in each subband. The band that has the maximum power is the one used by the radar.
```

% Rearrange the subData to combine the antenna array channels only
incohsubData = pulsint(permute(subData,[1,3,2]),'noncoherent');
incohsubData = squeeze(incohsubData);
% Plot power distribution
subbandPow = pow2db(rms(incohsubData,1).^2)+30;
plot(subbandPow);
xlabel('Band Index');
ylabel('Power (dBm)');

```

\% Find the sub-band with maximum power
\([\sim, \operatorname{det}\) Ind \(]=\max (\) subbandPow)

\section*{RWR signal processor}

Although the power in the selected band is higher compared to the neighboring band, the SNR within the band is still low, as shown in the following figure.
```

subData = (subData(:,detInd,:));
subData = squeeze(subData); %adjust the data to 2-D matrix
% Visualize the detected sub-band data
plot(mag2db(abs(sum(subData,2)))+30)
ylabel('Power (dBm)')
title('Detected sub-band from 100 channels combined incoherently')

```


The subData is now a two-dimensional matrix. The first dimension represents fast-time samples and the second dimension is the data across 100 receiving antenna channels. The detected sub-band starting frequency is calculated to find the carrier frequency of the detected signal.

The next step for the RWR is to find the direction from which the radio waves are arriving. This angle of arrival information would be used to steer the receive antenna beam in the direction of the emitter, and locate the emitter on the ground using single base-line approach. The RWR estimates the direction of arrival using a two dimensional MUSIC estimator. Beam steering is done using phaseshift beamformer to achieve maximum SNR of the signal, thus help the waveform parameter extraction.

Assume that ground plane is flat and parallel to the xy-plane of the coordinate system. such, the RWR can use the altitude information from its altimeter readings of the aircraft along with the direction of arrival to triangulate the location of the emitter.
```

% Configure the MUSIC Estimator to find the direction of arrival of the
% signal
doaEst = phased.MUSICEstimator2D('OperatingFrequency',fc,'PropagationSpeed',c,...
'SensorArray',antennaRx,'D0A0utputPort',true,'AzimuthScanAngles',-50:.5:50,...
'ElevationScanAngles',-50:.5:50, 'NumSignalsSource', 'Property','NumSignals', 1);

```
```

[mSpec,doa] = doaEst(subData);
plotSpectrum(doaEst,'Title','2-D MUSIC Spatial Spectrum Top view');
view(0,90); axis([-30 0 -30 0]);

```


The figure clearly shows the location of the emitter.
```

% Configure the beamformer object to steer the beam before combining the
% channels
beamformer = phased.PhaseShiftBeamformer('SensorArray',antennaRx,...
'OperatingFrequency',fc,'DirectionSource','Input port');
% Apply the beamforming, and visualize the beam steered radiation
% pattern
mBeamf = beamformer(subData, doa);
% Find the location of the emitter
altimeterElev = rwrPos(3);
d = abs(altimeterElev/sind(doa(2)));

```

After applying the beam steering, the antenna has the maximum gain in the azimuth and elevation angle of arrival of the signal. This further improves the SNR of the intercepted signal. Next, the signal parameters are extracted in the signal processor using one of the time-frequency analysis techniques known as pseudo Wigner-Ville transform coupled with Hough transform as described in [2].

First, derive the time frequency representation of the intercepted signal using Wigner-Ville transform.
```

% Compute the pseudo Wigner-Ville transform
[tpwv,t,f] = helperRWR('pWignerVille',mBeamf,fs);
% Plot the pseudo Wigner-Ville transform
imagesc(f*1e-6,t*1e6,pow2db(abs(tpwv./max(tpwv(:)))));
xlabel('Frequency (MHz)'); ylabel('Time(\mus)');
caxis([-50 0]); clb = colorbar; clb.Label.String = 'Normalized Power (dB)';
title ('Pseudo Wigner-Ville Transform')

```


Using human eyes, even though the resulting time frequency representation is noisy, it is not too hard to separate the signal from the background. Each pulse appears as a line in the time frequency plane. Thus, using beginning and end of the time-frequency lines, we can derive the pulse width and the bandwidth of the pulse. Similarly, the time between lines from different pulses gives us the pulse repetition interval.

To do this automatically without relying on human eyes, we use Hough transform to identify those lines from the image. The Hough transform can perform well in the presence of noise, and is an enhancement to the time-frequency signal analysis method.

To use Hough transform, it is necessary to convert the time frequency image into a binary image. Next code snippet performs some data smoothing on the image and then use imbinarize to do the conversion. The conversion threshold can be modified based on the signal-noise characteristics of the receiver and the operating environment.
```

% Normalize the pseudo Wigner-Ville image
twvNorm = abs(tpwv)./max(abs(tpwv(:)));

```
```

% Implement a median filter to clear the noise
filImag = medfilt2(twvNorm,[7 7]);
% Use threshold to convert filtered image into binary image
BW = imbinarize(filImag./max(filImag(:)), 0.15);
imagesc(f*le-6,t*le6,BW); colormap('gray');
xlabel('Frequency (MHz)'); ylabel('Time(\mus)');
title ('Pseudo Wigner-Ville Transform - BW')

```


Using Hough transform, the binary pseudo Wigner-Ville image are first transformed to peaks. This way, instead of detecting the line in an image, we just need to detect a peak in an image.
```

% Compute the Hough transform of the image and plot
[H,T,R] = hough(BW);
imshow(H,[],'XData',T,'YData',R,'InitialMagnification','fit');
xlabel('0'), ylabel('\rho');
axis on, axis normal, hold on;
title('Hough transform of the image')

```

The peak positions are extracted using houghpeaks.
```

% Compute peaks in the transform, up to 5 peaks
P = houghpeaks(H,5);
x = T(P(:,2)); y = R(P(:,1));
plot(x,y,'s','color','g'); xlim([-90 -50]); ylim([-5000 0])

```


Using these positions, houghlines can reconstruct the lines in the original binary image. Then as discussed earlier, the beginning and the end of these lines help us estimate the waveform parameters.
```

lines = houghlines(BW,T,R,P,'FillGap',3e-6*fs,'MinLength',1e-6*fs);
coord = [lines(:).point1; lines(:).point2];
% Plot the detected lines superimposed on the binary image
clf;
imagesc(f*le-6, t*le6, BW); colormap(gray); hold on
xlabel('Frequency (MHz)')
ylabel('Time(\mus)')
title('Hough transform - detected lines')
for ii = 1:2:2*size(lines,2)
plot(f(coord(:,ii))*le-6, t(coord(:,ii+1))*le6,'LineWidth',2,'Color','green');
end

```

```

% Calculate the parameters using the line co-ordinates
pulDur = t(coord(2,2)) - t(coord(1,2)); % Pulse duration
bWidth = f(coord(2,1)) - f(coord(1,1)); % Pulse Bandwidth
pulRI = abs(t(coord(1,4)) - t(coord(1,2))); % Pulse repetition interval
detFc = detfBand + f(\operatorname{coord}(2,1)); % Center frequency

```

The extracted waveform characteristics are listed below. They match the truth very well. These estimates can then be used to catalog the radar and prepare for counter measures if necessary.
helperRWR('displayParameters',pulRI, pulDur, bWidth,detFc, doa,d);
Pulse repetition interval \(=14.97\) microseconds
Pulse duration = 2.84 microseconds
Pulse bandwidth \(=27 \mathrm{MHz}\)
Center frequency \(=1.8286 \mathrm{GHz}\)
Azimuth angle of emitter \(=-18.5\) degrees
Elevation angle of emitter \(=-17.5\) degrees
Distance of the emitter \(=3325.5095 \mathrm{~m}\)

\section*{Summary}

This demo shows how an RWR can estimate the parameters of the intercepted radar signal using signal processing and image processing techniques.

\section*{References}
[1] Electronic Warfare and Radar Systems Engineering Handbook 2013, Naval Air Warfare Center Weapons Division, Point Mugu, California.
[2] Daniel L. Stevens, Stephanie A. Schuckers, Detection and Parameter Extraction of Low Probability of Intercept Radar Signals using the Hough Transform . Global Journal of Research In Engineering Vol 15 Issue 6, Jan. 2016

\section*{Massive MIMO Hybrid Beamforming}

This example shows how hybrid beamforming is employed at the transmit end of a massive MIMO communications system, using techniques for both multi-user and single-user systems. The example employs full channel sounding for determining the channel state information at the transmitter. It partitions the required precoding into digital baseband and analog RF components, using different techniques for multi-user and single-user systems. Simplified all-digital receivers recover the multiple transmitted data streams to highlight the common figures of merit for a communications system, namely, EVM, and BER.

The example employs a scattering-based spatial channel model which accounts for the transmit/ receive spatial locations and antenna patterns. A simpler static-flat MIMO channel is also offered for link validation purposes.

The example requires Communications Toolbox \({ }^{\mathrm{TM}}\) and Phased Array System Toolbox \({ }^{\mathrm{TM}}\).

\section*{Introduction}

The ever-growing demand for high data rate and more user capacity increases the need to use the available spectrum more efficiently. Multi-user MIMO (MU-MIMO) improves the spectrum efficiency by allowing a base station (BS) transmitter to communicate simultaneously with multiple mobile stations (MS) receivers using the same time-frequency resources. Massive MIMO allows the number of BS antenna elements to be on the order of tens or hundreds, thereby also increasing the number of data streams in a cell to a large value.

The next generation, 5 G , wireless systems use millimeter wave (mmWave) bands to take advantage of their wider bandwidth. The 5G systems also deploy large scale antenna arrays to mitigate severe propagation loss in the mmWave band.

Compared to current wireless systems, the wavelength in the mmWave band is much smaller. Although this allows an array to contain more elements within the same physical dimension, it becomes much more expensive to provide one transmit-receive (TR) module, or an RF chain, for each antenna element. Hybrid transceivers are a practical solution as they use a combination of analog beamformers in the RF and digital beamformers in the baseband domains, with fewer RF chains than the number of transmit elements [ 1 ].

This example uses a multi-user MIMO-OFDM system to highlight the partitioning of the required precoding into its digital baseband and RF analog components at the transmitter end. Building on the system highlighted in the "MIMO-OFDM Precoding with Phased Arrays" on page 17-430 example, this example shows the formulation of the transmit-end precoding matrices and their application to a MIMO-OFDM system.
```

s = rng(67); % Set RNG state for repeatability

```

\section*{System Parameters}

Define system parameters for the example. Modify these parameters to explore their impact on the system.
```

% Multi-user system with single/multiple streams per user
prm.numUsers = 4; % Number of users
prm.numSTSVec = [3 2 1 2]; % Number of independent data streams per user
prm.numSTS = sum(prm.numSTSVec); % Must be a power of 2
prm.numTx = prm.numSTS*8; % Number of BS transmit antennas (power of 2)
prm.numRx = prm.numSTSVec*4; % Number of receive antennas, per user (any >= numSTSVec)

```
```

% Each user has the same modulation
prm.bitsPerSubCarrier = 4; % 2: QPSK, 4: 16QAM, 6: 64QAM, 8: 256QAM
prm.numDataSymbols = 10; % Number of OFDM data symbols
% MS positions: assumes BS at origin
% Angles specified as [azimuth;elevation] degrees
% az in range [-180 180], el in range [-90 90], e.g. [45;0]
maxRange = 1000; % all MSs within 1000 meters of BS
prm.mobileRanges = randi([1 maxRange],1,prm.numUsers);
prm.mobileAngles = [rand(1,prm.numUsers)*360-180; ...
rand(1,prm.numUsers)*180-90];
prm.fc = 28e9; % 28 GHz system
prm.chanSRate = 100e6; % Channel sampling rate, 100 Msps
prm.ChanType = 'Scattering'; % Channel options: 'Scattering', 'MIMO'
prm.NFig = 8; % Noise figure (increase to worsen, 5-10 dB)
prm.nRays = 500; % Number of rays for Frf, Fbb partitioning

```

Define OFDM modulation parameters used for the system.
```

prm.FFTLength = 256;
prm.CyclicPrefixLength = 64;
prm.numCarriers = 234;
prm.NullCarrierIndices = [1:7 129 256-5:256]'; % Guards and DC
prm.PilotCarrierIndices = [26 54 90 118 140 168 204 232]';
nonDataIdx = [prm.NullCarrierIndices; prm.PilotCarrierIndices];
prm.CarriersLocations = setdiff((1:prm.FFTLength)', sort(nonDataIdx));
numSTS = prm.numSTS;
numTx = prm.numTx;
numRx = prm.numRx;
numSTSVec = prm.numSTSVec;
codeRate = 1/3; % same code rate per user
numTails = 6; % number of termination tail bits
prm.numFrmBits = numSTSVec.*(prm.numDataSymbols*prm.numCarriers* ...
prm.bitsPerSubCarrier*codeRate)-numTails;
prm.modMode = 2^prm.bitsPerSubCarrier; % Modulation order
% Account for channel filter delay
numPadSym = 3; % number of symbols to zeropad
prm.numPadZeros = numPadSym*(prm.FFTLength+prm.CyclicPrefixLength);

```

Define transmit and receive arrays and positional parameters for the system.
```

prm.cLight = physconst('LightSpeed');
prm.lambda = prm.cLight/prm.fc;
% Get transmit and receive array information
[isTxURA, expFactorTx,isRxURA, expFactorRx] = helperArrayInfo(prm,true);
% Transmit antenna array definition
% Array locations and angles
prm.posTx = [0;0;0]; % BS/Transmit array position, [x;y;z], meters
if isTxURA
% Uniform Rectangular array
txarray = phased.PartitionedArray(...
'Array',phased.URA([expFactorTx numSTS],0.5*prm.lambda),...
'SubarraySelection',ones(numSTS,numTx),'SubarraySteering','Custom');

```
```

else
% Uniform Linear array
txarray = phased.ULA(numTx, 'ElementSpacing',0.5*prm.lambda, ...
'Element',phased.IsotropicAntennaElement('BackBaffled',false));
end
prm.posTxElem = getElementPosition(txarray)/prm.lambda;
spLoss = zeros(prm.numUsers,1);
prm.posRx = zeros(3,prm.numUsers);
for uIdx = 1:prm.numUsers
% Receive arrays
if isRxURA(uIdx)
% Uniform Rectangular array
rxarray = phased.PartitionedArray(...
'Array',phased.URA([expFactorRx(uIdx) numSTSVec(uIdx)], ...
0.5*prm.lambda),'SubarraySelection',ones(numSTSVec(uIdx), ...
numRx(uIdx)),'SubarraySteering','Custom');
prm.posRxElem = getElementPosition(rxarray)/prm.lambda;
else
if numRx(uIdx)>1
% Uniform Linear array
rxarray = phased.ULA(numRx(uIdx), ...
'ElementSpacing',0.5*prm.lambda, ...
'Element',phased.IsotropicAntennaElement);
prm.posRxElem = getElementPosition(rxarray)/prm.lambda;
else
rxarray = phased.IsotropicAntennaElement;
prm.posRxElem = [0; 0; 0]; % LCS
end
end
% Mobile positions
[xRx,yRx,zRx] = sph2cart(deg2rad(prm.mobileAngles(1,uIdx)), ...
deg2rad(prm.mobileAngles(2,uIdx)), ...
prm.mobileRanges(uIdx));
prm.posRx(:,uIdx) = [xRx;yRx;zRx];
[toRxRange,toRxAng] = rangeangle(prm.posTx,prm.posRx(:,uIdx));
spLoss(uIdx) = fspl(toRxRange,prm.lambda);
end

```

\section*{Channel State Information}

For a spatially multiplexed system, availability of channel information at the transmitter allows for precoding to be applied to maximize the signal energy in the direction and channel of interest. Under the assumption of a slowly varying channel, this is facilitated by sounding the channel first. The BS sounds the channel by using a reference transmission, that the MS receiver uses to estimate the channel. The MS transmits the channel estimate information back to the BS for calculation of the precoding needed for the subsequent data transmission.

The following schematic shows the processing for the channel sounding modeled.


For the chosen MIMO system, a preamble signal is sent over all transmitting antenna elements, and processed at the receiver accounting for the channel. The receiver antenna elements perform preamplification, OFDM demodulation, and frequency domain channel estimation for all links.
```

% Generate the preamble signal
prm.numSTS = numTx; % set to numTx to sound out all channels
preambleSig = helperGenPreamble(prm);
% Transmit preamble over channel
prm.numSTS = numSTS; % keep same array config for channel
[rxPreSig,chanDelay] = helperApplyMUChannel(preambleSig,prm,spLoss);
% Channel state information feedback
hDp = cell(prm.numUsers,1);
prm.numSTS = numTx; % set to numTx to estimate all links
for uIdx = 1:prm.numUsers
% Front-end amplifier gain and thermal noise
rxPreAmp = phased.ReceiverPreamp(...
'Gain',spLoss(uIdx), ... % account for path loss
'NoiseFigure',prm.NFig,'ReferenceTemperature',290, ...
'SampleRate',prm.chanSRate);
rxPreSigAmp = rxPreAmp(rxPreSig{uIdx});
% scale power for used sub-carriers
rxPreSigAmp = rxPreSigAmp * (sqrt(prm.FFTLength - ...
length(prm.NullCarrierIndices))/prm.FFTLength);
% OFDM demodulation
rx0FDM = ofdmdemod(rxPreSigAmp(chanDelay(uIdx)+1: ...
end-(prm.numPadZeros-chanDelay(uIdx)),:),prm.FFTLength, ...
prm.CyclicPrefixLength,prm.CyclicPrefixLength, ...
prm.NullCarrierIndices,prm.PilotCarrierIndices);
% Channel estimation from preamble
% numCarr, numTx, numRx
hDp{uIdx} = helperMIMOChannelEstimate(rx0FDM(:,1:numTx,:),prm);

```
end

For a multi-user system, the channel estimate is fed back from each MS, and used by the BS to determine the precoding weights. The example assumes perfect feedback with no quantization or implementation delays.

\section*{Hybrid Beamforming}

The example uses the orthogonal matching pursuit (OMP) algorithm [ 3 ] for a single-user system and the joint spatial division multiplexing (JSDM) technique [ 2, 4 ] for a multi-user system, to determine the digital baseband Fbb and RF analog Frf precoding weights for the selected system configuration.

For a single-user system, the OMP partitioning algorithm is sensitive to the array response vectors At. Ideally, these response vectors account for all the scatterers seen by the channel, but these are unknown for an actual system and channel realization, so a random set of rays within a 3-dimensional space to cover as many scatterers as possible is used. The prm.nRays parameter specifies the number of rays.

For a multi-user system, JSDM groups users with similar transmit channel covariance together and suppresses the inter-group interference by an analog precoder based on the block diagonalization method [ 5 ]. Here each user is assigned to be in its own group, thereby leading to no reduction in the sounding or feedback overhead.
```

% Calculate the hybrid weights on the transmit side
if prm.numUsers==1
% Single-user OMP
% Spread rays in [az;el]=[-180:180;-90:90] 3D space, equal spacing
% txang = [-180:360/prm.nRays:180; -90:180/prm.nRays:90];
txang = [rand(1,prm.nRays)*360-180;rand(1,prm.nRays)*180-90]; % random
At = steervec(prm.posTxElem,txang);
AtExp = complex(zeros(prm.numCarriers,size(At,1),size(At,2)));
for carrIdx = 1:prm.numCarriers
AtExp(carrIdx,:,:) = At; % same for all sub-carriers
end
% Orthogonal matching pursuit hybrid weights
[Fbb,Frf] = omphybweights(hDp{1},numSTS,numSTS,AtExp);
v = Fbb; % set the baseband precoder (Fbb)
% Frf is same across subcarriers for flat channels
mFrf = permute(mean(Frf,1),[2 3 1]);
else
% Multi-user Joint Spatial Division Multiplexing
[Fbb,mFrf] = helperJSDMTransmitWeights(hDp,prm);
% Multi-user baseband precoding
% Pack the per user CSI into a matrix (block diagonal)
steeringMatrix = zeros(prm.numCarriers,sum(numSTSVec),sum(numSTSVec));
for uIdx = 1:prm.numUsers
stsIdx = sum(numSTSVec(1:uIdx-1))+(1:numSTSVec(uIdx));
steeringMatrix(:,stsIdx,stsIdx) = Fbb{uIdx}; % Nst-by-Nsts-by-Nsts
end
v = permute(steeringMatrix,[1 3 2]);
end
% Transmit array pattern plots
if isTxURA

```
```

 % URA element response for the first subcarrier
 pattern(txarray,prm.fc,-180:180,-90:90,'Type','efield', ...
 'ElementWeights',mFrf.'*squeeze(v(1,:,:)), ...
 'PropagationSpeed',prm.cLight);
 else % ULA
% Array response for first subcarrier
wts = mFrf.'*squeeze(v(1,:,:));
pattern(txarray,prm.fc,-180:180,-90:90,'Type','efield', ...
'Weights',wts(:,1),'PropagationSpeed',prm.cLight);
end
prm.numSTS = numSTS; % revert back for data transmission

```


For the wideband OFDM system modeled, the analog weights, mFrf, are the averaged weights over the multiple subcarriers. The array response pattern shows distinct data streams represented by the stronger lobes. These lobes indicate the spread or separability achieved by beamforming. The "Introduction to Hybrid Beamforming" on page 17-423 example compares the patterns realized by the optimal, fully digital approach, with those realized from the selected hybrid approach, for a single-user system.

\section*{Data Transmission}

The example models an architecture where each data stream maps to an individual RF chain and each antenna element is connected to each RF chain. This is shown in the following diagram.


Next, we configure the system's data transmitter. This processing includes channel coding, bit mapping to complex symbols, splitting of the individual data stream to multiple transmit streams, baseband precoding of the transmit streams, OFDM modulation with pilot mapping and RF analog beamforming for all the transmit antennas employed.
```

% Convolutional encoder
encoder = comm.ConvolutionalEncoder(...
'TrellisStructure',poly2trellis(7,[133 171 165]), ...
'TerminationMethod','Terminated');
txDataBits = cell(prm.numUsers, 1);
gridData = complex(zeros(prm.numCarriers,prm.numDataSymbols,numSTS));
for uIdx = 1:prm.numUsers
% Generate mapped symbols from bits per user
txDataBits{uIdx} = randi([0,1],prm.numFrmBits(uIdx),1);
encodedBits = encoder(txDataBits{uIdx});
% Bits to QAM symbol mapping
mappedSym = qammod(encodedBits,prm.modMode,'InputType','bit', ...
'UnitAveragePower',true);
% Map to layers: per user, per symbol, per data stream
stsIdx = sum(numSTSVec(1:(uIdx-1)))+(1:numSTSVec(uIdx));
gridData(:,:,stsIdx) = reshape(mappedSym,prm.numCarriers, ...
prm.numDataSymbols,numSTSVec(uIdx));
end
% Apply precoding weights to the subcarriers, assuming perfect feedback
preData = complex(zeros(prm.numCarriers,prm.numDataSymbols,numSTS));
for symIdx = 1:prm.numDataSymbols
for carrIdx = 1:prm.numCarriers
Q = squeeze(v(carrIdx,:,:));
normQ = Q * sqrt(numTx)/norm(Q,'fro');
preData(carrIdx,symIdx,:) = squeeze(gridData(carrIdx,symIdx,:)).' ...
* normQ;
end
end
% Multi-antenna pilots
pilots = helperGenPilots(prm.numDataSymbols,numSTS);

```
```

% OFDM modulation of the data
tx0FDM = ofdmmod(preData,prm.FFTLength,prm.CyclicPrefixLength,...
prm.NullCarrierIndices,prm.PilotCarrierIndices,pilots);
% scale power for used sub-carriers
tx0FDM = tx0FDM * (prm.FFTLength/ ...
sqrt((prm.FFTLength-length(prm.NullCarrierIndices))));
% Generate preamble with the feedback weights and prepend to data
preambleSigD = helperGenPreamble(prm,v);
txSigSTS = [preambleSigD;tx0FDM];
% RF beamforming: Apply Frf to the digital signal
% Each antenna element is connected to each data stream
txSig = txSigSTS*mFrf;

```

For the selected, fully connected RF architecture, each antenna element uses prm.numSTS phase shifters, as given by the individual columns of the mFrf matrix.

The processing for the data transmission and reception modeled is shown below.


\section*{Signal Propagation}

The example offers an option for spatial MIMO channel and a simpler static-flat MIMO channel for validation purposes.

The scattering model uses a single-bounce ray tracing approximation with a parametrized number of scatterers. For this example, the number of scatterers is set to 100 . The 'Scattering' option models the scatterers placed randomly within a sphere around the receiver, similar to the one-ring model [ 6 ].

The channel models allow path-loss modeling and both line-of-sight (LOS) and non-LOS propagation conditions. The example assumes non-LOS propagation and isotropic antenna element patterns with linear or rectangular geometry.
```

% Apply a spatially defined channel to the transmit signal
[rxSig,chanDelay] = helperApplyMUChannel(txSig,prm,spLoss,preambleSig);

```

The same channel is used for both sounding and data transmission. The data transmission has a longer duration and is controlled by the number of data symbols parameter, prm. numDataSymbols. The channel evolution between the sounding and transmission stages is modeled by prepending the preamble signal to the data signal. The preamble primes the channel to a valid state for the data transmission, and is ignored from the channel output.

For a multi-user system, independent channels per user are modeled.

\section*{Receive Amplification and Signal Recovery}

The receiver modeled per user compensates for the path loss by amplification and adds thermal noise. Like the transmitter, the receiver used in a MIMO-OFDM system contains many stages including OFDM demodulation, MIMO equalization, QAM demapping, and channel decoding.
```

hfig = figure('Name','Equalized symbol constellation per stream');
scFact = ((prm.FFTLength-length(prm.NullCarrierIndices))...
/prm.FFTLength^2)/numTx;
nVar = noisepow(prm.chanSRate,prm.NFig,290)/scFact;
decoder = comm.ViterbiDecoder('InputFormat','Unquantized', ...
'TrellisStructure',poly2trellis(7, [133 171 165]), ...
'TerminationMethod','Terminated','OutputDataType','double');
for uIdx = 1:prm.numUsers
stsU = numSTSVec(uIdx);
stsIdx = sum(numSTSVec(1:(uIdx-1)))+(1:stsU);
% Front-end amplifier gain and thermal noise
rxPreAmp = phased.ReceiverPreamp(...
'Gain',spLoss(uIdx), ... % account for path loss
'NoiseFigure',prm.NFig,'ReferenceTemperature',290, ...
'SampleRate',prm.chanSRate);
rxSigAmp = rxPreAmp(rxSig{uIdx});
% Scale power for occupied sub-carriers
rxSigAmp = rxSigAmp*(sqrt(prm.FFTLength-length(prm.NullCarrierIndices)) ...
/prm.FFTLength);
% OFDM demodulation
rx0FDM = ofdmdemod(rxSigAmp(chanDelay(uIdx)+1: ...
end-(prm.numPadZeros-chanDelay(uIdx)),:),prm.FFTLength, ...
prm.CyclicPrefixLength,prm.CyclicPrefixLength, ...
prm.NullCarrierIndices,prm.PilotCarrierIndices);
% Channel estimation from the mapped preamble
hD = helperMIMOChannelEstimate(rxOFDM(:,1:numSTS,:),prm);
% MIMO equalization
% Index into streams for the user of interest
[rxEq,CSI] = helperMIMOEqualize(rx0FDM(:,numSTS+1:end,:),hD(:,stsIdx,:));
% Soft demodulation
rxSymbs = rxEq(:)/sqrt(numTx);
rxLLRBits = qamdemod(rxSymbs,prm.modMode,'UnitAveragePower',true, ...
'OutputType','approxllr','NoiseVariance',nVar);

```
```

 % Apply CSI prior to decoding
 rxLLRtmp = reshape(rxLLRBits,prm.bitsPerSubCarrier,[], ...
 prm.numDataSymbols,stsU);
 csitmp = reshape(CSI,1,[],1,numSTSVec(uIdx));
 rxScaledLLR = rxLLRtmp.*csitmp;
 % Soft-input channel decoding
 rxDecoded = decoder(rxScaledLLR(:));
 % Decoded received bits
 rxBits = rxDecoded(1:prm.numFrmBits(uIdx));
 % Plot equalized symbols for all streams per user
 scaler = ceil(max(abs([real(rxSymbs(:)); imag(rxSymbs(:))])));
 for i = 1:stsU
 subplot(prm.numUsers, max(numSTSVec), (uIdx-1)*max(numSTSVec)+i);
 plot(reshape(rxEq(:,:,i)/sqrt(numTx), [], 1), '.');
 axis square
 xlim(gca,[-scaler scaler]);
 ylim(gca,[-scaler scaler]);
 title(['U ' num2str(uIdx) ', DS ' num2str(i)]);
 grid on;
 end
 % Compute and display the EVM
 evm = comm.EVM('Normalization','Average constellation power', ...
 'ReferenceSignalSource','Estimated from reference constellation', ...
 'ReferenceConstellation', ...
 qammod((0:prm.modMode-1)',prm.modMode,'UnitAveragePower',1));
 rmsEVM = evm(rxSymbs);
disp(['User ' num2str(uIdx)]);
disp([' RMS EVM (%) = ' num2str(rmsEVM)]);
% Compute and display bit error rate
ber = comm.ErrorRate;
measures = ber(txDataBits{uIdx},rxBits);
fprintf(' BER = %.5f; No. of Bits = %d; No. of errors = %d\n', ...
measures(1),measures(3),measures(2));
end
User 1
RMS EVM (%) = 0.38361
BER = 0.00000; No. of Bits = 9354; No. of errors = 0
User 2
RMS EVM (%) = 1.0311
BER = 0.00000; No. of Bits = 6234; No. of errors = 0
User 3
RMS EVM (%) = 2.1462
BER = 0.00000; No. of Bits = 3114; No. of errors = 0
User 4
RMS EVM (%) = 1.0024
BER = 0.00000; No. of Bits = 6234; No. of errors = 0

```


For the MIMO system modeled, the displayed receive constellation of the equalized symbols offers a qualitative assessment of the reception. The actual bit error rate offers the quantitative figure by comparing the actual transmitted bits with the received decoded bits per user.
```

rng(s); % restore RNG state

```

\section*{Conclusion and Further Exploration}

The example highlights the use of hybrid beamforming for multi-user MIMO-OFDM systems. It allows you to explore different system configurations for a variety of channel models by changing a few system-wide parameters.

The set of configurable parameters includes the number of users, number of data streams per user, number of transmit/receive antenna elements, array locations, and channel models. Adjusting these parameters you can study the parameters' individual or combined effects on the overall system. As examples, vary:
- the number of users, prm.numUsers, and their corresponding data streams, prm.numSTSVec, to switch between multi-user and single-user systems, or
- the channel type, prm. ChanType, or
- the number of rays, prm. nRays, used for a single-user system.

Explore the following helper functions used by the example:
- helperApplyMUChannel.m
- helperArrayInfo.m
- helperGenPreamble.m
- helperGenPilots.m
- helperJSDMTransmitWeights.m
- helperMIMOChannelEstimate.m
- helperMIMOEqualize.m

\section*{References}

1 Molisch, A. F., et al. "Hybrid Beamforming for Massive MIMO: A Survey." IEEE®
Communications Magazine, Vol. 55, No. 9, September 2017, pp. 134-141.
2 Li Z., S. Han, and A. F. Molisch. "Hybrid Beamforming Design for Millimeter-Wave Multi-User Massive MIMO Downlink." IEEE ICC 2016, Signal Processing for Communications Symposium.
3 El Ayach, Oma, et al. "Spatially Sparse Precoding in Millimeter Wave MIMO Systems." IEEE Transactions on Wireless Communications, Vol. 13, No. 3, March 2014, pp. 1499-1513.
4 Adhikary A., J. Nam, J-Y Ahn, and G. Caire. "Joint Spatial Division and Multiplexing - The LargeScale Array Regime." IEEE Transactions on Information Theory, Vol. 59, No. 10, October 2013, pp. 6441-6463.
5 Spencer Q., A. Swindlehurst, M. Haardt, "Zero-Forcing Methods for Downlink Spatial Multiplexing in Multiuser MIMO Channels." IEEE Transactions on Signal Processing, Vol. 52, No. 2, February 2004, pp. 461-471.
6 Shui, D. S., G. J. Foschini, M. J. Gans and J. M. Kahn. "Fading Correlation and its Effect on the Capacity of Multielement Antenna Systems." IEEE Transactions on Communications, Vol. 48, No. 3, March 2000, pp. 502-513.

\section*{PRF Agility Based on Target Detection}

In radar operation, it is often necessary to adjust the operation mode based on the target return. This example shows how to model a radar that changes its pulse repetition frequency (PRF) based on the radar detection.

\section*{Available Example Implementations}

This example includes one Simulink \({ }^{\circledR}\) model:
- PRF Agility Based on Radar Detection: slexPRFSchedulingExample.slx

\section*{Dynamic PRF Selection Based on Radar Detection}

This model simulates a monostatic radar that searches for targets with an unambiguous range of 5 km . If the radar detects a target within 2 km , then it will switch to a higher PRF to only look for targets with 2 km range and enhance its capability to detect high speed targets.

PRF Agility Based on Radar Detection


Copyright 2018 The MathWorks Inc.

The system is very similar to what is used in the "End-to-End Monostatic Radar" on page 17-497 example with the following notable difference:

1 The waveform block is no longer a source block. Instead, it takes an input, idx, to select which PRF to use. The available PRF values are specified in the PRF parameter of the waveform dialog.
2 Each time a waveform is transmitted, its corresponding PRF also sets the time when the next pulse should be transmitted.

3 There is now a controller to determine which PRF to use for the next transmission. At the end of the signal processing chain, the target range is estimated. The controller will use this information to decide which PRF to choose for next transmission.
4 Once the model is compiled, notice that the signal passing through the system can vary in length because of a possible change of the waveform PRF.

5 The model takes advantage of the new controllable sample time so the system runs at the appropriate time determined by the varying PRF values.

\section*{Exploring the Example}

Several dialog parameters of the model are calculated by the helper function helperslexPRFSchedulingSim. To open the function from the model, click on Modify Simulation Parameters block. This function is executed once when the model is loaded. It exports to the workspace a structure whose fields are referenced by the dialogs. To modify any parameters, either change the values in the structure at the command prompt or edit the helper function and rerun it to update the parameter structure.

\section*{Results and Displays}

The figure below shows the detected ranges of the targets. Target ranges are computed from the round-trip time delay of the reflected signals from the targets. At the simulation start, the radar detects two targets, one is slightly over 2 km away and the other one is at approximately 3.5 km away.


After some time, the first target moves into the 2 km zone and triggers a change of PRF. Then the received signal only covers the range up to 2 km . The display is zero padded to ensure that the plot limits do not change. Notice that the target at 3.5 km gets folded to the 1.5 km range due to range ambiguity.


\section*{Summary}

This example shows how to build a radar system in Simulink \({ }^{\circledR}\) that dynamically changes its PRF based on the target detection range. A staggered PRF system can be modeled similarly.

\section*{Multicore Simulation of Monostatic Radar System}

This example simulates a monostatic radar system. It uses dataflow domain in Simulink® to automatically partition the data-driven portions of the radar system into multiple threads and thereby improving the performance of the simulation by executing it on your desktop's multiple cores.

\section*{Introduction}

The dataflow execution domain allows you to make use of multiple cores in the simulation of computationally intensive systems. This example shows how dataflow as the execution domain of a subsystem improves simulation performance of the model. To learn more about dataflow and how to run Simulink models using multiple threads, see "Multicore Execution using Dataflow Domain".

\section*{Monostatic Radar with One Target}

This example simulates a simple end-to-end monostatic radar. Rectangular pulses are amplified by the transmitter block then propagated to and from a target in free-space. Noise and amplification are then applied in the receiver preamp block to the return signal, followed by a matched filter. Range losses are compensated for and the pulses are noncoherently integrated.


Copyright 2014-2020 The Mathworks Inc.

\section*{Setting up the Dataflow Subsystem}

This example uses dataflow domain in Simulink to make use of multiple cores on your desktop to improve simulation performance. The Domain parameter of the Dataflow Subsystem in this model is set as Dataflow. You can view this by selecting the subsystem and then selecting View>Property Inspector. Dataflow domains automatically partition your model and simulate the system using multiple threads for better simulation performance. Once you set the Domain parameter to Dataflow, you can use Dataflow Simulation Assistant to analyze your model to get better performance. You can open the Dataflow Simulation Assistant, by clicking on the Dataflow assistant button below the Automatic frame size calculation parameter in Property Inspector.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Property Inspector} & (2) 7 \\
\hline \multicolumn{4}{|l|}{SubSystem: Dataflow Subsystem} \\
\hline Parameters & Properties & Info & Execution \\
\hline \multicolumn{4}{|l|}{- Type} \\
\hline \multicolumn{4}{|l|}{Specify execution domain for the selected subsystem or model.} \\
\hline \multicolumn{4}{|l|}{\(\square\) Set execution domain} \\
\hline Domain: D & flow & & - \\
\hline \multicolumn{4}{|l|}{- Attributes} \\
\hline \multicolumn{4}{|l|}{Latency: 0} \\
\hline \multicolumn{4}{|l|}{\(\square\) Automatic frame size calculation} \\
\hline \multicolumn{4}{|l|}{Dataflow assistant} \\
\hline
\end{tabular}


\section*{Analyzing Concurrency in Dataflow Subsystem}

The Dataflow Simulation Assistant suggests changing model settings for optimal simulation performance. To accept the proposed model settings, next to Suggested model settings for simulation performance, click Accept all. Alternatively, you can expand the section to change the settings individually. In this example the model settings are already optimal. In the Dataflow Simulation Assistant, click the Analyze button to start the analysis of the dataflow domain for simulation performance. Once the analysis is finished, the Dataflow Simulation Assistant shows how many threads the dataflow subsystem will use during simulation.

After analyzing the model, the assistant shows one thread because the data dependency between the blocks in the model prevents blocks from being executed concurrently. By pipelining the data dependent blocks, the Dataflow Subsystem can increase concurrency for higher data throughput. Dataflow Simulation Assistant shows the recommended number of pipeline delays as Suggested Latency. The suggested latency value is computed to give the best performance.

The following diagram shows the Dataflow Simulation Assistant where the Dataflow Subsystem currently specifies a latency value of zero, and the suggested latency for the system is four.


Click the Accept button next to Suggested Latency in the Dataflow Simulation Assistant to use the recommended latency for the Dataflow Subsystem.

Dataflow Simulation Assistant now shows the number of threads as four meaning that the blocks inside the dataflow subsystem simulate in parallel using four threads. Use of four pipeline delays increased the number of blocks that can be run in parallel inside Dataflow Subsystem. Latency value can also be entered directly in the Property Inspector for "Latency" parameter. Simulink shows the latency parameter value using \(Z^{-n}\) tags at the output ports of the dataflow subsystem.

Dataflow Simulation Assistant - slexDataflowMonostaticRadarExample/Dataflo... \(\times\)
- Suggested model settings for simulation performance Accept all

Analyze for simulation performance: ...icRadarExample/Dataflow Subsystem


Check


Profile

Partition

\section*{Analysis}

Latency: 4
Suggested Latency: 4
```

Accept

```

Threads: 4

Analysis complete: 07-Jan-2020 09:28:22
No dataflow multithreading limitations were identified for simulation of the dataflow domain.

Use the Performance Advisor for additional tools to improve simulation performance.

\section*{Analyze} Help

\section*{Multicore Simulation Performance}

We measure the performance improvement of using dataflow domain by comparing the execution time taken for running the model with and without using dataflow. Execution time is measured using the sim command, which returns the simulation execution time of the model. These numbers and analysis were published on a Windows desktop computer with Intel® Xeon® CPU W-2133 @ \({ }^{\circledR} .6 \mathrm{GHz}\) 6 Cores 12 Threads processor.
```

Simulation execution time for multithreaded model = 18.95s
Simulation execution time for single-threaded model = 27.52s
Actual speedup with dataflow: 1.5x

```

\section*{Summary}

This example shows how dataflow execution domain can improve performance in simulation of a radar system by using multiple cores on the desktop.

\section*{Multicore Simulation of Audio Beamforming System}

This example shows how an audio beamforming system simulation model in Simulink \({ }^{\circledR}\) can have improved performance using dataflow domain. It uses the dataflow domain in Simulink® to automatically partition the data-driven portions of the communications system into multiple threads and thereby improving the performance of the simulation by executing it on your desktop's multiple cores.

\section*{Introduction}

The dataflow execution domain allows you to make use of multiple cores in the simulation of computationally intensive systems. This example shows how dataflow as the execution domain of a subsystem improves simulation performance of the model. To learn more about dataflow and how to run Simulink models using multiple threads, see "Multicore Execution using Dataflow Domain".

\section*{Acoustic Beamforming}

This example shows acoustic beamforming using a uniform linear array (ULA) of microphones. The model simulates the reception of three audio signals from different directions on a 10 -element uniformly spaced linear microphone array. After the addition of thermal noise at the receiver, beamforming is applied for different source angles and the result is played on a sound device. The audio source that needs to be played in the audio player can be selected using the dialog from the Select Source block.

Acoustic Beamforming using Microphone Arrays


Assumptions:
-Antenna is a 10 element ULA, 5 cm between elements
-The thermal noise at each microphone is 290 K
-Three audio signals from -30-10 and 20 degrees
Copyright 2016-2020 The Mathworks Inc.

\section*{Setting up Dataflow Subsystem}

This example uses dataflow domain in Simulink to make use of multiple cores on your desktop to improve simulation performance. The Domain parameter of the Dataflow Subsystem in this model is set as Dataflow. You can view this by selecting the subsystem and then selecting View>Property Inspector. Dataflow domains automatically partition your model and simulate the system using multiple threads for better simulation performance. Once you set the Domain parameter to Dataflow, you can use Dataflow Simulation Assistant to analyze your model to get better performance. You can
open the Dataflow Simulation Assistant, by clicking on the Dataflow assistant button below the Automatic frame size calculation parameter in Property Inspector.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Property Inspector} & (2) 7 \\
\hline \multicolumn{4}{|l|}{SubSystem: Dataflow Subsystem} \\
\hline Parameters & Properties & Info & Execution \\
\hline \multicolumn{4}{|l|}{- Type} \\
\hline \multicolumn{4}{|l|}{Specify execution domain for the selected subsystem or model.} \\
\hline \multicolumn{4}{|l|}{\(\square\) Set execution domain} \\
\hline Domain: Da & low & & - \\
\hline \multicolumn{4}{|l|}{- Attributes} \\
\hline \multicolumn{4}{|l|}{Latency: \(\square\)} \\
\hline \multicolumn{4}{|l|}{\(\square\) Automatic frame size calculation} \\
\hline \multicolumn{4}{|l|}{Dataflow assistant} \\
\hline
\end{tabular}


\section*{Analyzing Concurrency in Dataflow Subsystem}

The Dataflow Simulation Assistant suggests changing model settings for optimal simulation performance. To accept the proposed model settings, next to Suggested model settings for simulation performance, click Accept all. Alternatively, you can expand the section to change the settings individually. In this example the model settings are already optimal. In the Dataflow Simulation Assistant, click the Analyze button to start the analysis of the dataflow domain for simulation performance. Once the analysis is finished, the Dataflow Simulation Assistant shows how many threads the dataflow subsystem will use during simulation.

After analyzing the model, the assistant shows three threads. This is because the three beamformer blocks are computationally intensive and can run in parallel. The three beamformer blocks however, depend on the Microphone Array and the Receiver blocks. Pipeline delays can be used to break this dependency and increase concurrency. The Dataflow Simulation Assistant shows the recommended number of pipeline delays as Suggested Latency. The suggested latency value is computed to give the best performance.

The following diagram shows the Dataflow Simulation Assistant where the Dataflow Subsystem currently specifies a latency value of zero, and the suggested latency for the system is one. Click the Accept button next to Suggested Latency in the Dataflow Simulation Assistant to use the recommended latency for the Dataflow Subsystem. Latency value can also be entered directly in the Property Inspector for "Latency" parameter. Simulink shows the latency parameter value using \(Z^{-n}\) tags at the output ports of the dataflow subsystem.


\section*{Multicore Simulation Performance}

We measure the performance improvement of using dataflow domain by comparing the execution time taken for running model with and without using dataflow. Execution time is measured using the sim command, which returns the simulation execution time of the model. These numbers and analysis were published on a Windows desktop computer with Intel® Xeon® CPU W-2133 @ 3.6 GHz 6 Cores 12 Threads processor.
```

Simulation execution time for multithreaded model = 2.92s
Simulation execution time for single-threaded model = 6.44s
Actual speedup with dataflow: 2.2x

```

\section*{Summary}

This example shows how multithreading using dataflow domain can improve performance in a monostatic radar system simulation model using multiple cores on the desktop.

\section*{Simulating a Polarimetric Radar Return for Weather Observation}

This example shows how to simulate a polarimetric Doppler radar return that meets the requirements of weather observations. Radar plays a critical role in weather observation, detection of hazards, classification and quantification of precipitation, and forecasting. In addition, polarimetric radar provides multiparameter measurements with unprecedented quality and information. This example shows how to simulate a polarimetric Doppler radar that scans an area of distributed weather targets. The simulation derives the radar parameters according to the well-known NEXRAD radar specifications. After synthesizing the received pulses, radar spectral moment estimation and polarimetric moment estimation are performed. The estimates are compared with NEXRAD ground truth, from which error statistics are obtained and data quality is evaluated.

\section*{Radar Definition}

A well-known weather radar is the Weather Surveillance Radar, 1988 Doppler (WSR-88D), also known as NEXRAD, which is operated by the US National Weather Service, FAA and DoD. For more information, see the NEXRAD Radar Operations Center website.

Radar system specifications are designed as follows.
```

max_range = 100e3; % Maximum unambiguous range (m)
range_res = 250; % Required range resolution (m)
pulnum = 32; % Number of pulses to process in an azimuth
fc = 2800e6; % Frequency (Hz)
prop_speed = physconst('LightSpeed'); % Propagation speed (m/s)
lamb\overline{da = prop_speed/fc; % Wavelength (m)}

```

To translate these requirements to radar parameters, we follow the process within the example "Designing a Basic Monostatic Pulse Radar" on page 17-449. In this example, for the sake of simplicity, load precalculated radar parameters.
load NEXRAD_Parameters.mat

\section*{Antenna Pattern}

As NEXRAD is polarimetric, modeling the polarimetric characteristics of the antenna and weather targets is important. According to NEXRAD specifications, the antenna pattern has a beamwidth of about 1 degree and first sidelobe below -30 dB .
```

azang = [-180:0.5:180];
elang = [-90:0.5:90];
% We synthesize a pattern using isotropic antenna elements and tapering the
% amplitude distribution to make it follow NEXRAD specifications.
magpattern = load('NEXRAD_pattern.mat');
phasepattern = zeros(size(magpattern.pat));
% The polarimetric antenna is assumed to have ideally matched horizontal
% and vertical polarization pattern.
antenna = phased.CustomAntennaElement('AzimuthAngles',azang,...
'ElevationAngles',elang,...
'HorizontalMagnitudePattern',magpattern.pat,...
'VerticalMagnitudePattern',magpattern.pat,...
'HorizontalPhasePattern',phasepattern,...
'VerticalPhasePattern',phasepattern,...
'SpecifyPolarizationPattern',true);

```
```

clear magpattern
clear phasepattern

```

Plot the azimuth cut of the antenna pattern.
\(D=\) pattern(antenna,fc,azang, 0 ) ;
P = polarpattern(azang,D,'TitleTop','Polar Pattern for Azimuth Cut (elevation angle = 0 degree)'
P.AntennaMetrics = 1;
removeAllCursors(P);

Polar Pattern for Azimuth Cut (elevation angle \(=\mathbf{0}\) degree)


Associate the array with the radiator and collector.
```

radiator = phased.Radiator(...
'Sensor',antenna,'Polarization','Dual',...
'OperatingFrequency',fc);
collector = phased.Collector(...
'Sensor',antenna,'Polarization','Dual',...
'OperatingFrequency',fc);

```

\section*{Weather Target}

Generally, weather radar data is categorized into three levels. Level-I data is raw time series I/Q data as input to the signal processor in the Radar Data Acquisition unit. Level-II data consists of the radar spectral moments (reflectivity, mean radial velocity, and spectrum width) and polarimetric moments (differential reflectivity, correlation coefficient, and differential phase) output from the signal
processor. Level-III data is the output product data of the radar product generator, such as hydrometeor classification, storm total precipitation, and tornadic vortex signature.

In this example, Level-II data from KTLX NEXRAD radar at 20:08:11 UTC on May 20th, 2013 is used. This data comes from an intense tornado that occurred in Moore, Oklahoma and is used to generate mean radar cross section (RCS) of equivalent scattering centers. The data is available via FTP download. It represents a volume scan that includes a series of 360-degree sweeps of the antenna at predetermined elevation angles completed in a specified period of time. In the data file name KTLX20130520_200811_V06, KTLX refers to the radar site name, 20130520_200811 refers to the date and time when the data was collected, and V06 refers to the data format of version 6 . In this simulation, the lowest elevation cut ( 0.5 degree) is extracted from the volume scan data as an example.

Read the Level-II data into the workspace. Store it in the nexrad structure array, which contains all the radar moments as well as an azimuth field that specifies the azimuth angle for each radial data point in the Cartesian coordinate system. For simplicity, load NEXRAD data that was transformed from a compressed file to a MAT-file.
```

load NEXRAD_data.mat;

```

Define an area of interest (AOI) in terms of azimuth and range in Cartesian coordinates.
```

az1 = 96; % Starting azimuth angle (degree)
az2 = 105; % Ending azimuth angle (degree)
rg1 = 22750; % Starting range (m)
rg2 = 38750; % Ending range (m)
% NEXRAD has a blind range of 2000m.
blind_rg = 2000;
% We define the number of azimuth angles that weather targets occupy in the
% two dimensional plane.
num az = 40;
% We define the number of range bins that weather targets occupy in each
% azimuth radial of the two dimensional plane.
num bin = 150;
% Sēlect AOI data and store it in nexrad_aoi_ structure array, which
% contains all the radar moments, as well as starting and ending azimuth
% and range indices. And the number of available weather targets in space
% is returned as Ns.
[nexrad_aoi,Ns] = helperSelectA0I(nexrad,az1,az2,rg1,rg2,blind_rg,range_res,num_az,num_bin);

```

Because weather targets are polarimetric and distributed in a plane, they can be represented by specifying scattering matrices at discrete azimuth angles. Weather target reflectivity is defined as the mean backscattering cross section per unit volume. Based on the weather radar equation, weather targets can be considered as a collection of small targets within each resolution volume. The overall reflectivity can be transformed to the mean RCS and regarded as an equivalent scattering center. As a result, each element in the scattering matrix is the square root of RCS in relevant polarization.
```

% Preallocate target position, velocity, RCS, azimuth, elevation, and radar
% scattering matrices.
tgtpos = zeros(3, Ns);
tgtvel = zeros(3, Ns);
RCSH = zeros(1,Ns);
RCSV = zeros(1,Ns);
azpatangs = [-180 180];
elpatangs = [-90 90];
shhpat = zeros(2,2,Ns);

```
```

svvpat = zeros(2,2,Ns);
shvpat = zeros(2,2,Ns);
zz = 0;
% NEXRAD beamwidth is about 1 degree.
beamwidth = 1.0;
for ii = nexrad_aoi.rlow:nexrad_aoi.rup
theta = nex\overline{rad.azimuth(ii);}
for jj = 1:num_bin
if isnan(nexrad.ZH(ii,jj))==0
zz = zz+1;
rpos = (jj-1)*range_res + blind_rg;
tpos = [rpos*cosd(theta); rpos*sīnd(theta);0];
tgtpos(:,zz) = tpos;
RCSH(zz) = helperdBZ2RCS(beamwidth,rpos,lambda,pulse_width,nexrad.ZH(ii,jj),prop_spe
shhpat(:,:,zz) = sqrt(RCSH(zz))*ones(2,2);
RCSV(zz) = helperdBZ2RCS(beamwidth,rpos,lambda,pulse_width,nexrad.ZV(ii,jj),prop_spe
svvpat(:,:,zz) = sqrt(RCSV(zz))*ones(2,2);
end
end
end
tgtmotion = phased.Platform('InitialPosition',tgtpos,'Velocity',tgtvel);
target = phased.BackscatterRadarTarget('EnablePolarization',true,...
'Model','Nonfluctuating','AzimuthAngles',azpatangs,...
'ElevationAngles',elpatangs,'ShhPattern',shhpat,'ShvPattern',shvpat,...
'SvvPattern',svvpat,'OperatingFrequency',fc);

```

\section*{Radar Pulse Synthesis}

Generate a radar data cube using the defined radar system parameters. Within each resolution volume, include the appropriate correlation to ensure the resulting I/Q data presents proper weather signal statistical properties.
```

rxh_aoi = complex(zeros(nexrad_aoi.rgnum,nexrad_aoi.aznum));
rxv_aoi = complex(zeros(nexrad_aoi.rgnum,nexrad_aoi.aznum));
% The number of realization sequences
realiznum = 1000;
% The number of unusable range bins due to NEXRAD blind range
i0 = blind_rg/range_res;
% Rotate sēnsor pla\overline{tform to simulate NEXRAD scanning in azimuth}
for kk = 1:nexrad_aoi.aznum
axes = rotz(nexrad.azimuth(kk+nexrad_aoi.rl-1));
% Update sensor and target positions
[sensorpos,sensorvel] = sensormotion(1/prf);
[tgtpos,tgtvel] = tgtmotion(1/prf);
% Calculate the target angles as seen by the sensor
[tgtrng,tgtang] = rangeangle(tgtpos,sensorpos,axes);
% Form transmit beam for this scan angle and simulate propagation
pulse = waveform();
[txsig,txstatus] = transmitter(pulse);
% Adopt simultaneous transmission and reception mode as NEXRAD
txsig = radiator(txsig,txsig,tgtang,axes);
txsig = channel(txsig,sensorpos,tgtpos,sensorvel,tgtvel);
% Reflect pulse off of targets

```
```

 ang_az = tgtang(1:2:end);
 ang_az = ang_az+(-1).^(double(ang_az>0))*180;
 tgtsig = target(txsig,[ang_az;zeros(size(ang_az))],axes);
 % Collect the target returns received at the sensor
 [rxsig_h,rxsig_v] = collector(tgtsig,tgtang,axes);
 rxh = receiver(rxsig_h,~(txstatus>0));
 rxv = receiver(rxsig_v,~(txstatus>0));
 % Matched filtering
 [rxh, mfgainh] = matchedfilter(rxh);
 [rxv, mfgainv] = matchedfilter(rxv);
 rxh = [rxh(matchingdelay+1:end);zeros(matchingdelay,1)];
 rxv = [rxv(matchingdelay+1:end);zeros(matchingdelay,1)];
 % Decimation
 rxh = rxh(1:2:end);
 rxv = rxv(1:2:end);
 % Discard blind range data and select AOI data
 rxh_aoi(:,kk) = rxh(nexrad_aoi.b1+i0:nexrad_aoi.b2+i0);
 rxv_aoi(:,kk) = rxv(nexrad_aoi.b1+i0:nexrad_aoi.b2+i0);
 end
clear txsig
clear tgtsig

```

\section*{Weather Radar Moment Estimation}

Using pulse pair processing, calculate all the radar moments from estimates of correlations, including reflectivity, mean radial velocity, spectrum width, differential reflectivity, correlation coefficient, and differential phase.
```

moment = helperWeatherMoment(rxh_aoi,rxv_aoi,nexrad_aoi,pulnum,realiznum,prt,lambda);

```

\section*{Simulation Result}

Compare the simulation result with the NEXRAD ground truth. Evaluate the simulated data quality using error statistics, a sector image, a range profile, and a scatter plot. Error statistics are expressed as the bias and standard deviation of the estimated radar moments compared to the NEXRAD Level-II data (truth fields).

Define the azimuth and range for plotting.
azimuth \(=\) nexrad.azimuth(nexrad_aoi.r1:nexrad_aoi.r2);
range \(=(\) nexrad_aoi.b1-1:nexrad_aoi.b2-1)*250 + 2000;

\section*{Reflectivity}

Reflectivity, \(Z\), is the zeroth moment of the Doppler spectrum and is related to liquid water content or precipitation rate in the resolution volume. Because values of \(Z\) that are commonly encountered in weather observations span many orders of magnitude, radar meteorologists use a logarithmic scale given by \(10 \log _{10} Z\) as dBZ, where \(Z\) is in units of \(\mathrm{mm} \wedge 6 / \mathrm{m}^{\wedge} 3\).
```

[Z_bias,Z_std] = helperDataQuality(nexrad_aoi,moment,range,azimuth,'Z');

```




\section*{Radial Velocity}

Radial velocity, \(V_{r}\), is the first moment of the power-normalized spectra, which reflects the air motion toward or away from the radar.
[Vr_bias,Vr_std] = helperDataQuality(nexrad_aoi,moment,range,azimuth, 'Vr');



\section*{Spectrum Width}

Spectrum width, \(\sigma_{v}\), is the square root of the second moment of the normalized spectrum. The spectrum width is a measure of the velocity dispersion, that is, shear or turbulence within the resolution volume.
[sigmav_bias,sigmav_std] = helperDataQuality(nexrad_aoi, moment,range,azimuth,'sigmav');



\section*{Differential Reflectivity}

Differential reflectivity, \(Z_{D R}\), is estimated from the ratio of the power estimates for the horizontal and vertical polarization signals. The differential reflectivity is useful in hydrometeor classification. [ZDR_bias,ZDR_std] = helperDataQuality(nexrad_aoi,moment,range,azimuth,'ZDR');



\section*{Correlation Coefficient}

The correlation coefficient, \(\rho_{h v}\), represents the consistency of the horizontal and vertical returned power and phase for each pulse. The correlation coefficient plays an important role in determining system performance and classifying radar echo types.
[Rhohv_bias,Rhohv_std] = helperDataQuality(nexrad_aoi,moment,range,azimuth, 'Rhohv');




\section*{Differential Phase}

The differential phase, \(\phi_{D P}\), is the difference in the phase delay of the returned pulse from the horizontal and vertical polarizations. The differential phase provides information on the nature of the scatterers that are being sampled.
[Phidp_bias,Phidp_std] = helperDataQuality(nexrad_aoi,moment,range,azimuth,'Phidp');



\section*{Error Statistics}

Figures in previous section provide a visual qualitative measure of the simulation quality. This section of the example shows the quantitative comparison of the estimates with NEXRAD specifications as error statistics.

MomentName = \{'Z';'Vr';'sigmav';'ZDR';'Rhohv';'Phidp'\};
STDEV \(=\) [round(Z_std,2); round (Vr_std,2); round(sigmav_std,2); round(ZDR_std,2); round(Rhohv_std,3);
Specs \(=[1 ; 1 ; 1 ; 0.2 ; 0.01 ; 2] ;\)
Unit = \{'dB';'m/s';'m/s';'dB';'';'degree'\};
T = table(MomentName, STDEV,Specs,Unit);
disp(T);
\begin{tabular}{|c|c|c|c|}
\hline MomentName & STDEV & Specs & Unit \\
\hline \{'Z' & 0.5 & 1 & \{'dB' \} \\
\hline \{'Vr' \} & 0.01 & 1 & \{'m/s' \\
\hline \{'sigmav'\} & 0.14 & 1 & \{'m/s' \\
\hline \{'ZDR' \} & 0.06 & 0.2 & \{'dB' \\
\hline \{'Rhohv' \} & 0.006 & 0.01 & \{0x0 char\} \\
\hline \{'Phidp' \} & 0.16 & & \{'degree'\} \\
\hline
\end{tabular}

By comparison, all the radar moment estimation meets NEXRAD specifications, which indicates good data quality.

\section*{Summary}

This example showed how to simulate the polarimetric Doppler radar return from an area of distributed weather targets. Visual comparison and error statistics showed the estimated radar moments met the NEXRAD ground truth specifications. With this example, you can further explore the simulated time series data in other applications such as waveform design, system performance study, and data quality evaluation for weather radar.

\section*{References}
[1] Doviak, R and D. Zrnic. Doppler Radar and Weather Observations, 2nd Ed. New York: Dover, 2006.
[2] Zhang, G. Weather Radar Polarimetry. Boca Raton: CRC Press, 2016.
[3] Li, Z, S. Perera, Y. Zhang, G. Zhang, and R. Doviak. "Time-Domain System Modeling and Applications for Multi-Function Array Radar Weather Measurements." 2018 IEEE Radar Conference (RadarConf18), Oklahoma city, OK, 2018, pp. 1049-1054.

\section*{Introduction to Micro-Doppler Effects}

This example introduces the basic concept of a micro-Doppler effect in the radar return of a target due to the rotation of that target. You can use the micro-Doppler signature to help identify the target.

\section*{Introduction}

A moving target introduces a frequency shift in the radar return due to Doppler effect. However, because most targets are not rigid bodies, there are often other vibrations and rotations in different parts of the target in addition to the platform movement. For example, when a helicopter flies, its blades rotate, or when a person walks, their arms swing naturally. These micro scale movements produce additional Doppler shifts, referred to as micro-Doppler effects, which are useful in identifying target features. This example shows two applications where micro-Doppler effects can be helpful. In the first application, micro-Doppler signatures are used to determine the blade speed of a helicopter. In the second application, the micro-Doppler signatures are used to identify a pedestrian in an automotive radar return.

\section*{Estimating Blade Speed of A Helicopter}

Consider a helicopter with four rotor blades. Assume the radar is located at the origin. Specify the location of the helicopter as ( \(500,0,500\) ), which sets its distance away from the radar in meters and a velocity of \((60,0,0) \mathrm{m} / \mathrm{s}\).

```

radarpos = [0;0;0];
radarvel = [0;0;0];
tgtinitpos = [500;0;500];
tgtvel = [60;0;0];
tgtmotion = phased.Platform('InitialPosition',tgtinitpos,'Velocity',tgtvel);

```

In this simulation, the helicopter is modeled by five scatterers: the rotation center and the tips of four blades. The rotation center moves with the helicopter body. Each blade tip is 90 degrees apart from
the tip of its neighboring blades. The blades are rotating at a constant speed of 4 revolutions per second. The arm length of each blade is 6.5 meters.
```

Nblades = 4;
bladeang = (0:Nblades-1)*2*pi/Nblades;
bladelen = 6.5;
bladerate = deg2rad(4*360); % rps -> rad/sec

```

All four blade tips are assumed to have identical reflectivities while the reflectivity for the rotation center is stronger.
```

c = 3e8;
fc = 5e9;
helicop = phased.RadarTarget('MeanRCS',[10 .1 .1 .1 .1],'PropagationSpeed',c,...
'OperatingFrequency',fc);

```

\section*{Helicopter Echo Simulation}

Assume the radar operates at 5 GHz with a simple pulse. The pulse repetition frequency is 20 kHz . For simplicity, assume the signal propagates in free space.
```

fs = 1e6;
prf = 2e4;
lambda = c/fc;
wav = phased.RectangularWaveform('SampleRate',fs,'PulseWidth',2e-6,'PRF',prf);
ura = phased.URA('Size',4,'ElementSpacing',lambda/2);
tx = phased.Transmitter;
rx = phased.ReceiverPreamp;
env = phased.FreeSpace('PropagationSpeed',c,'OperatingFrequency',fc,...
'TwoWayPropagation',true,'SampleRate',fs);
txant = phased.Radiator('Sensor',ura,'PropagationSpeed',c,'OperatingFrequency',fc);
rxant = phased.Collector('Sensor',ura,'PropagationSpeed',c,'OperatingFrequency',fc);

```

At each pulse, the helicopter moves along its trajectory. Meanwhile, the blades keep rotating, and the tips of the blades introduce additional displacement and angular speed.
```

NSampPerPulse = round(fs/prf);
Niter = 1e4;
y = complex(zeros(NSampPerPulse,Niter));
rng(2018);
for m = 1:Niter
% update helicopter motion
t = (m-1)/prf;
[scatterpos,scattervel,scatterang] = helicopmotion(t,tgtmotion,bladeang,bladelen,bladerate);
% simulate echo
x = txant(tx(wav()),scatterang); % transmit
xt = env(x,radarpos,scatterpos,radarvel,scattervel); % propagates to/from scatterers
xt = helicop(xt); % reflect
xr = rx(rxant(xt,scatterang)); % receive
y(:,m) = sum(xr,2); % beamform
end

```

This figure shows the range-Doppler response using the first 128 pulses of the received signal. You can see the display of three returns at the target range of approximately 700 meters.
```

rdresp = phased.RangeDopplerResponse('PropagationSpeed',c,'SampleRate',fs,...
'DopplerFFTLengthSource','Property','DopplerFFTLength',128,'DopplerOutput','Speed',...

```
```

 'OperatingFrequency',fc);
 mfcoeff = getMatchedFilter(wav);
plotResponse(rdresp,y(:,1:128),mfcoeff);
ylim([0 3000])

```


While the returns look as though they are from different targets, they are actually all from the same target. The center return is from the rotation center, and is much stronger compared to the other two returns. This intensity is because the reflection is stronger from the helicopter body when compared to the blade tips. The plot shows a speed of \(-40 \mathrm{~m} / \mathrm{s}\) for the rotation center. This value matches the truth of the target radial speed.
```

tgtpos = scatterpos(:,1);
tgtvel = scattervel(:,1);
tgtvel_truth = radialspeed(tgtpos,tgtvel,radarpos,radarvel)
tgtvel_truth =

```
    \(-43.6435\)

The other two returns are from the tips of the blades when they approach or depart the target at maximum speed. From the plot, the speeds corresponding to these two approach and depart detections are about \(75 \mathrm{~m} / \mathrm{s}\) and \(-160 \mathrm{~m} / \mathrm{s}\), respectively.
```

maxbladetipvel = [bladelen*bladerate;0;0];
vtp = radialspeed(tgtpos,-maxbladetipvel+tgtvel,radarpos,radarvel)
vtn = radialspeed(tgtpos,maxbladetipvel+tgtvel,radarpos,radarvel)

```
```

vtp =
75.1853
vtn =
-162.4723

```

You can associate all three detections to the same target via further processing, but that topic is beyond the scope of this example.

\section*{Blade Return Micro-Doppler Analysis}

The time-frequency representation of micro-Doppler effects can reveal more information. This code constructs a time-frequency representation in the detected target range bin.
```

mf = phased.MatchedFilter('Coefficients',mfcoeff);
ymf = mf(y);
[~,ridx] = max(sum(abs(ymf),2)); % detection via peak finding along range
pspectrum(ymf(ridx,:),prf,'spectrogram')

```


The figure shows the micro-Doppler modulation caused by blade tips around a constant Doppler shift. The image suggests that each blade tip introduces a sinusoid-like Doppler modulation. As noted in the figure below, within each period of the sinusoid, there are three extra sinusoids appearing at equal distance. This appearance suggests that the helicopter is equipped with four equally spaced blades.
hanno = helperAnnotateMicroDopplerSpectrogram(gcf);


In addition to the number of blades, the image also shows that the period of each sinusoid, Tr , is about 250 ms . This value means that a blade returns to its original position after 250 ms . In this case, the angular speed of the helicopter is about 4 revolutions per second, which matches the simulation parameter.
\(T p=250 \mathrm{e}-3\);
bladerate_est = 1/Tp
bladerate_est =

4

This image also shows the tip velocity Vt, which can be derived from the maximum Doppler. The maximum Doppler is about 4 kHz away from the constant Doppler introduced by the bulk movement. Calculate the detected maximum tip velocity.

Vt_detect \(=\) dop2speed \((4 e 3, c / f c) / 2\)

Vt_detect =

This value is the maximum tip velocity along the radial direction. To obtain the correct maximum tip velocity, the relative orientation must be taken into consideration. Because the blades are spinning in a circle, the detection is not affected by the azimuth angle. Correct only the elevation angle for the maximum tip velocity result.

```

doa = phased.MUSICEstimator2D('SensorArray',ura,'OperatingFrequency',fc,...
'PropagationSpeed',c,'DOA0utputPort',true,'ElevationScanAngles',-90:90);
[~,ang_est] = doa(xr);
Vt_est = Vt_detect/cosd(ang_est(2))
Vt_est =
164.0793

```

Based on the corrected maximum tip velocity and the blade-spinning rate, calculate the blade length.
```

bladelen_est = Vt_est/(bladerate_est*2*pi)

```
bladelen_est =
    6.5285

Note that the result matches the simulation parameter of 6.5 meters. Information such as number of blades, blade length, and blade rotation rate can help identify the model of the helicopter.

\section*{Pedestrian Identification in Automotive Radar}

Considering an ego car with an FMCW automotive radar system whose bandwidth is 250 MHz and operates at 24 GHz .
```

bw = 250e6;
fs = bw;
fc = 24e9;
tm = 1e-6;
wav = phased.FMCWWaveform('SampleRate',fs,'SweepTime',tm,...
'SweepBandwidth', bw);

```

The ego car is traveling along the road. Along the way, there is a car parked on the side of street and a human is walking out behind the car. The scene is illustrated in the following diagram


Based on this setup, if the ego car cannot identify that a pedestrian is present, an accident may occur.
```

egocar_pos = [0;0;0];

```
egocar_vel \(=\) [30*1600/3600;0;0];
egocar = phased.Platform('InitialPosition',egocar_pos,'Velocity',egocar_vel,...
    'OrientationAxesOutputPort',true);
parkedcar_pos \(=\) [39;-4;0];
parkedcar_vel = [0;0;0];
parkedcar = phased.Platform('InitialPosition', parkedcar_pos,'Velocity', parkedcar_vel,...
    'OrientationAxes0utputPort', true);
```

parkedcar_tgt = phased.RadarTarget('PropagationSpeed',c,'OperatingFrequency',fc,'MeanRCS',10);
ped pos = [40;-3;0];
ped_vel = [0;1;0];
ped_heading = 90;
ped height = 1.8;
ped = = phased.BackscatterPedestrian('InitialPosition',ped_pos,'InitialHeading',ped_heading,...
'PropagationSpeed',c,'OperatingFrequency',fc,'Height',1.6,'WalkingSpeed',1);
chan_ped = phased.FreeSpace('PropagationSpeed',c,'OperatingFrequency',fc,...
'TwoWayPropagation',true,'SampleRate',fs);
chan_pcar = phased.FreeSpace('PropagationSpeed',c,'OperatingFrequency',fc,...
'TwoWayPropagation',true,'SampleRate',fs);
tx = phased.Transmitter('PeakPower',1,'Gain',25);
rx = phased.ReceiverPreamp('Gain',25,'NoiseFigure',10);

```

\section*{Pedestrian Micro-Doppler Extraction}

The following figure shows the range-Doppler map generated from the ego car's radar over time. Because the parked car is a much stronger target than the pedestrian, the pedestrian is easily shadowed by the parked car in the range-Doppler map. As a result, the map always shows a single target.


This means that conventional processing cannot satisfy our needs under this situation.

Micro-Doppler effect in time frequency domain can be a good candidate to identify if there is pedestrian signature embedded in the radar signal. As an example, the following section simulates the radar return for 2.5 seconds.
```

Tsamp = 0.001;
npulse = 2500;
xr = complex(zeros(round(fs*tm),npulse));
xr_ped = complex(zeros(round(fs*tm),npulse));
for m = 1:npulse
[pos_ego,vel_ego,ax_ego] = egocar(Tsamp);
[pos_pcar,vel`_pcar,ax_pcar] = parkedcar(Tsamp);
[pos_ped,vel_ped,ax_ped] = move(ped,Tsamp,ped_heading);
[~,angrt_ped] = rangeangle(pos_ego,pos_ped,ax_ped);
[~,angrt_pcar] = rangeangle(pos_ego,pos_pcar,ax_pcar);
x = tx(wav());
xt_ped = chan_ped(repmat(x,1,size(pos_ped,2)),pos_ego,pos_ped,vel_ego,vel_ped);
xt_pcar = chan_pcar(x,pos_ego,pos_pcar,vel_ego,vel_pcar);
xt_ped = reflect(ped,xt_pèd,angrt_ped);
xt_pcar = parkedcar_tgt(xt_pcar);
xr_ped(:,m) = rx(xt_ped);
xr(:,m) = rx(xt_ped+xt_pcar);
end
xd_ped = conj(dechirp(xr_ped,x));
xd = conj(dechirp(xr,x));

```

In the simulated signal, xd_ped contains only the pedestrian's return while xd contains the return from both the pedestrian and the parked car. If we generate a spectrogram using only the return of the pedestrian, we obtain a plot shown below.
```

clf;
spectrogram(sum(xd_ped), kaiser(128,10),120,256,1/Tsamp,'centered', 'yaxis');
clim = get(gca,'CLim');
set(gca,'CLim',clim(2)+[-50 0])

```


Note that the swing of arms and legs produces many parabolic curves in the time frequency domain along the way. Therefore such features can be used to determine whether a pedestrian exists in the scene.

However, when we generate a spectrogram directly from the total return, we get the following plot.
```

spectrogram(sum(xd),kaiser(128,10),120,256,1/Tsamp,'centered','yaxis');
clim = get(gca,'CLim');
set(gca,'CLim',clim(2)+[-50 0])

```


What we observe is that the parked car's return continue dominating the return, even in the time frequency domain. Therefore the time frequency response shows only the Doppler relative to the parked car. The drop of the Doppler frequency is due to the ego car getting closer to the parked car and the relative speed drops towards 0 .

To see if there is a return hidden behind the strong return, we can use the singular value decomposition. The following plot shows the distribution of the singular value of the dechirped pulses.
```

[uxd,sxd,vxd] = svd(xd);
clf
plot(10*log10(diag(sxd)));
xlabel('Rank');
ylabel('Singular Values');
hold on;
plot([56 56],[-40 10],'r--');
plot([100 100],[-40 10],'r--');
plot([110 110],[-40 10],'r--');
text(25,-10,'A');
text(75,-10,'B');
text(105,-10,'C');
text(175,-10,'D');

```


From the curve, it is clear that there are approximately four regions. The region A represents the most significant contribution to the signal, which is the parked car. The region D represents the noise. Therefore, the region B and C are due to the mix of parked car return and the pedestrian return. Because the return from the pedestrian is much weaker than the return from the parked car. In region B, it can still be masked by the residue of the return from the parked car. Therefore, we pick the region C to reconstruct the signal, and then plot the time frequency response again.
```

rk = 100:110;
xdr = uxd(:,rk)*sxd(rk,:)*vxd';
clf
spectrogram(sum(xdr), kaiser(128,10),120,256,1/Tsamp,'centered','yaxis');
clim = get(gca,'CLim');
set(gca,'CLim',clim(2)+[-50 0])

```


With the return from the car successfully filtered, the micro-Doppler signature from the pedestrian appears. Therefore, we can conclude that there is pedestrian in the scene and act accordingly to avoid an accident.

\section*{Summary}

This example introduces the basic concept of a micro-Doppler effect and shows its impact on the target return. It also shows how to extract a micro-Doppler signature from the received I/Q signal and then derive relevant target parameters from the micro-Doppler information.

\section*{References}
[1] Chen, V. C., The Micro-Doppler Effect in Radar, Artech House, 2011
[2] Chen, V. C., F. Li, S.-S. Ho, and H. Wechsler, "Micro-Doppler Effect in Radar: Phenomenon, Model, and Simulation Study", IEEE Transactions on Aerospace and Electronic Systems, Vol 42, No. 1, January 2006

\section*{Utility Functions}

Function helicopmotion models the motion of multiple scatterers of the helicopter.
```

function [scatterpos,scattervel,scatterang] = helicopmotion(...
t,tgtmotion,BladeAng,ArmLength,BladeRate)
prf = 2e4;
radarpos = [0;0;0];

```
```

Nblades = size(BladeAng,2);
[tgtpos,tgtvel] = tgtmotion(1/prf);
RotAng = BladeRate*t;
scatterpos = [0 ArmLength*cos(RotAng+BladeAng);0 ArmLength*sin(RotAng+BladeAng);zeros(1,Nblades+
scattervel = [0 -BladeRate*ArmLength*sin(RotAng+BladeAng);...
0 BladeRate*ArmLength*cos(RotAng+BladeAng);zeros(1,Nblades+1)]+tgtvel;
[~,scatterang] = rangeangle(scatterpos,radarpos);
end

```

\section*{Search and Track Scheduling for Multifunction Phased Array Radar}

This example shows how to simulate a multifunction phased array radar system. A multifunction radar can perform jobs that usually require multiple traditional radars. Examples of traditional radars are scanning radars, which are responsible for searching targets, and tracking radars, which are responsible for tracking targets. In this example, the multifunction phased array radar performs both scanning (searching) and tracking tasks. Based on the detections and tracks obtained from the current echo, the radar decides what to do next to ensure that targets of interest are tracked and the desired airspace is searched. The multifunction phased array radar works as a closed loop, including features such as task scheduling, waveform selection, detection generation, and target tracking.

This example requires Sensor Fusion and Tracking Toolbox \({ }^{\mathrm{mM}}\).

\section*{Radar Configuration}

Assume the multifunction radar operates at S band and must detect targets between 2 km and 100 km , with a minimum target radar cross section (RCS) of 1 square meters.
```

fc = 2e9; % Radar carrier frequency (Hz)
c = 3e8; % Propagation speed (m/s)
lambda = c/fc; % Radar wavelength (m)
maxrng = 100e3; % Maximum range (m)
minrng = 2e3; % Minimum range (m)

```

\section*{Waveform}

To satisfy the range requirement, define and use a linear FM waveform with a 1 MHz bandwidth.
```

bw = 1e6;
fs = 1.5*bw;
prf = 1/range2time(maxrng,c);
dcycle = 0.1;
wav = phased.LinearFMWaveform('SampleRate', fs, ...
'DurationSpecification', 'Duty cycle', 'DutyCycle', dcycle, ...
'PRF', prf, 'SweepBandwidth', bw);

```

Calculate the range resolution achievable by the waveform.
```

rngres = bw2range(bw,c)

```
rngres =
    150

\section*{Radar Antenna}

The multifunction radar is equipped with a phased array that can electronically scan the radar beams in space. Use a 50 -by-50 rectangular array with elements separated by half wavelength to achieve a half power beam width of approximately 2 degrees.
```

arraysz = 50;
ant = phased.URA('Size',arraysz,'ElementSpacing',lambda/2);

```
```

ant.Element.BackBaffled = true;
arraystv = phased.SteeringVector('SensorArray',ant,'PropagationSpeed',c);
radiator = phased.Radiator('OperatingFrequency',fc, ...
'PropagationSpeed', c, 'Sensor',ant, 'WeightsInputPort', true);
collector = phased.Collector('OperatingFrequency',fc, ...
'PropagationSpeed', c, 'Sensor',ant);
beamw = rad2deg(lambda/(arraysz*lambda/2))
beamw =
2.2918

```

\section*{Transmitter and Receiver}

Use the detection requirements to derive the appropriate transmit power. Assume the noise figure on the receiving preamplifier is 7 dB .
```

pd = 0.9; % Probability of detection
pfa = le-6; % Probability of false alarm
snr_min = albersheim(pd, pfa, 1);
ampgain = 20;
tgtrcs = 1;
ant_snrgain = pow2db(arraysz^2);
ppower = radareqpow(lambda,maxrng,snr_min,wav.PulseWidth,...
'RCS',tgtrcs,'Gain',ampgain+ant_snrgain);
tx = phased.Transmitter('PeakPower',ppower,'Gain',ampgain,'InUseOutputPort',true);
rx = phased.ReceiverPreamp('Gain',ampgain,'NoiseFigure',7,'EnableInputPort',true);

```

\section*{Signal Processing}

The multifunction radar applies a sequence of operations, including matched filtering, time varying gain, monopulse, and detection, to the received signal to generate range and angle measurements of the detected targets.
```

% matched filter
mfcoeff = getMatchedFilter(wav);
mf = phased.MatchedFilter('Coefficients',mfcoeff,'GainOutputPort', true);
% time varying gain
tgrid = unigrid(0,1/fs,1/prf,'[)');
rgates = c*tgrid/2;
rngloss = 2*fspl(rgates,lambda);
refloss = 2*fspl(maxrng,lambda);
tvg = phased.TimeVaryingGain('RangeLoss',rngloss,'ReferenceLoss',refloss);
% monopulse
monfeed = phased.MonopulseFeed('SensorArray',ant,'PropagationSpeed',c,...
'OperatingFrequency',fc,'SquintAngle',1);
monest = getMonopulseEstimator(monfeed);

```

\section*{Data Processing}

The detections are fed into a tracker, which performs several operations. The tracker maintains a list of tracks, that is, estimates of target states in the area of interest. If a detection cannot be assigned to any track already maintained by the tracker, the tracker initiates a new track. In most cases, whether the new track represents a true target or false target is unclear. At first, a track is created with a tentative status. If enough detections are obtained, the track becomes confirmed. Similarly, if no detections are assigned to a track, the track is coasted (predicted without correction). If the track has a few missed updates, the tracker deletes the track.

The multifunction radar uses a tracker that associates the detections to the tracks using a global nearest neighbor (GNN) algorithm.
```

tracker = trackerGNN('FilterInitializationFcn',@initMPARGNN,...
'ConfirmationThreshold',[2 3], 'DeletionThreshold',5,...
'HasDetectableTrackIDsInput',true,'AssignmentThreshold',100,...
'MaxNumTracks',2,'MaxNumSensors',1);

```

Group all radar components together in a structure for easier reference in the simulation loop.
```

mfradar.Tx = tx;
mfradar.Rx = rx;
mfradar.TxAnt = radiator;
mfradar.RxAnt = collector;
mfradar.Wav = wav;
mfradar.RxFeed = monfeed;
mfradar.MF = mf;
mfradar.TVG = tvg;
mfradar.DOA = monest;
mfradar.STV = arraystv;
mfradar.Tracker = tracker;
mfradar.IsTrackerInitialized = false;

```

\section*{Target and Scene Definition}

This example assumes the radar is stationary at the origin with two targets in its field of view. One target departs from the radar and is at a distance of around 50 km . The other target approaches the radar and is 30 km away. Both targets have an RCS of 1 square meters.
```

% Define the targets.
tgtpos = [29875 49637; 0 4225; 0 0];
tgtvel = [-100 120; 0 100; 0 0];
ntgt = size(tgtpos,2);
tgtmotion = phased.Platform('InitialPosition',tgtpos,'Velocity',tgtvel);
target = phased.RadarTarget('MeanRCS',tgtrcs*ones(1,ntgt),'OperatingFrequency',fc);

```

Assume the propagation environment is free space.
```

channel = phased.FreeSpace('SampleRate',fs,'TwoWayPropagation',true,'OperatingFrequency',fc);

```

Group targets and propagation channels together in a structure for easier reference in the simulation loop.
```

env.Target = target;
env.TargetMotion = tgtmotion;
env.Channel = channel;

```

\section*{Radar Resource Management}

While using one multifunction radar to perform multiple tasks has its advantages, it also has a higher cost and more sophisticated logic. In general, a radar has finite resources to spend on its tasks. If resources are used for tracking tasks, then those resources are not available for searching tasks until the tracking tasks are finished. Because of this resource allocation, a critical component when using a multifunction radar is resource management.

\section*{Search Tasks}

The search tasks can be considered as deterministic. In this example, a raster scan is used to cover the desired airspace. If no other tasks exist, the radar scans the space one angular cell at a time. The size of an angular cell is determined by the beam width of the antenna array.

Assume the radar scans a space from - 30 to 30 degrees azimuth and 0 to 20 degrees elevation. Calculate the angular search grid using the beam width.
```

scanregion = [-30, 30, 0, 20];
azscanspan = diff(scanregion(1:2));
numazscan = ceil(azscanspan/beamw);
azscanangles = linspace(scanregion(1),scanregion(2),numazscan);
elscanspan = diff(scanregion(3:4));
numelscan = ceil(elscanspan/beamw);
elscanangles = linspace(scanregion(3),scanregion(4),numelscan);
[elscangrid,azscangrid] = meshgrid(elscanangles,azscanangles);
scanangles = [azscangrid(:) elscangrid(:)].';

```

The beam position grid and target scene are shown below.
```

sceneplot = helperMPARTaskPlot('initialize',scanangles,azscanangles,maxrng,beamw,tgtpos);

```


The search beams are transmitted one at a time sequentially until the entire search area is covered. Once the entire search area is covered, the radar repeats the search sequence. The searches are performed along the azimuthal direction, one elevation angle a time. The search tasks are often contained in a job queue.
```

searchq = struct('JobType','Search','BeamDirection',num2cell(scanangles,1),...
'Priority',1000,'WaveformIndex',1);
current_search_idx = 1;

```

Each job in the queue specifies the job type as well as the pointing direction of the beam. It also contains a priority value for the job. This priority value is determined by the job type. This example uses a value of 1000 as the priority for search jobs.
disp(searchq(current_search_idx))
JobType: 'Search'
BeamDirection: [2x1 double]
Priority: 1000
WaveformIndex: 1

\section*{Track Tasks}

Unlike search tasks, track tasks cannot be planned. Track tasks are created only when a target is detected by a search task or when the target has already been tracked. Track tasks are dynamic tasks that get created and executed based on the changing scenario. Similar to search tasks, track tasks are also managed in a job queue.
```

trackq(10) = struct('JobType',[],'BeamDirection',[],'Priority',3000,'WaveformIndex',[],...
'Time',[],'Range',[],'TrackID',[]);
num_trackq_items = 0;
disp(trackq(1))
JobType: []
BeamDirection: []
Priority: []
WaveformIndex: []
Time: []
Range: []
TrackID: []

```

Group search and track queues together in a structure for easier reference in the simulation loop.
```

jobq.SearchQueue = searchq;
jobq.SearchIndex = current_search_idx;
jobq.TrackQueue = trackq;
jobq.NumTrackJobs = num_trackq_items;

```

Because a tracking job cannot be initialized before a target is detected, all tracking jobs start as empty jobs. Once a job is created, it contains the information such as its job type, the direction of the beam, and time to execute. The tracking task has a priority of 3000 , which is higher than the priority of 1000 for a search job. This higher priority value means that when the time is in conflict, the system will execute the tracking job first.

The size limit for the queue in this example is set to 10 .

\section*{Task Scheduling}

In this example, for simplicity, the multifunction radar executes only one type of job within a small time period, often referred to as a dwell, but can switch tasks at the beginning of each dwell. For each dwell, the radar looks at all tasks that are due for execution and picks the one that has the highest priority. Consequently, jobs that get postponed will now have an increased priority and are more likely to be executed in the next dwell.

\section*{Simulation}

This section of the example simulates a short run of the multifunction radar system. The entire structure of the multifunction radar simulation is represented by this diagram.


The simulation starts with the radar manager, which provides an initial job. Based on this job, the radar transmits the waveform, simulates the echo, and applies signal processing to generate the detection. The detection is processed by a tracker to create tracks for targets. The tracks then go back to the radar manager. Based on the tracks and the knowledge about the scene, the radar manager schedules new track jobs and picks the job for the next dwell.

The logic of the radar manager operation is shown in this flowchart and described in these steps.


1 The radar starts with a search job.
2 If a target is present in the detection, the radar schedules a confirmation job in the same direction to ensure that the presence of this target is not a false alarm. The confirmation task has a higher priority than the search task but not as high as the track task. If the detection gets confirmed, a track is established, and a track job is created to be executed after a given revisit time. If the detection is not confirmed, then the original detection is considered as a false alarm, and no track is created.
3 If the current job is a track job, the radar performs the detection, updates the track, and creates a future track job.
4 Based on the priority and time for execution, the radar selects the next job.
Assume a dwell is 10 ms . At the beginning of the simulation, the radar is configured to search one beam at a time.
```

rng(2018);
current_time = 0;

```
```

Npulses = 10;
numdwells = 200;
dwelltime = 0.01;
jobload.num_search_job = zeros(1,numdwells);
jobload.num_track_job = zeros(1,numdwells);

```

You can run the example in its entirety to see the plots being dynamically updated during execution. In the top two plots, the color of the beams indicate the types of the current job: red for search, yellow for confirm, and purple for track. The bottom two plots show the true locations (triangle), detections (circle), and tracks (square) of the two targets, respectively. System log also displays in the command line to explain the system behavior at the current moment. Next, the example shows more details about several critical moments of the simulation.

Simulate the system behavior until it detects the first target. The simulation loop follows the previous system diagram.
```

for dwell_idx = 1:14
% Scheduler to provide current job
[current_job,jobq] = getCurrentJob(jobq,current_time);
% Simulate the received I/Q signal
[xsum,xdaz,xdel,mfradar] = generateEcho(mfradar,env,current_job);
% Signal processor to extract detection
[detection,mfradar] = generateDetection(xsum,xdaz,xdel,mfradar,current_job,current_time
% Radar manager to perform data processing and update track queue
[jobq,allTracks,mfradar] = updateTrackAndJob(detection,jobq,mfradar,current_job,current_time
% Visualization
helperMPARTaskPlot('update',sceneplot,current_job,maxrng,beamw,tgtpos,allTracks,detection.Me
% Update time
tgtpos = env.TargetMotion(dwelltime-Npulses/mfradar.Wav.PRF);
current_time = current_time+dwelltime;
% Record resource allocation
if strcmp(current_job.JobType,'Search')
jobload.num_search_job(dwell_idx) = 1;
else
jobload.num_track_job(dwell_idx) = 1;
end
end

```
\begin{tabular}{|c|c|c|c|}
\hline 0.000000 & sec: & Search & [-30.000000 0.000000] \\
\hline 0.010000 & sec: & Search & [-27.692308 0.000000] \\
\hline 0.020000 & sec: & Search & [-25.384615 0.000000] \\
\hline 0.030000 & sec: & Search & [-23.076923 0.000000] \\
\hline 0.040000 & sec: & Search & [-20.769231 0.000000] \\
\hline 0.050000 & sec: & Search & [-18.461538 0.000000] \\
\hline 0.060000 & sec: & Search & [-16.153846 0.000000] \\
\hline 0.070000 & sec: & Search & [-13.846154 0.000000] \\
\hline 0.080000 & sec: & Search & [-11.538462 0.000000] \\
\hline 0.090000 & sec: & Search & [-9.230769 0.000000] \\
\hline 0.100000 & sec: & Search & [-6.923077 0.000000] \\
\hline
\end{tabular}
```

0.110000 sec: Search [-4.615385 0.000000]
0.120000 sec: Search [-2.307692 0.000000]
0.130000 sec: Search [0.000000 0.000000] Target detected at 29900.000000 m

```


As expected, the radar gets a detection when the radar beam illuminates the target, as shown in the figure. When this happens, the radar sends a confirmation beam immediately to make sure it is not a false detection.

Next, show the results for the confirmation job. The rest of this example shows simplified code that combines the simulation loop into a system simulation function.
```

[mfradar,env,jobq,jobload,current_time,tgtpos] = MPARSimRun(...
mfradar,env,jobq,jobload,current_time,dwelltime,sceneplot,maxrng,beamw,tgtpos,15,15);

```
\(0.140000 \mathrm{sec}:\) Confirm [-0.000586-0.000034] Created track 1 at 29900.000000 m


The figure now shows the confirmation beam. Once the detection is confirmed, a track is established for the target, and a track job is scheduled to execute after a short interval.

This process repeats for every detected target until the revisit time, at which point the multifunction radar stops the search sequence and performs the track task again.
[mfradar,env,jobq,jobload,current time,tgtpos] = MPARSimRun(...
mfradar, env, jobq, jobload, current_time, dwelltime, sceneplot, maxrng, beamw, tgtpos, 16, 25);
\begin{tabular}{|c|c|c|c|}
\hline 0.150000 sec & Search & [2.307692 0.000000] & \\
\hline 0.160000 sec : & Search & [4.615385 0.000000] & Target detected at 49900.000000 m \\
\hline 0.170000 sec : & Confirm & [4.881676 0.000739] & Created track 2 at 49900.000000 m \\
\hline 0.180000 sec : & Search & [6.923077 0.000000] & \\
\hline 0.190000 sec : & Search & [9.230769 0.000000] & \\
\hline 0.200000 sec : & Search & [11.538462 0.000000] & \\
\hline 0.210000 sec : & Search & [13.846154 0.000000] & \\
\hline 0.220000 sec : & Search & [16.153846 0.000000] & \\
\hline 0.230000 sec : & Search & [18.461538 0.000000] & \\
\hline 0.240000 sec : & Track & [-0.000399 0.000162] & Track 1 at 29900.000000 m \\
\hline
\end{tabular}


The results show that the simulation stops at a track beam. The zoomed-in figures around the two targets show how the tracks are updated based on the detection and measurements. A new track job for the next revisit is also added to the job queue during the execution of a track job.

This process repeats for each dwell. This simulation runs the radar system for a 2 -second period. After a while, the second target is detected beyond 50 km . Based on this information, the radar manager reduces how often the system needs to track the second target. This reduction frees up resources for other, more urgent needs.
[mfradar,env,jobq,jobload, current_time,tgtpos] = MPARSimRun(...
mfradar, env, jobq, jobload, currént_time, dwelltime, sceneplot, maxrng, beamw, tgtpos, 26 , numdwells) ;
\begin{tabular}{|c|c|c|c|}
\hline 0.250000 se & Search & 31 0.000000] & \\
\hline 0.260000 sec : & Search & [23.076923 0.000000] & \\
\hline 0.270000 sec : & Track & [4.882892-0.000030] & Track 2 at 49900.000000 \\
\hline 0.280000 sec : & Search & [25.384615 0.000000] & \\
\hline 0.290000 sec : & Search & [27.692308 0.000000] & \\
\hline 0.340000 sec : & Track & [0.001390 0.000795] & Track 1 at 29900.000000 m \\
\hline 0.370000 sec : & Track & [4.895153 0.000529] & Track 2 at 49900.000000 m \\
\hline 0.440000 sec : & Track & [0.000284 0.000446] & Track 1 at 29900.000000 m \\
\hline 0.470000 sec : & Track & [4.909764-0.000394] & Track 2 at 49900.000000 \\
\hline 0.540000 sec : & Track & [0.000455-0.000130] & Track 1 at 29800.000000 \\
\hline 0.570000 sec : & Track & [4.921876-0.000210] & Track 2 at 49900.000000 \\
\hline 0.640000 sec : & Track & [0.000181-0.000020] & Track 1 at 29800.000000 \\
\hline 0.670000 sec : & Track & [4.932942-0.000988] & Track 2 at 49900.000000 \\
\hline 0.740000 sec : & Track & [0.000348 0.000212] & Track 1 at 29800.000000 \\
\hline
\end{tabular}
\begin{tabular}{lllll}
0.770000 & \(\mathrm{sec}:\) & Track & {\([4.944255-0.001073]\)} & Track 2 at 49900.000000 m \\
\(0.840000 \mathrm{sec}:\) & Track & {\([0.000171-0.000125]\)} & Track 1 at 29800.000000 m \\
\(0.870000 \mathrm{sec}:\) & Track & {\([4.954431-0.000943]\)} & Track 2 at 50000.000000 m \\
\(0.940000 \mathrm{sec}:\) & Track & {\([0.000296-0.000288]\)} & Track 1 at 29800.000000 m \\
\(1.040000 \mathrm{sec}:\) & Track & {\([0.000108-0.000147]\)} & Track 1 at 29800.000000 m \\
\(1.140000 \mathrm{sec}:\) & Track & {\([-0.000096-0.000179]\)} & Track 1 at 29800.000000 m \\
\(1.240000 \mathrm{sec}:\) & Track & {\([-0.000110-0.000315]\)} & Track 1 at 29800.000000 m \\
\(1.340000 \mathrm{sec}:\) & Track & {\([-0.000291-0.000515]\)} & Track 1 at 29800.000000 m \\
\(1.370000 \mathrm{sec}:\) & Track & {\([5.005679-0.000877]\)} & Track 2 at 50000.000000 m \\
\(1.440000 \mathrm{sec}:\) & Track & {\([-0.000191-0.000592]\)} & Track 1 at 29800.000000 m \\
\(1.540000 \mathrm{sec}:\) & Track & {\([-0.000140-0.000787]\)} & Track 1 at 29700.000000 m \\
\(1.640000 \mathrm{sec}:\) & Track & {\([0.000069-0.000600]\)} & Track 1 at 29700.000000 m \\
\(1.740000 \mathrm{sec}:\) & Track & {\([-0.000001-0.000714]\)} & Track 1 at 29700.000000 m \\
1.840000 & \(\mathrm{sec}:\) & Track & {\([0.000030-0.000686]\)} & Track 1 at 29700.000000 m \\
\(1.870000 \mathrm{sec}:\) & Track & {\([5.0577620 .000107]\)} & Track 2 at 50100.000000 m \\
\(1.940000 \mathrm{sec}:\) & Track & {\([0.000067-0.000511]\)} & Track 1 at 29700.000000 m
\end{tabular}


\section*{Resource Distribution Analysis}

This section of the example shows how the radar resource is distributed among different tasks. This figure shows how the multifunction radar system in this example distributes its resources between search and track.

L = 10;
searchpercent = sum(buffer(jobload.num_search_job,L,L-1,'nodelay'))/L;
trackpercent = sum(buffer(jobload.num_track_job,L,L-1,'nodelay'))/L;
figure;
plot((1:numel(searchpercent))*L*dwelltime,[searchpercent(:) trackpercent(:)]);
xlabel('Time (s)');
ylabel('Job Percentage');
title('Resource Distribution between Search and Track');
legend('Search','Track','Location','best');
grid on;


The figure suggests that, at the beginning of the simulation, all resources are spent on search. Once the targets are detected, the radar resources get split into \(80 \%\) and \(20 \%\) between search and track, respectively. However, once the second target gets farther away, more resources are freed up for search. The track load increases briefly when the time arrives to track the second target again.

\section*{Summary}

This example introduces the concept of resource management and task scheduling in a multifunctional phased array radar system. It shows that, with the resource management component, the radar acts as a closed loop system. Although the multifunction radar in this example deals only with search and track tasks, the concept can be extended to more realistic situations where other functions, such as self-check and communication, are also involved.

\section*{References}
[1] Walter Weinstock, "Computer Control of a Multifunction Radar", Practical Phased Array Antenna Systems, Lex Book, 1997

\section*{Appendices}

These helper functions models the radar resource management workflow.

\section*{getCurrentJob}

The function getCurrentJob compares the jobs in the search queue and the track queue and selects the job with the highest priority to execute.
```

function [currentjob,jobq] = getCurrentJob(jobq,current_time)
searchq = jobq.SearchQueue;
trackq = jobq.TrackQueue;
searchidx = jobq.SearchIndex;
num_trackq_items = jobq.NumTrackJobs;
% Update search queue index
searchqidx = mod(searchidx-1,numel(searchq))+1;
% Find the track job that is due and has the highest priority
readyidx = find([trackq(1:num_trackq_items).Time]<=current_time);
[~,maxpidx] = max([trackq(readyidx).Priority]);
taskqidx = readyidx(maxpidx);
% If the track job found has a higher priority, use that as the current job
% and increase the next search job priority since it gets postponed.
% Otherwise, the next search job due is the current job.
if ~isempty(taskqidx) \&\& trackq(taskqidx). Priority >= searchq(searchqidx). Priority
currentjob = trackq(taskqidx);
for m = taskqidx+1:num_trackq_items
trackq(m-1) = trackq(m);
end
num_trackq_items = num_trackq_items-1;
searchq(searchqidx). Príority = searchq(searchqidx).Priority+100;
else
currentjob = searchq(searchqidx);
searchidx = searchqidx+1;
end
jobq.SearchQueue = searchq;
jobq.SearchIndex = searchidx;
jobq.TrackQueue = trackq;
jobq.NumTrackJobs = num_trackq_items;

```

\section*{generateEcho}

The function generateEcho simulates the complex (I/Q) baseband representation of the target echo received at the radar.
```

function [xrsint,xrdazint,xrdelint,mfradar] = generateEcho(mfradar,env,current_job)
% Radar position
radarpos = [0;0;0];
radarvel = [0;0;0];
% Number of pulses and operating frequency
Npulses = 10;
fc = mfradar.TxAnt.OperatingFrequency;

```
```

for m = 1:Npulses
% Waveform
x = mfradar.Wav();
% Update target motion
[tgtpos,tgtvel] = env.TargetMotion(1/mfradar.Wav.PRF);
[~,tgtang] = rangeangle(tgtpos);
% Transmit
[xt,inuseflag] = mfradar.Tx(x);
w = mfradar.STV(fc,current_job.BeamDirection);
xt = mfradar.TxAnt(xt,tgtang,conj(w));
% Propagation
xp = env.Channel(xt,radarpos,tgtpos,radarvel,tgtvel);
xp = env.Target(xp);
% Receive and monopulse
xr = mfradar.RxAnt(xp,tgtang);
[xrs,xrdaz,xrdel] = mfradar.RxFeed(xr,current_job.BeamDirection);
% Pulse integration
if m == 1
xrsint = mfradar.Rx(xrs,~(inuseflag>0));
xrdazint = mfradar.Rx(xrdaz,~(inuseflag>0));
xrdelint = mfradar.Rx(xrdel,~(inuseflag>0));
else
xrsint = xrsint+mfradar.Rx(xrs,~(inuseflag>0));
xrdazint = xrdazint+mfradar.Rx(xrdaz,~(inuseflag>0));
xrdelint = xrdelint+mfradar.Rx(xrdel,~(inuseflag>0));
end
end

```

\section*{generateDetection}

The function generateDetection applies signal processing techniques on the echo to generate target detection.
```

function [detection,mfradar] = generateDetection(xrsint,xrdazint,xrdelint,mfradar,current_job,cu
% Compute detection threshold
nbw = mfradar.Rx.SampleRate/(mfradar.Wav.SampleRate/mfradar.Wav.SweepBandwidth);
npower = noisepow(nbw,mfradar.Rx.NoiseFigure,mfradar.Rx.ReferenceTemperature);
pfa = 1e-6;
threshold = npower * db2pow(npwgnthresh(pfa,1,'noncoherent'));
arraysz = mfradar.TxAnt.Sensor.Size(1);
ant snrgain = pow2db(arraysz^2);
mfcōeff = getMatchedFilter(mfradar.Wav);
mfgain = pow2db(norm(mfcoeff)^2);
threshold = threshold * db2pow(mfgain+2*ant_snrgain);
threshold = sqrt(threshold);
tgrid = unigrid(0,1/mfradar.Wav.SampleRate,1/mfradar.Wav.PRF,'[)');
rgates = mfradar.TxAnt.PropagationSpeed*tgrid/2;

```
```

% Matched filtering and time varying gain
xrsmf = mfradar.TVG(mfradar.MF(xrsint));
% Detection in range and angle estimation via monopulse
if any(abs(xrsmf)>threshold)
[~,tgtidx] = findpeaks(abs(xrsmf),'MinPeakHeight',threshold,...
'Sortstr','Descend','NPeaks',1);
rng_est = rgates(tgtidx-(numel(mfcoeff)-1));
ang_est = mfradar.DOA(xrsint(tgtidx-1),xrdazint(tgtidx-1),xrdelint(tgtidx-1),current_job.Bear
% Form the detection object.
measNoise = diag([0.1, 0.1, 150].^2); % Measurement noise matrix
detection = objectDetection(current_time,...
[ang_est(1);ang_est(2);rng_est], 'MeasurementNoise', measNoise,...
'MeasurementParameters',struct('Frame','spherical', 'HasVelocity', false));
else
detection = objectDetection.empty;
end
if current_time < 0.3 || strcmp(current_job.JobType,'Track')
fprintf('\n%f sec:\t%s\t[%f %f]',current_time,current_job.JobType,current_job.BeamDirection(
current_job.BeamDirection(2));
end

```

\section*{updateTrackAndJob}

The function updateTrackAndJob tracks the detection and then passes tracks to the radar manager to update the track task queue.
```

function [jobq,allTracks,mfradar] = updateTrackAndJob(detection,jobq,mfradar,current_job,current
trackq = jobq.TrackQueue;
num_trackq_items = jobq.NumTrackJobs;
% Execute current job
switch current_job.JobType
case 'Search'
% For search job, if there is a detection, establish tentative
% track and schedule a confirmation job
if ~isempty(detection)
ang_est = detection.Measurement(1:2);
rng_est = detection.Measurement(3);
if ~mfradar.IsTrackerInitialized
[~,~,allTracks] = mfradar.Tracker(detection,current_time,uint32([]));
mfradar.IsTrackerInitialized = true;
else
[~,~,allTracks] = mfradar.Tracker(detection,current_time,uint32([]));
end
num trackq_items = num trackq_items+1;
tra\overline{ckq(num_trackq_items}) = struct('JobType','Confirm','Priority',2000,...
'BeamDirection',ang_est,'WaveformIndex',1,'Time',current_time+dwellinterval,...
'Range',rng_est,'TräckID',allTracks(~[allTracks.IsConfirmed]).TrackID);
if current_time < 0.3 || strcmp(current_job.JobType,'Track')
fprintf('\tTarget detected at %f m',rng_est);
end
else

```
```

 allTracks = [];
 end
 case 'Confirm'
% For confirm job, if the detection is confirmed, establish a track
% and create a track job corresponding to the revisit time
if ~isempty(detection)
trackid = current_job.TrackID;
[~,~,allTracks] = mfradar.Tracker(detection,current_time,trackid);
rng_est = detection.Measurement(3);
if rng_est >= 50e3
updateinterval = 0.5;
else
updateinterval = 0.1;
end
revisit_time = current_time+updateinterval;
predictēdTrack = predic}tTracksToTime(mfradar.Tracker,trackid,revisit_time)
xpred = predictedTrack.State([1 3 5]);
[phipred,thetapred,rpred] = cart2sph(xpred(1),xpred(2),xpred(3));
num trackq items = num trackq items+1;
trackkq(num_trackq_items) = struct('JobType','Track','Priority',3000,...
'BeamDirection', rad2deg([phipred;thetapred]), 'WaveformIndex',1,'Time', revisit_tir
'Range',rpred,'TrackID',trackid);
if current time < 0.3 || strcmp(current job.JobType,'Track')
fprintf('\tCreated track %d at %f m',trackid,rng_est);
end
else
allTracks = [];
end
case 'Track'
% For track job, if there is a detection, update the track and
% schedule a track job corresponding to the revisit time. If there
% is no detection, predict and schedule a track job sooner so the
% target is not lost.
if ~isempty(detection)
trackid = current_job.TrackID;
[~,~,allTracks] = mfradar.Tracker(detection,current_time,trackid);
rng_est = detection.Measurement(3);
if rng_est >= 50e3
updateinterval = 0.5;
else
updateinterval = 0.1;
end
revisit_time = current_time+updateinterval;
predictedTrack = predictTracksToTime(mfradar.Tracker,trackid,revisit_time);
xpred = predictedTrack.State([1 3 5]);
[phipred,thetapred,rpred] = cart2sph(xpred(1),xpred(2),xpred(3));
num_trackq_items = num_trackq_items+1;
trackq(num_trackq_items) = struct('JobType','Track','Priority',3000,...
'BeamDirection',rad2deg([phipred;thetapred]),'WaveformIndex',1,'Time',revisit_tir
'Range',rpred,'TrackID',trackid);
if current_time < 0.3 || strcmp(current_job.JobType,'Track')
fprint\overline{f('\tTrack %d at %f m',tracki\overline{d},rng_est);}

```
```

 end
 else
trackid = current job.TrackID;
[~,~,allTracks] = mfradar.Tracker(detection,current_time,trackid);
updateinterval = 0.1; % revisit sooner
revisit time = current time+updateinterval;
predictēTTrack = predic
xpred = predictedTrack.State([1 3 5]);
[phipred,thetapred,rpred] = cart2sph(xpred(1),xpred(2),xpred(3));
num_trackq_items = num_trackq_items+1;
trackq(num_trackq_items) = struct('JobType','Track','Priority',3000,...
'BeamDīrection',rad2deg([phipred;thetapred]), 'WaveformIndex',1,'Time',revisit_tir
'Range',rpred,'TrackID',trackid);
if current_time < 0.3 || strcmp(current_job.JobType,'Track')
fprint\overline{f('\tNo detection, track %d p\overline{redicted',current_job.TrackID);}}\mathbf{\prime}=\mp@code{l}
end
end
end
jobq.TrackQueue = trackq;
jobq.NumTrackJobs = num_trackq_items;

```

\section*{Stripmap Synthetic Aperture Radar (SAR) Image Formation}

This example shows how to model a stripmap-based Synthetic Aperture Radar (SAR) system using a Linear FM (LFM) Waveform. SAR is a type of side-looking airborne radar where the achievable crossrange resolution is much higher as compared to a real aperture radar. The image generated using SAR has its own advantages primarily pertaining to the use of an active sensor (radar) as opposed to conventional imaging systems employing a passive sensor (camera) that rely on the ambient lighting to obtain the image. Since an active sensor is used, the system provides all-weather performance irrespective of snow, fog, or rain, for example. Also, configuring the system to work at different frequencies such as L-, S-, or C-band can help analyze different layers on the ground based on varying depth of penetrations. Because the resolution of SAR depends upon the signal and antenna configuration, resolution can be much higher than for vision-based imaging systems. Using stripmap mode, this example performs both a range migration algorithm [1] and an approximate form of a back-projection algorithm [2] to image stationary targets. The approximate form of the backprojection algorithm has been chosen for the reduced computational complexity as indicated in [3]. A Linear FM waveform offers the advantage of large time-bandwidth product at a considerably lower transmit power making it suitable for use in airborne systems.

\section*{Synthetic Aperture Radar Imaging}

SAR generates a two-dimensional (2-D) image. The direction of flight is referred to as the cross-range or azimuth direction. The direction of the antenna boresight (broadside) is orthogonal to the flight path and is referred to as the cross-track or range direction. These two directions provide the basis for the dimensions required to generate an image obtained from the area within the antenna beamwidth through the duration of the data collection window. The cross-track direction is the direction in which pulses are transmitted. This direction provides the slant range to the targets along the flight path. The energy received after reflection off the targets for each pulse must then be processed (for range measurement and resolution). The cross-range or azimuth direction is the direction of the flight path and it is meaningful to process the ensemble of the pulses received over the entire flight path in this direction to achieve the required measurement and resolution. Correct focusing in both the directions implies a successful generation of image in the range and cross-range directions. It is a requirement for the antenna beam-width to be wide enough so that the target is illuminated for a long duration by the beam as the platform moves along its trajectory. This will help provide more phase information. The key terms frequently encountered when working with SAR are:

1 Cross-range (azimuth): this parameter defines the range along the flight path of the radar platform.
2 Range: this parameter defines the range orthogonal to the flight path of the radar platform.
3 Fast-time: this parameter defines the time duration for operation of each pulse.
4 Slow-time: this parameter defines the cross-range time information. The slow time typically defines the time instances at which the pulses are transmitted along the flight path.


\section*{Radar Configuration}

Consider a SAR radar operating in C-band with a 4 GHz carrier frequency and a signal bandwidth of 50 MHz . This bandwidth yields a range resolution of 3 meters. The radar system collects data orthogonal to the direction of motion of the platform as shown in the figure above. The received signal is a delayed replica of the transmitted signal. The delay corresponds in general to the slant range between the target and the platform. For a SAR system, the slant range will vary over time as the platform traverses a path orthogonal to the direction of antenna beam. This section below focuses on defining the parameters for the transmission waveform. The LFM sweep bandwidth can be decided based on the desired range resolution.

Set the physical constant for speed of light.
```

c = physconst('LightSpeed');

```

Set the SAR center frequency.
\(\mathrm{fc}=4 \mathrm{e} 9\);
Set the desired range and cross-range resolution to 3 meters.
```

rangeResolution = 3;
crossRangeResolution = 3;

```

The signal bandwidth is a parameter derived from the desired range resolution.
```

bw = c/(2*rangeResolution);

```

In a SAR system the PRF has dual implications. The PRF not only determines the maximum unambiguous range but also serves as the sampling frequency in the cross-range direction. If the PRF
is too low to achieve a higher unambiguous range, there is a longer duration pulses resulting in fewer pulses in a particular region. At the same time, if the PRF is too high, the cross-range sampling is achieved but at the cost of reduced range. Therefore, the PRF should be less than twice the Doppler frequency and should also satisfy the criteria for maximum unambiguous range
```

prf = 1000;
aperture = 4;
tpd = 3*10^-6;
fs = 120*10^6;

```

Configure the LFM signal of the radar.
```

waveform = phased.LinearFMWaveform('SampleRate',fs, 'PulseWidth', tpd, 'PRF', prf,...
'SweepBandwidth', bw);

```

Assume the speed of aircraft is \(100 \mathrm{~m} / \mathrm{s}\) with a flight duration of 4 seconds.
```

speed = 100;
flightDuration = 4;
radarPlatform = phased.Platform('InitialPosition', [0;-200;500], 'Velocity', [0; speed; 0]);
slowTime = 1/prf;
numpulses = flightDuration/slowTime +1;
maxRange = 2500;
truncrangesamples = ceil((2*maxRange/c)*fs);
fastTime = (0:1/fs:(truncrangesamples-1)/fs);
% Set the reference range for the cross-range processing.
Rc = 1000;

```

Configure the SAR transmitter and receiver. The antenna looks in the broadside direction orthogonal to the flight direction.
```

antenna = phased.CosineAntennaElement('FrequencyRange', [1e9 6e9]);
antennaGain = aperture2gain(aperture,c/fc);
transmitter = phased.Transmitter('PeakPower', 50e3, 'Gain', antennaGain);
radiator = phased.Radiator('Sensor', antenna,'OperatingFrequency', fc, 'PropagationSpeed', c);
collector = phased.Collector('Sensor', antenna, 'PropagationSpeed', c,'OperatingFrequency', fc);
receiver = phased.ReceiverPreamp('SampleRate', fs, 'NoiseFigure', 30);

```

Configure the propagation channel.
```

channel = phased.FreeSpace('PropagationSpeed', c, 'OperatingFrequency', fc,'SampleRate', fs,...

```
    'TwoWayPropagation', true);

\section*{Scene Configuration}

In this example, three static point targets are configured at locations specified below. All targets have a mean RCS value of 1 meter-squared.
```

targetpos= [800,0,0;1000,0,0; 1300,0,0]';
targetvel = [0,0,0;0,0,0; 0,0,0]';
target = phased.RadarTarget('OperatingFrequency', fc, 'MeanRCS', [1,1,1]);
pointTargets = phased.Platform('InitialPosition', targetpos,'Velocity',targetvel);
% The figure below describes the ground truth based on the target

```
\% locations.
figure(1);h = axes;plot(targetpos(2,1),targetpos(1,1),'*g');hold all;plot(targetpos(2,2),targetp set(h,'Ydir','reverse');xlim([-10 10]);ylim([700 1500]);
title('Ground Truth');ylabel('Range');xlabel('Cross-Range');

Ground Truth


\section*{SAR Signal Simulation}

The following section describes how the system operates based on the above configuration.
Specifically, the section below shows how the data collection is performed for a SAR platform. As the platform moves in the cross-range direction, pulses are transmitted and received in directions orthogonal to the flight path. A collection of pulses gives the phase history of the targets lying in the illumination region as the platform moves. The longer the target lies in the illumination region, the better the cross-range resolution for the entire image because the process of range and cross-range focusing is generalized for the entire scene.
```

% Define the broadside angle
refangle = zeros(1,size(targetpos,2));
rxsig = zeros(truncrangesamples,numpulses);
for ii = 1:numpulses
% Update radar platform and target position
[radarpos, radarvel] = radarPlatform(slowTime);
[targetpos,targetvel] = pointTargets(slowTime);
% Get the range and angle to the point targets
[targetRange, targetAngle] = rangeangle(targetpos, radarpos);
%Generate the LFM pulse

```
```

sig = waveform();
% Use only the pulse length that will cover the targets.
sig = sig(1:truncrangesamples);
% Transmit the pulse
sig = transmitter(sig);
% Define no tilting of beam in azimuth direction
targetAngle(1,:) = refangle;
% Radiate the pulse towards the targets
sig = radiator(sig, targetAngle);
% Propagate the pulse to the point targets in free space
sig = channel(sig, radarpos, targetpos, radarvel, targetvel);
% Reflect the pulse off the targets
sig = target(sig);
% Collect the reflected pulses at the antenna
sig = collector(sig, targetAngle);
% Receive the signal
rxsig(:,ii) = receiver(sig);

```
end
Visualize the received signal.
The received signal can now be visualized as a collection of multiple pulses transmitted in the crossrange direction. The plots show the real part of the signal for the three targets. The range and crossrange chirps can be seen clearly. The target responses can be seen as overlapping as the pulse-width is kept longer to maintain average power.
```

imagesc(real(rxsig));title('SAR Raw Data')
xlabel('Cross-Range Samples')
ylabel('Range Samples')

```


Perform range compression.
Each row of the received signal, which contains all the information from each pulse, can be matched filtered to get the de-chirped/range compressed signal.
```

pulseCompression = phased.RangeResponse('RangeMethod', 'Matched filter', 'PropagationSpeed', c,
matchingCoeff = getMatchedFilter(waveform);
[cdata, rnggrid] = pulseCompression(rxsig, matchingCoeff);

```

The figure below shows the response after matched filtering has been performed on the received signal. The phase histories of the three targets are clearly visible along the cross-range direction and range focusing has been achieved.
```

imagesc(real(cdata));title('SAR Range Compressed Data')
xlabel('Cross-Range Samples')
ylabel('Range Samples')

```


\section*{Azimuth Compression}

There are multiple techniques to process the cross-range data and get the final image from the SAR raw data once range compression has been achieved. In essence, the range compression helps achieve resolution in the fast-time or range direction and the resolution in the cross-range direction is achieved by azimuth or cross-range compression. Two such techniques are the range migration algorithm and the back-projection algorithm which have been demonstrated in this example.
```

rma_processed = helperRangeMigration(cdata,fastTime,fc,fs,prf,speed,numpulses,c,Rc);
bpa_processed = helperBackProjection(cdata,rnggrid,fastTime,fc,fs,prf,speed,crossRangeResolution

```

Visualize the final SAR image.
Plot the focused SAR image using the range migration algorithm and the approximate back projection algorithm. Only a section of the image formed via the range migration algorithm is shown to accurately point the location of the targets.

The range migration and accurate form of the backprojection algorithm as shown by [2] and [3] provides theoretical resolution in the cross-track as well as along-track direction. Since the backprojection used here is of the approximate form, the spread in azimuth direction is evident in case of the back-projection whereas the data processed via range migration algorithm shows that theoretical resolution is achieved.
```

figure(1);
imagesc((abs((rma_processed(1700:2300,600:1400).'))));
title('SAR Data focused using Range Migration algorithm ')

```
xlabel('Cross-Range Samples')
ylabel('Range Samples')

```

figure(2)
imagesc((abs(bpa_processed(600:1400,1700:2300))));
title('SAR Data focused using Back-Projection algorithm ')
xlabel('Cross-Range Samples')
ylabel('Range Samples')

```


\section*{Summary}

This example shows how to develop SAR processing leveraging a LFM signal in an airborne data collection scenario. The example also shows how to generate an image from the received signal via range migration and approximate form of the back-projection algorithms.

\section*{References}

1 Cafforio, C., Prati, C. and Rocca, F., 1991. SAR data focusing using seismic migration techniques. IEEE transactions on aerospace and electronic systems, 27(2), pp.194-207.
2 Cumming, I., Bennett, J., 1979. Digital Processing of Seasat SAR data. IEEE International Conference on Acoustics, Speech, and Signal Processing.
3 Na Y., Lu Y., Sun H.,A Comparison of Back-Projection and Range Migration Algorithms for UltraWideband SAR Imaging, Fourth IEEE Workshop on Sensor Array and Multichannel Processing, 2006., Waltham, MA, 2006, pp. 320-324.

4 Yegulalp, A.F., 1999. Fast backprojection algorithm for synthetic aperture radar. Proceedings of the 1999 IEEE Radar Conference.

\section*{Appendix}

Range Migration Algorithm
function azcompresseddata \(=\) helperRangeMigration(sigData,fastTime,fc,fs,prf,speed,numPulses, \(\mathrm{c}, \mathrm{Rc}\)
This function demonstrates the range migration algorithm for imaging the side looking synthetic aperture radar.The pulsed compressed synthetic aperture data is considered in this algorithm.

Set the range frequency span.
```

frequencyRange = linspace(fc-fs/2,fc+fs/2,length(fastTime));
krange = 2*(2*pi*frequencyRange)/c;

```

Set the cross-range wavenumber.
```

kaz = 2*pi*linspace(-prf/2,prf/2,numPulses)./speed;

```

Generate a matrix of the cross-range wavenumbers to match the size of the received two-dimensional SAR signal
```

kazimuth = kaz.';
kx = krange.^2-kazimuth.^2;

```

Set the final wavenumber to achieve azimuth focusing.
```

kx = sqrt(kx.*(kx > 0));
kFinal = exp(1i*kx.*Rc);

```

Perform a two-dimensional FFT on the range compressed signal.
```

sdata =fftshift(fft(fftshift(fft(sigData,[],1),1),[],2),2);

```

Perform bulk compression to get the azimuth compression at the reference range. Perform filtering of the 2-D FFT signal with the new cross-range wavenumber to achieve complete focusing at the reference range and as a by-product, partial focusing of targets not lying at the reference range.
```

fsmPol = (sdata.').*kFinal;

```

Perform Stolt Interpolation to achieve focusing for targets that are not lying at the reference range
```

stoltPol = fsmPol;
for i = 1:size((fsmPol),1)
stoltPol(i,:) = interp1(kx(i,:),fsmPol(i,:),krange(1,:));
end
stoltPol(isnan(stoltPol)) = 1e-30;
stoltPol = stoltPol.*exp(-1i*krange.*Rc);
azcompresseddata = ifft2(stoltPol);
end

```

Back-Projection Algorithm
function data \(=\) helperBackProjection(sigdata, rnggrid,fastTime,fc,fs,prf,speed,crossRangeResoluti
This function demonstrates the time-domain back projection algorithm for imaging the side-looking synthetic aperture radar. The pulsed compressed synthetic aperture data is taken as input in this algorithm. Initialize the output matrix.
```

data = zeros(size(sigdata));
azimuthDist = -200:speed/prf:200;%azimuth distance

```

Limit the range and cross-range pixels being processed to reduce processing time.
```

rangelims = [700 1400];
crossrangelims = [-10 10];

```

Index the range grid in accordance with the range limits.
```

rangeIdx = [find(rnggrid>rangelims(1), 1) find(rnggrid<rangelims(2),1,'last')];

```

Index the azimuth distance in accordance with the cross-range limits.
```

crossrangeIdxStart = find(azimuthDist>crossrangelims(1),1);
crossrangeIdxStop = find(azimuthDist<crossrangelims(2),1,'last');
for i= rangeIdx(1):rangeIdx(2) % Iterate over the range indices
% Using desired cross-range resolution, compute the synthetic aperture
% length
lsynth= (c/fc)* (c*fastTime(i)/2)/(2*crossRangeResolution);
lsar = round(lsynth*length(azimuthDist)/azimuthDist(end)) ;
% Ensure lsar is an odd number
lsar = lsar + mod(lsar,2);
% Construct hanning window for cross-range processing, to suppress the
% azimuthal side lobes
hn= hanning(lsar).';
% Iterate over the cross-range indices
for j= crossrangeIdxStart:crossrangeIdxStop
% azimuth distance in x direction over cross-range indices
posx= azimuthDist(j);
% range in y-direction over range indices
posy= c*fastTime(i)/2;
% initializing count to zero
count= 0;
% Iterate over the synthetic aperture
for k= j-lsar/2 +1:j+ lsar/2
% Time delay for each of range and cross-range indices
td= sqrt((azimuthDist(k)- posx)^2 + posy^2)*2/c;
cell= round(td*fs) +1 ;
signal = sigdata(cell,k);
count= count + hn(k -(j-lsar/2))*signal *exp(lj*2*pi*fc*(td));
end
% Processed data at each of range and cross-range indices
data(i,j)= count;
end
end
end

```

\section*{Planning Radar Network Coverage over Terrain}

This example shows how to plan a radar network using propagation modelling over terrain. DTED level-1 terrain data is imported for a region that contains five candidate monostatic radar sites. The radar equation is used to determine whether target locations can be detected, where additional path loss is calculated using either the Longley-Rice propagation model or Terrain Integrated Rough Earth Model \(^{\mathrm{TM}}\left(\right.\) TIREM \(\left.^{\mathrm{TM}}\right)\). The best three sites are selected for detection of a target that is flying at 500 meters above ground level. The scenario is updated to model a target that is flying at 250 meters above ground level. Radar coverage maps are shown for both scenarios.

\section*{Import Terrain Data}

Import DTED-format terrain data for a region around Boulder, Colorado, US. The terrain file was downloaded from the "SRTM Void Filled" data set available from the United States Geological Survey (USGS). The file is DTED level-1 format and has a sampling resolution of about 90 meters. A single DTED file defines a region that spans 1 degree in both latitude and longitude.
```

dtedfile = "n39_w106_3arc_v2.dt1";
attribution = "\overline{SRTM \overline{3 arc-second resolution. Data available from the U.S. Geological Survey.";}}\mathbf{=}\mathrm{ ;}
addCustomTerrain("southboulder",dtedfile, ...
"Attribution",attribution)

```

Open Site Viewer using the imported terrain. Visualization with high-resolution satellite map imagery requires an Internet connection.
```

viewer = siteviewer("Terrain","southboulder");

```

\section*{Show Candidate Radar Sites}

The region contains mountains to the west and flatter areas to the east. Radars will be placed in the flat area to detect targets over the mountainous region. Define five candidate locations for placing the radars and show them on the map. The candidate locations are chosen to correspond to local high points on the map outside of residential areas.

Create collocated transmitter and receiver sites at each location to model monostatic radars, where the radar antennas are assumed to be 10 meters above ground level.
```

names = "Radar site" + (1:5);
rdrlats = [39.6055 39.6481 39.7015 39.7469 39.8856];
rdrlons = [-105.1602 -105.1378 -105.1772 -105.2000 -105.2181];
% Create transmitter sites associated with radars
rdrtxs = txsite("Name",names, ...
"AntennaHeight",10, ...
"Latitude",rdrlats, ...
"Longitude",rdrlons);
% Create receiver sites associated with radars
rdrrxs = rxsite("Name",names, ...
"AntennaHeight",10, ...
"Latitude",rdrlats, ...
"Longitude",rdrlons);
% Show just the radar transmitter sites
show(rdrtxs);

```


Zoom and rotate the map to view the 3-D terrain around the candidate radar sites. Select a site to view the location, antenna height, and ground elevation.


\section*{Design Monostatic Radar System}

Design a basic monostatic pulse radar system to detect non-fluctuating targets with 0.1 square meter radar cross section (RCS) at a distance up to 35000 meters from the radar with a range resolution of 5 meters. The desired performance index is a probability of detection (Pd) of 0.9 and probability of false alarm (Pfa) below \(1 \mathrm{e}-6\). The radars are assumed to be rotatable and support the same antenna gain in all directions, where the antenna gain corresponds to a highly directional antenna array.
```

pd = 0.9; % Probability of detection
pfa = le-6; % Probability of false alarm
maxrange = 35000; % Maximum unambiguous range (m)
rangeres = 5; % Required range resolution (m)
tgtrcs = .1; % Required target radar cross section (m^2)

```

Use pulse integration to reduce the required SNR at the radar receiver. Use 10 pulses and compute the SNR required to detect a target.
```

numpulses = 10;
snrthreshold = albersheim(pd, pfa, numpulses); % Unit: dB
disp(snrthreshold);
4.9904

```

Define radar center frequency and antenna gain, assuming a highly directional antenna array.
```

fc = 10e9; % Transmitter frequency: 10 GHz
antgain = 38; % Antenna gain: 38 dB
c = physconst('LightSpeed');
lambda = c/fc;

```

Calculate the required peak pulse power (Watts) of the radar transmitter using the radar equation.
```

pulsebw = c/(2*rangeres);
pulsewidth = 1/pulsebw;
Ptx = radareqpow(lambda,maxrange,snrthreshold,pulsewidth,....
'RCS',tgtrcs,'Gain',antgain);
disp(Ptx)

```
    \(3.1521 e+05\)

\section*{Define Target Positions}

Define a grid containing 2500 locations to represent the geographic range of positions for a moving target in the region of interest. The region of interest spans 0.5 degrees in both latitude and longitude and includes mountains to the west as well as some of the area around the radar sites. The goal is to detect targets that are in the mountainous region to the west.
```

% Define region of interest
latlims = [39.5 40];
lonlims = [-105.6 -105.1];
% Define grid of target locations in region of interest
tgtlatv = linspace(latlims(1),latlims(2),50);
tgtlonv = linspace(lonlims(1),lonlims(2),50);
[tgtlons,tgtlats] = meshgrid(tgtlonv,tgtlatv);
tgtlons = tgtlons(:);
tgtlats = tgtlats(:);

```

Compute the minimum, maximum, and mean ground elevation for the target locations.
```

% Create temporary array of sites corresponding to target locations and query terrain
Z = elevation(txsite("Latitude",tgtlats,"Longitude",tgtlons));
[Zmin, Zmax] = bounds(Z);
Zmean = mean(Z);
disp("Ground elevation (meters): Min Max Mean" + newline + ...
" + round(Zmin) + " " + round(Zmax) + " " + round(Zmean))
Ground elevation (meters): Min Max Mean

```

Target altitude can be defined with reference to mean sea level or to ground level. Use ground level as the reference and define a target altitude of 500 meters.
```

% Target altitude above ground level (m)
tgtalt = 500;

```

Show the region of interest as a solid green area on the map.
```

viewer.Name = "Radar Coverage Region of Interest";
regionData = propagationData(tgtlats,tgtlons,'Area',ones(size(tgtlats)));
contour(regionData,'ShowLegend',false,'Colors','green','Levels',0)

```


\section*{Calculate SNR for Target Positions with Terrain}

The radar equation includes free space path loss and has a parameter for additional losses. Use a terrain propagation model to predict the additional path loss over terrain. Use Terrain Integrated Rough Earth Model \({ }^{\mathrm{TM}}\) (TIREM \({ }^{\mathrm{TM}}\) ) from Alion Science if it is available, or else use the Longley-Rice (aka ITM) model. TIREM \({ }^{\mathrm{TM}}\) supports frequencies up to 1000 GHz , whereas Longley-Rice is valid up to 20 GHz . Compute total additional loss including propagation from the radar to the target and then back from the target to the receiver.
```

% Create a terrain propagation model, using TIREM or Longley-Rice
tiremloc = tiremSetup;
if ~isempty(tiremloc)
pm = propagationModel('tirem');

```
```

else
pm = propagationModel('longley-rice');
end
% Compute additional path loss due to terrain and return distances between radars and targets
[L, ds] = helperPathlossOverTerrain(pm, rdrtxs, rdrrxs, tgtlats, tgtlons, tgtalt);

```

Use the radar equation to compute the SNR at each radar receiver for the signal reflected from each target.
```

% Compute SNR for all radars and targets
numtgts = numel(tgtlats);
numrdrs = numel(rdrtxs);
rawsnr = zeros(numtgts,numrdrs);
for tgtind = 1:numtgts
for rdrind = 1:numrdrs
rawsnr(tgtind,rdrind) = radareqsnr(lambda,ds(tgtind,rdrind),Ptx,pulsewidth, ...
'Gain',antgain,'RCS',tgtrcs,'Loss',L(tgtind,rdrind));
end
end

```

\section*{Optimize Radar Coverage}

A target is detected if the radar receiver SNR exceeds the SNR threshold computed above. Consider all combinations of radar sites and select the three sites that produce the highest number of detections. Compute the SNR data as the best SNR available at the receiver of any of the selected radar sites.
```

bestsitenums = helperOptimizeRadarSites(rawsnr, snrthreshold);
snr = max(rawsnr(:,bestsitenums),[],2);

```

Display radar coverage showing the area where the SNR meets the required threshold to detect a target. The three radar sites selected for best coverage are shown using red markers.

The coverage map shows straight edges on the north, east, and south sides corresponding to the limits of the region of interest. The coverage map assumes that the radars can rotate and produce the same antenna gain in all directions and that the radars can transmit and receive simultaneously so that there is no minimum coverage range.

The coverage map has jagged portions on the western edge where the coverage areas are limited by terrain effects. A smooth portion of the western edge appears where the coverage is limited by the design range of the radar system, which is 35000 meters.
```

% Show selected radar sites using red markers
viewer.Name = "Radar Coverage";
clearMap(viewer)
show(rdrtxs(bestsitenums))
% Plot radar coverage
rdrData = propagationData(tgtlats,tgtlons,"SNR",snr);
legendTitle = "SNR" + newline + "(dB)";
contour(rdrData, ...
"Levels",snrthreshold, ...
"Colors","green", ...
"LegendTitle",legendTitle)

```


\section*{Vary the Number of Pulses to Integrate}

The analysis above optimized radar transmitter power and site locations based on a system that integrates 10 pulses. Now investigate the impact on radar coverage for different modes of operation of the system, where the number of pulses to integrate is varied. Compute the SNR thresholds required to detect a target for varying number of pulses.
\% Calculate SNR thresholds corresponding to different number of pulses numpulses = 1:10;
snrthresholds = zeros(1, numel(numpulses));
for \(\mathrm{k}=1\) :numel(numpulses)
snrthresholds(k) = albersheim(pd, pfa, numpulses(k));
end
\% Plot SNR thresholds vs number of pulses to integrate plot(numpulses,snrthresholds,'-*')
title("SNR at Radar Receiver Required for Detection")
xlabel("Number of pulses to integrate")
ylabel("SNR (dB)")
grid on;


Show radar coverage map for SNR thresholds corresponding to a few different numbers of pulses to integrate. Increasing the number of pulses to integrate decreases the required SNR and therefore produces a larger coverage region.
```

% Show best sites
viewer.Name = "Radar Coverage for Multiple SNR Thresholds";
show(rdrtxs(bestsitenums))
colors = jet(4);
colors(4,:) = [0 1 0];
contour(rdrData, ...
"Levels",snrthresholds([1 2 5 10]), ...
"Colors",colors, ...
"LegendTitle",legendTitle)

```


\section*{Update Target Altitude}

Update the scenario so that target positions are 250 meters above ground level instead of 500 meters above ground level. Rerun the same analysis as above to select the three best radar sites and visualize coverage. The new coverage map shows that reducing the visibility of the targets also decreases the coverage area.
```

% Target altitude above ground (m)
tgtalt = 250;
[L, ds] = helperPathlossOverTerrain(pm, rdrtxs, rdrrxs, tgtlats, tgtlons, tgtalt);
% Compute SNR for all radars and targets
numrdrs = numel(rdrtxs);
rawsnr = zeros(numtgts,numrdrs);
for tgtind = 1:numtgts
for rdrind = 1:numrdrs
rawsnr(tgtind,rdrind) = radareqsnr(lambda,ds(tgtind,rdrind),Ptx,pulsewidth, ...
'Gain',antgain,'RCS',tgtrcs,'Loss',L(tgtind,rdrind));
end

```
end
\% Select best combination of 3 radar sites
bestsitenums = helperOptimizeRadarSites(rawsnr, snrthreshold); snr = max(rawsnr(:,bestsitenums),[],2);
\% Show best sites
viewer. Name = "Radar Coverage"; clearMap(viewer); show(rdrtxs(bestsitenums))
\% Plot radar coverage
rdrData = propagationData(tgtlats,tgtlons,"SNR",snr); contour(rdrData,
"Levels", snrthreshold, ...
"Colors", "green", ...
"LegendTitle", legendTitle)


Show radar coverage map for multiple SNR thresholds.
```

% Show best sites
viewer.Name = "Radar Coverage for Multiple SNR Thresholds";
show(rdrtxs(bestsitenums))
contour(rdrData, ...
"Levels",snrthresholds([1 2 5 10]), ...
"Colors",colors, ...
"LegendTitle",legendTitle)

```


\section*{Conclusion}

A monostatic radar system was designed to detect non-fluctuating targets with 0.1 square meter radar cross section (RCS) at a distance up to 35000 meters. Radar sites were selected among five candidate sites to optimize number of detections over a region of interest. Two target altitudes were considered: 500 meters above ground level, and 250 meters above ground level. The coverage maps suggest the importance of line-of-sight visibility between the radar and target in order to achieve detection. The second scenario results in targets that are closer to ground level and therefore more
likely to be blocked from line-of-sight visibility with a radar. This can be seen by rotating the map to view terrain, where non-coverage areas are typically located in shadow regions of the mountains.


Clean up by closing Site Viewer and removing the imported terrain data.
close(viewer)
removeCustomTerrain("southboulder")

\subsection*{802.11ad Single Carrier Link with RF Beamforming in Simulink}

This example shows how to model an IEEE® 802.11 \(\mathrm{ad}^{\mathrm{TM}}\) single carrier link in Simulink \({ }^{\circledR}\) which includes a phased array antenna with RF beamforming. This example requires the following products:
- WLAN Toolbox \({ }^{\text {TM }}\) for baseband transmitter and receiver
- Phased Array System Toolbox \({ }^{\text {TM }}\) for receive antenna array
- RF Blockset \({ }^{\mathrm{TM}}\) for RF receiver

\section*{Introduction}

This model simulates an 802.11ad single carrier (SC) [ 1 ] link with RF beamforming. Multiple packets are transmitted through free space, then RF beamformed, demodulated and the PLCP service data units (PSDU) are recovered. The PSDUs are compared with those transmitted to determine the packet error rate. The receiver performs packet detection, timing synchronization, carrier frequency offset correction and unique word based phase tracking.

The MATLAB function block allows Simulink models to use MATLAB® functions. In this example, an 802.11ad SC link modeled in Simulink uses WLAN Toolbox functions called using MATLAB function blocks. For an 802.11ad baseband simulation in MATLAB, see the example "802.11ad Packet Error Rate Single Carrier PHY Simulation with TGay Channel" (WLAN Toolbox).

IEEE 802.11ad SC link with RF beamforming


Copyright 2018-2020 The MathWorks, Inc.


\section*{System Architecture}

The system consists of:
- A baseband transmitter which generates a random PSDU and an 802.11ad SC packet.
- A free space channel.
- A receive antenna array which supports up to 16 elements. This module allows control of the array geometry, number of elements in an array, operating frequency, and receiver direction.
- A 16 channel RF receiver module to process the RF signals. This receiver module includes low noise amplifiers, phase shifters, Wilkinson 16:1 combiner, and a down-converter. This module allows control of the beamforming direction used to calculate the corresponding phase shifts.
- A baseband receiver which recovers the transmitted PSDU by performing packet detection, time and frequency synchronization, channel estimation, PSDU demodulation, and decoding.

The system diagnostics includes the display of equalized constellation and the obtained packet error rate.

The following sections describe the transmitter and receiver in more detail.

\section*{Baseband Transmitter}

The baseband transmitter block creates a random PSDU and encodes the bits to create a single packet waveform based on the MCS and PSDU length values in the Model Parameters block. The packet generator block uses the function wlanWaveformGenerator (WLAN Toolbox) to encode a packet.


\section*{RF Receiver}

The RF receiver consists of amplifiers, phase shifters, Wilkinson 16:1 combiner and is implemented in superheterodyne fashion.


The phase shift applied to each element is calculated based on the beamforming direction. This is provided by the user and indicates the direction of the main beam. The receiver maximizes the SNR when the receiver's main beam points to the transmitter. Transmitter is omnidirectional and the
receiver direction (az,el) indicates the direction of incident signal. The scenario where the receiver direction and the beamforming direction are different is shown. In this case, there will be a reduction in the received signal power leading to high packet error rate (PER) and error vector magnitude (EVM). The results section shows these values.


\section*{Baseband Receiver}

The baseband receiver has two components: packet detection and packet recovery.


If a packet is detected, the packet recovery subsystem is enabled to process the detected packet.
The packet recovery subsystem processing consists of the following steps:
1 Frequency offset estimation and correction.
2 Symbol timing and channel frequency response estimation.
3 Noise power estimation.
4 Synchronization error checking. This determines whether the packet can be decoded or not.
5 Packet decoding.

\section*{\(\Omega\)}


In the packet decoder subsystem, the SC data field is extracted from the synchronized received waveform. Then, the PSDU is recovered using the extracted field, channel, and noise power estimates.


\section*{Results}

Running the simulation displays the packet error rate. The model updates the PER after processing each packet. The model also displays the equalized symbol constellation along with the EVM measurement. Note that for statistically valid results, long simulation times are required.

By default, the main beam of the receive antenna array points towards the direction: azimuth \(=0\) deg. and elevation \(=0\) deg.


If you change the Receiver direction value in the receive antenna array towards a proximity null in the array radiation, the EVM increases and the packets cannot be successfully decoded.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{这 Block Parameters: Receive Antenna Array \(\times\)} \\
\hline \multicolumn{4}{|l|}{Phased Array (mask)} \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
Uniform phased array with up to 16 elements. Each array element output is connected to a receive module. The phased array can be either uniform linear array (ULA) or uniform rectangular array (URA). This module allows the number of elements in an array to be specified. \\
For URA, the number of elements per row is same as the number of elements per column.
\end{tabular}} \\
\hline \multicolumn{4}{|l|}{Parameters} \\
\hline Array Geometry & URA & & - \\
\hline Number of elemen & nts per row 4 & & : \\
\hline \multicolumn{4}{|l|}{Operating frequency (Hz) simParams.fc} \\
\hline \multicolumn{2}{|l|}{Receiver direction [az,el] (degrees) [} & & : \\
\hline & OK Cancel & Help & Apply \\
\hline
\end{tabular}


If you change the Beamforming direction value in the RF receiver such that the main beam points towards the transmitter, the EVM improves and packets are successfully decoded.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|l|}{圆 Block Parameters: RF Receiver} & \(\times\) \\
\hline \multicolumn{4}{|l|}{SimRF Equivalent Baseband receiver (mask)} \\
\hline \multicolumn{4}{|l|}{Set parameters for the 16 RF channel module.} \\
\hline \multicolumn{4}{|l|}{Parameters} \\
\hline \multicolumn{4}{|l|}{Array Geometry URA} \\
\hline \multicolumn{4}{|l|}{Number of elements per row 4} \\
\hline \multicolumn{4}{|l|}{Operating frequency (Hz) simParams.fc} \\
\hline \multicolumn{4}{|l|}{Beamforming direction [az,el] (degrees) [65,15]} \\
\hline OK & Cancel & Help & Apply \\
\hline
\end{tabular}


\section*{Exploring the Example}
- Try changing the signal to noise ratio (SNR) value in the Model Parameters block. Increasing SNR leads to lower packet error rates and improved EVM of equalized symbols constellation. The SNR
specified is the signal to noise ratio at the input to the ADC, if a single receive chain is used. The SNR accounts for free space path loss, thermal noise and the noise figure of RF components.
- You can change the array geometry and the number of elements in an array present in the receive antenna array block. Increasing the number of antenna elements improves the EVM. The diversity gain due to receiver antenna array can be observed in the equalized symbols constellation.

\section*{Appendix}

This example uses the following helper functions:
- dmgCFOEstimate.m
- dmgPacketDetect.m
- dmgSingleCarrierFDE.m
- dmgSTFNoiseEstimate.m
- dmgTimingAndChannelEstimate.m
- dmgUniqueWordPhaseTracking.m
- helperFrequencyOffset.m

\section*{Selected Bibliography}

1 IEEE Std 802.11ad \({ }^{\text {TM }}\)-2012 IEEE Standard for Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. Amendment 3: Enhancements for Very High Throughput in the 60 GHz Band.

\subsection*{802.11ad Waveform Generation with Beamforming}

This example shows how to beamform an IEEE® 802.11ad \({ }^{\mathrm{TM}}\) DMG waveform with a phased array using WLAN Toolbox \({ }^{\mathrm{TM}}\) and Phased Array System Toolbox \({ }^{\mathrm{TM}}\).

\section*{Introduction}

IEEE 802.11ad [ 1 ] defines the directional multi-gigabit (DMG) transmission format operating at 60 GHz . To overcome the large path loss experienced at 60 GHz , the IEEE 802.11ad standard is designed to support directional beamforming. By using phased antenna arrays you can apply an antenna weight vector (AWV) to focus the antenna pattern in the desired direction. Each packet is transmitted on all array elements, but the AWV applies a phase shift to each element to steer the transmission. The quality of a communication link can be improved by appending optional training fields to DMG packets, and testing different AWVs at the transmitter or receiver. This process is called beam refinement.

A DMG packet consists of the following fields:
1 STF - The short training field, which is used for synchronization.
2 CE - Channel estimation field, which is used for channel estimation.
3 Header - The signaling field, which the receiver decodes to determine transmission parameters.
4 Data - The data field, which carries the user data payload.
5 AGC Subfields - Optional automatic gain control (AGC) subfields, used for beam refinement.
6 Training Subfields - Optional training subfields, used for beam refinement.
The STF and CE fields form the preamble. The preamble, header, and data fields of a DMG packet are transmitted with the same AWV. For transmitter beam refinement training, up to 64 training (TRN) subfields can be appended to the packet. Each TRN subfield is transmitted using a different AWV. This allows the performance of up to 64 different AWVs to be measured, and the AWV for the preamble, header, and data fields to be refined for subsequent transmissions. CE subfields are periodically transmitted, one for every four TRN subfields, amongst the TRN subfields. Each CE subfield is transmitted using the same AWV as the preamble. To allow the receiver to reconfigure AGC before receiving the TRN subfields, the TRN subfields are preceded by AGC subfields. For each TRN subfield, an AGC subfield is transmitted using the same AWV applied to the individual TRN subfield. This allows a gain to be set at the receiver, suitable to measuring all TRN subfields. The diagram below shows the packet structure with four AGC and TRN subfields numbered and highlighted. Therefore, four AWVs are tested as part of beam refinement. The same AWVs are applied to AGC and TRN subfields with the same number.


This example simulates transmitter training by applying different AWVs to each of the training subfields to steer the transmission in multiple directions. The strength of each training subfield is
evaluated at a receiver by evaluating the far-field plane wave to determine which transmission AWV is optimal. This simulation does not include a channel or path loss.

This example requires WLAN Toolbox and Phased Array System Toolbox.

\section*{Waveform Specification}

The waveform is configured for a DMG packet transmission with the orthogonal frequency-division multiplexing (OFDM) physical layer, a 100-byte physical layer service data unit (PSDU), and four transmitter training subfields. The four training subfields allow four AWVs to be tested for beam refinement. Using the function wlanDMGConfig (WLAN Toolbox), create a DMG configuration object. A DMG configuration object specifies transmission parameters.
```

dmg = wlanDMGConfig;
dmg.MCS = 13; % OFDM
dmg.TrainingLength = 4; % Use 4 training subfields
dmg.PacketType = 'TRN-T'; % Transmitter training
dmg.PSDULength = 100; % Bytes

```

\section*{Beamforming Specification}

The transmitter antenna pattern is configured as a 16 -element uniform linear array with halfwavelength spacing. Using the objects phased.ULA and phased.SteeringVector, create the phased array and the AWVs. The location of the receiver for evaluating the transmission is specified as an offset from the boresight of the transmitter.
```

receiverAz = 6; % Degrees off the transmitter's boresight

```

A uniform linear phased array with 16 elements is created to steer the transmission.
```

N = 16; % Number of elements
c = physconst('LightSpeed'); % Propagation speed (m/s)
fc = 60.48e9; % Center frequency (Hz)
lambda = c/fc; % Wavelength (m)
d = lambda/2; % Antenna element spacing (m)
TxArray = phased.ULA('NumElements',N,'ElementSpacing',d);

```

The AWVs are created using a phased. SteeringVector object. Five steering angles are specified to create five AWVs, one for the preamble and data fields, and one for each of the four the training subfields. The preamble and data fields are transmitted at boresight. The four training subfields are transmitted at angles around boresight.
```

% Create a directional steering vector object
SteeringVector = phased.SteeringVector('SensorArray',TxArray);
% The directional angle for the preamble and data is 0 degrees azimuth, no
% elevation, therefore at boresight. [Azimuth; Elevation]
preambleDataAngle = [0; 0];
% Each of the four training fields uses a different set of weights to steer
% to a slightly different direction. [Azimuth; Elevation]
trnAngle = [[-10; 0] [-5; 0] [5; 0] [10; 0]];
% Generate the weights for all of the angles
weights = SteeringVector(fc,[preambleDataAngle trnAngle]);
% Each row of the AWV is a weight to apply to a different antenna element

```
```

preambleDataAWV = conj(weights(:,1)); % AWV used for preamble, data and CE fields
trnAWV = conj(weights(:,2:end)); % AWV used for each TRN subfield

```

Using the plotArrayResponse helper function, the array response shows the direction of the receiver is most aligned with the direction of training subfield TRN-SF3.
plotArrayResponse(TxArray, receiverAz,fc, weights);


\section*{Generate Baseband Waveform}

Use the configured DMG object and a PSDU filled with random data as inputs to the waveform generator, wlanWaveformGenerator (WLAN Toolbox). The waveform generator modulates PSDU bits according to a format configuration and also performs OFDM windowing.
```

% Create a PSDU of random bits
s = rng(0); % Set random seed for repeatable results
psdu = randi([0 1],dmg.PSDULength*8,1);
% Generate packet
tx = wlanWaveformGenerator(psdu,dmg);

```

\section*{Apply Weight Vectors to Each Field}

A phased.Radiator object is created to apply the AWVs to the waveform, combine the radiated signal from each element to form a plane wave, and determine the plane wave at the angle of interest, receiverAz. Each portion of the DMG waveform tx is passed through the Radiator with a specified set of AWVs, and the angle at which to evaluate the plane wave.
```

Radiator = phased.Radiator;
Radiator.Sensor = TxArray; % Use the uniform linear array
Radiator.WeightsInputPort = true; % Provide AWV as argument
Radiator.OperatingFrequency = fc; % Frequency in Hertz
Radiator.CombineRadiatedSignals = true; % Create plane wave
% The plane wave is evaluated at a direction relative to the radiator
steerAngle = [receiverAz; 0]; % [Azimuth; Elevation]
% The beamformed waveform is evaluated as a plane wave at the receiver
planeWave = zeros(size(tx));
% Get indices for fields
ind = wlanFieldIndices(dmg);
% Get the plane wave while applying the AWV to the preamble, header, and data
idx = (1:ind.DMGData(2));
planeWave(idx) = Radiator(tx(idx),steerAngle,preambleDataAWV);
% Get the plane wave while applying the AWV to the AGC and TRN subfields
for i = 1:dmg.TrainingLength
% AGC subfields
agcsfIdx = ind.DMGAGCSubfields(i,1):ind.DMGAGCSubfields(i,2);
planeWave(agcsfIdx) = Radiator(tx(agcsfIdx),steerAngle,trnAWV(:,i));
% TRN subfields
trnsfIdx = ind.DMGTRNSubfields(i,1):ind.DMGTRNSubfields(i,2);
planeWave(trnsfIdx) = Radiator(tx(trnsfIdx),steerAngle,trnAWV(:,i));
end
% Get the plane wave while applying the AWV to the TRN-CE
for i = 1:dmg.TrainingLength/4
trnceIdx = ind.DMGTRNCE(i,1):ind.DMGTRNCE(i,2);
planeWave(trnceIdx) = Radiator(tx(trnceIdx),steerAngle,preambleDataAWV);
end

```

\section*{Evaluate the Beamformed Waveform}

The helper function plotDMGWaveform plots the magnitude of the beamformed plane wave. When evaluating the magnitude of the beamformed plane wave we can see that the fields beamformed in the direction of the receiver are stronger than other fields.
```

plotDMGWaveform(planeWave,dmg,'Beamformed Plane Wave with Fields Highlighted');
rng(s); % Restore random state

```


\section*{Conclusion}

This example showed how to generate an IEEE 802.11ad DMG waveform and apply AWVs to different portions of the waveform. WLAN Toolbox was used to generate a standard compliant waveform, and Phased Array System Toolbox was used to apply the AWVs and evaluate the magnitude of the resultant plane wave in the direction of a receiver.

\section*{Appendix}

This example uses the following helper functions:
- plotArrayResponse.m
- plotDMGWaveform.m

\section*{Selected Bibliography}

1 IEEE Std 802.11ad \({ }^{\text {TM }}\)-2012 IEEE Standard for Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. Amendment 3: Enhancements for Very High Throughput in the 60 GHz Band.

\section*{Radar Target Classification Using Machine Learning and Deep Learning}

This example shows how to classify radar returns with both machine and deep learning approaches. The machine learning approach uses wavelet scattering feature extraction coupled with a support vector machine. Additionally, two deep learning approaches are illustrated: transfer learning using SqueezeNet and a Long Short-Term Memory (LSTM) recurrent neural network. Note that the data set used in this example does not require advanced techniques but the workflow is described because the techniques can be extended to more complex problems.

\section*{Introduction}

Target classification is an important function in modern radar systems. This example uses machine and deep learning to classify radar echoes from a cylinder and a cone. Although this example uses the synthesized I/Q samples, the workflow is applicable to real radar returns.

\section*{RCS Synthesis}

The next section shows how to create synthesized data to train the learning algorithms.
The following code simulates the RCS pattern of a cylinder with a radius of 1 meter and a height of 10 meters. The operating frequency of the radar is 850 MHz .
```

c = 3e8;
fc = 850e6;
[cylrcs,az,el] = rcscylinder(1,1,10,c,fc);
helperTargetRCSPatternPlot(az,el,cylrcs);

```


The pattern can then be applied to a backscatter radar target to simulate returns from different aspects angles.
```

cyltgt = phased.BackscatterRadarTarget('PropagationSpeed',c,...
'OperatingFrequency',fc,'AzimuthAngles',az,'ElevationAngles',el,'RCSPattern',cylrcs);

```

The following plot shows how to simulate 100 returns of the cylinder over time. It is assumed that the cylinder under goes a motion that causes small vibrations around bore sight, as a result, the aspect angle changes from one sample to the next.
```

rng default;
N = 100;
az = 2*randn(1,N);
el = 2*randn(1,N);
cylrtn = cyltgt(ones(1,N),[az;el]);
plot(mag2db(abs(cylrtn)));
xlabel('Time Index')
ylabel('Target Return (dB)');
title('Target Return for Cylinder');

```


The return of the cone can be generated similarly. To create the training set, the above process is repeated for 5 arbitrarily selected cylinder radii. In addition, for each radius, 10 motion profiles are simulated by varying the incident angle following 10 randomly generated sinusoid curve around boresight. There are 701 samples in each motion profile, so there are 701 -by- 50 samples. The process is repeated for the cylinder target, which results in a 701-by-100 matrix of training data with 50 cylinder and 50 cone profiles. In the test set, we use 25 cylinder and 25 cone profiles to create a 701-by-50 training set. Because of the long computation time, the training data is precomputed and loaded below.
```

load('RCSClassificationReturnsTraining');
load('RCSClassificationReturnsTest');

```

As an example, the next plot shows the return for one of the motion profiles from each shape. The plots show how the values change over time for both the incident azimuth angles and the target returns.
```

subplot(2,2,1)
plot(cylinderAspectAngle(1,:))
ylim([-90 90])
grid on
title('Cylinder Aspect Angle vs. Time'); xlabel('Time Index'); ylabel('Aspect Angle (degrees)');
subplot(2,2,3)
plot(RCSReturns.Cylinder_1); ylim([-50 50]);
grid on
title('Cylinder Return'); xlabel('Time Index'); ylabel('Target Return (dB)');
subplot(2,2,2)
plot(coneAspectAngle(1,:)); ylim([-90 90]); grid on;

```
title('Cone Aspect Angle vs. Time'); xlabel('Time Index'); ylabel('Aspect Angle (degrees)'); subplot (2,2,4) ;
plot(RCSReturns.Cone_1); ylim([-50 50]); grid on;
title('Cone Return'); xlabel('Time Index'); ylabel('Target Return (dB)');


\section*{Wavelet Scattering}

In the wavelet scattering feature extractor, data is propagated through a series of wavelet transforms, nonlinearities, and averaging to produce low-variance representations of time series. Wavelet time scattering yields signal representations insensitive to shifts in the input signal without sacrificing class discriminability.

The key parameters to specify in a wavelet time scattering decomposition are the scale of the time invariant, the number of wavelet transforms, and the number of wavelets per octave in each of the wavelet filter banks. In many applications, the cascade of two filter banks is sufficient to achieve good performance. In this example, we construct a wavelet time scattering decomposition with the default filter banks: 8 wavelets per octave in the first filter bank and 1 wavelet per octave in the second filter bank. The invariance scale is set to 701 samples, the length of the data.
```

sf = waveletScattering('SignalLength',701,'InvarianceScale',701);

```

Next, we obtain the scattering transforms of both the training and test sets.
```

sTrain = sf.featureMatrix(RCSReturns{:,:},'transform','log');
sTest = sf.featureMatrix(RCSReturnsTest{:,:},'transform','log');

```

For this example, use the mean of the scattering coefficients taken along each path.
```

TrainFeatures = squeeze(mean(sTrain,2))';
TestFeatures = squeeze(mean(sTest,2))';

```

Create the labels for training and learning
TrainLabels = repelem(categorical(\{'Cylinder','Cone'\}),[50 50])';
TestLabels = repelem(categorical(\{'Cylinder','Cone'\}),[25 25])';

\section*{Model Training}

Fit a support vector machine model with a quadratic kernel to the scattering features and obtain the cross-validation accuracy.
```

template = templateSVM('KernelFunction', 'polynomial', ...
'PolynomialOrder', 2, ...
'KernelScale', 'auto', ...
'BoxConstraint', 1, ...
'Standardize', true);
classificationSVM = fitcecoc(...
TrainFeatures, ...
TrainLabels, ...
'Learners', template, ...
'Coding', 'onevsone', ...
'ClassNames', categorical({'Cylinder','Cone'}));
partitionedModel = crossval(classificationSVM, 'KFold', 5);
[validationPredictions, validationScores] = kfoldPredict(partitionedModel);
validationAccuracy = (1 - kfoldLoss(partitionedModel, 'LossFun', 'ClassifError'))*100
validationAccuracy = 100

```

\section*{Target Classification}

Using the trained SVM, classify the scattering features obtained from the test set.
```

predLabels = predict(classificationSVM,TestFeatures);
accuracy = sum(predLabels == TestLabels)/numel(TestLabels)*100
accuracy = 100

```

Plot the confusion matrix.
```

figure('Units','normalized','Position',[0.2 0.2 0.5 0.5]);
ccDCNN = confusionchart(TestLabels,predLabels);
ccDCNN.Title = 'Confusion Chart';
ccDCNN.ColumnSummary = 'column-normalized';
ccDCNN.RowSummary = 'row-normalized';

```


For more complex data sets, a deep learning workflow may improve performance.

\section*{Transfer Learning with a CNN}

SqueezeNet is a deep convolutional neural network (CNN) trained for images in 1,000 classes as used in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC). In this example, we reuse the pre-trained SqueezeNet to classify radar returns belonging to one of two classes.

Load SqueezeNet.
snet = squeezenet;
snet.Layers
ans \(=\)
68x1 Layer array with layers:
```

'data' Image Input
'conv1' Convolution
'relu_conv1'
'pool1'
'fire2-squeeze1x1'
'fire2-relu_squeeze1x1'
'fire2-expand1x1'
'fire2-relu_expand1x1'
'fire2-expañd3x3' Convolution
'fire2-relu_expand3x3'
'fire2-concat'
'fire3-squeeze1x1'

```
```

ReLU

```
ReLU
Max Pooling
Max Pooling
Convolution
Convolution
ReLU
ReLU
Convolution
Convolution
ReLU
ReLU
ReLU
ReLU
Depth concatenation
Depth concatenation
Convolution
```

Convolution

```
```

227x227x3 images with 'zer
6 4 ~ 3 \times 3 \times 3 ~ c o n v o l u t i o n s ~ w i t h ~
ReLU
3x3 max pooling with strid
16 1x1x64 convolutions wit
ReLU
64 1x1x16 convolutions witl
ReLU
6 4 ~ 3 \times 3 \times 1 6 ~ c o n v o l u t i o n s ~ w i t
ReLU
Depth concatenation of 2 i
16 1x1x128 convolutions wi

```
'fire3-relu_squeeze1x1'
' fire3-expañd1x1'
'fire3-relu_expand1x1'
'fire3-expañd3x3'
' fire3-relu_expand3x3 '
'fire3-concāt'
'pool3'
'fire4-squeeze1x1'
'fire4-relu_squeeze1x1'
' fire4-expan̄d1x1'
'fire4-relu_expand1x1'
'fire4-expañd3x3'
' fire4-relu_expand3x3'
'fire4-concāt'
'fire5-squeeze1x1'
'fire5-relu_squeeze1x1'
'fire5-expan̄d1x1'
' fire5-relu_expand1x1'
'fire5-expañd3x3'
'fire5-relu_expand3x3'
'fire5-concāt'
'pool5'
'fire6-squeeze1x1'
'fire6-relu_squeeze1x1'
'fire6-expan̄d1x1'
'fire6-relu_expand1x1'
' fire6-expand3x3'
' fire6-relu_expand3x3'
' fire6-concāt'
'fire7-squeeze1x1'
'fire7-relu_squeezelx1'
' fire7-expan̄d1x1'
'fire7-relu_expand1x1'
'fire7-expañd3x3'
' fire7-relu_expand3x3'
'fire7-concāt'
'fire8-squeeze1x1'
'fire8-relu_squeezelx1'
' fire8-expañd1x1'
'fire8-relu_expand1x1'
'fire8-expañd3x3'
' fire8-relu_expand3x3'
' fire8-concāt'
' fire9-squeezelx1'
'fire9-relu_squeezelx1'
'fire9-expan̄d1x1'
'fire9-relu_expand1x1'
' fire9-expañd3x3'
' fire9-relu_expand3x3'
' fire9-concāt'
'drop9'
'conv10'
'relu_conv10'
'pool10'
'prob'
'ClassificationLayer_predictions'

ReLU
Convolution
ReLU
Convolution
ReLU
Depth concatenation
Max Pooling
Convolution
ReLU
Convolution
ReLU
Convolution
ReLU
Depth concatenation
Convolution
ReLU
Convolution
ReLU
Convolution
ReLU
Depth concatenation
Max Pooling
Convolution
ReLU
Convolution
ReLU
Convolution
ReLU
Depth concatenation
Dropout
Convolution
ReLU
Global Average Pooling
Softmax
Classification Output

ReLU
\(641 \times 1 \times 16\) convolutions witl ReLU
\(643 \times 3 \times 16\) convolutions witl ReLU
Depth concatenation of 2 il
\(3 \times 3\) max pooling with strid
32 1x1x128 convolutions wi
ReLU
\(1281 \times 1 \times 32\) convolutions wi ReLU
\(1283 \times 3 \times 32\) convolutions wiReLU
Depth concatenation of 2 il
\(321 \times 1 \times 256\) convolutions wi
ReLU
\(1281 \times 1 \times 32\) convolutions wi
ReLU
\(1283 \times 3 \times 32\) convolutions wi ReLU
Depth concatenation of 2 il
\(3 \times 3\) max pooling with strid
\(481 \times 1 \times 256\) convolutions wi
ReLU
192 1x1x48 convolutions wi
ReLU
\(1923 \times 3 \times 48\) convolutions wi
ReLU
Depth concatenation of 2 i \(481 \times 1 \times 384\) convolutions wi
ReLU
192 1x1x48 convolutions wi ReLU
\(1923 \times 3 \times 48\) convolutions wi
ReLU
Depth concatenation of 2 i
\(641 \times 1 \times 384\) convolutions wi ReLU
256 1x1x64 convolutions wi ReLU
\(2563 \times 3 \times 64\) convolutions wi ReLU
Depth concatenation of 2 i
\(641 \times 1 \times 512\) convolutions wi
ReLU
256 1x1x64 convolutions wi ReLU
\(2563 \times 3 \times 64\) convolutions wi ReLU
Depth concatenation of 2 i 50\% dropout
\(10001 \times 1 \times 512\) convolutions ReLU
Global average pooling
softmax
crossentropyex with 'tench

You see that SqueezeNet consists of 68 layers. Like all DCNNs, SqueezeNet cascades convolutional operators followed by nonlinearities and pooling, or averaging. SqueezeNet expects an image input of size 227-by-227-by-3, which you can see with the following code.
```

snet.Layers(1)
ans =
ImageInputLayer with properties:
Name: 'data'
InputSize: [227 227 3]
Hyperparameters
DataAugmentation: 'none'
Normalization: 'zerocenter'
NormalizationDimension: 'auto'
Mean: [1\times1\times3 single]

```

Additionally, SqueezeNet is configured to recognized 1,000 different classes, which you can see with the following code.
```

snet.Layers(68)
ans =
ClassificationOutputLayer with properties:
Name: 'ClassificationLayer_predictions'
Classes: [1000\times1 categorical]
OutputSize: 1000
Hyperparameters
LossFunction: 'crossentropyex'

```

In a subsequent section, we will modify select layers of SqueezeNet in order to apply it to our classification problem.

\section*{Continuous Wavelet Transform}

SqueezeNet is designed to discriminate differences in images and classify the results. Therefore, in order to use SqueezeNet to classify radar returns, we must transform the 1-D radar return time series into an image. A common way to do this is to use a time-frequency representation (TFR). There are a number of choices for a time-frequency representation of a signal and which one is most appropriate depends on the signal characteristics. To determine which TFR may be appropriate for this problem, randomly choose and plot a few radar returns from each class.
```

rng default;
idxCylinder = randperm(50,2);
idxCone = randperm(50,2)+50;

```

It is evident that the radar returns previously shown are characterized by slowing varying changes punctuated by large transient decreases as described earlier. A wavelet transform is ideally suited to sparsely representing such signals. Wavelets shrink to localize transient phenomena with high temporal resolution and stretch to capture slowly varying signal structure. Obtain and plot the continuous wavelet transform of one of the cylinder returns.
```

cwt(RCSReturns{:,idxCylinder(1)},'VoicesPerOctave',8)

```


The CWT simultaneously captures both the slowly varying (low frequency) fluctuations and the transient phenomena. Contrast the CWT of the cylinder return with one from a cone target.
cwt(RCSReturns\{:,idxCone(2)\},'VoicesPerOctave',8);


Because of the apparent importance of the transients in determining whether the target return originates from a cylinder or cone target, we select the CWT as the ideal TFR to use. After obtaining the CWT for each target return, we make images from the CWT of each radar return. These images are resized to be compatible with SqueezeNet's input layer and we leverage SqueezeNet to classify the resulting images.

\section*{Image Preparation}

The helper function, helpergenWaveletTFImg, obtains the CWT for each radar return, reshapes the CWT to be compatible with SqueezeNet, and writes the CWT as a jpeg file. To run helpergenWaveletTFImg, choose a parentDir where you have write permission. This example uses tempdir, but you may use any folder on your machine where you have write permission. The helper function creates Training and Test set folders under parentDir as well as creating Cylinder and Cone subfolders under both Training and Test. These folders are populated with jpeg images to be used as inputs to SqueezeNet.
```

parentDir = tempdir;
helpergenWaveletTFImg(parentDir,RCSReturns,RCSReturnsTest)
Generating Time-Frequency Representations...Please Wait
Creating Cylinder Time-Frequency Representations ... Done
Creating Cone Time-Frequency Representations ... Done
Creating Cylinder Time-Frequency Representations ... Done
Creating Cone Time-Frequency Representations ... Done

```

Now use imageDataStore to manage file access from the folders in order to train SqueezeNet. Create datastores for both the training and test data.
```

trainingData= imageDatastore(fullfile(parentDir,'Training'), 'IncludeSubfolders', true,...
'LabelSource', 'foldernames');
testData = imageDatastore(fullfile(parentDir,'Test'),'IncludeSubfolders',true,...
'LabelSource','foldernames');

```

In order to use SqueezeNet with this binary classification problem, we need to modify a couple layers. First, we change the last learnable layer in SqueezeNet (layer 64) to have the same number of 1-by-1 convolutions as our new number of classes, 2.
```

lgraphSqueeze = layerGraph(snet);
convLayer = lgraphSqueeze.Layers(64);
numClasses = numel(categories(trainingData.Labels));
newLearnableLayer = convolution2dLayer(1,numClasses, ...
'Name','binaryconv', ...
'WeightLearnRateFactor',10, ...
'BiasLearnRateFactor',10);
lgraphSqueeze = replaceLayer(lgraphSqueeze,convLayer.Name,newLearnableLayer);
classLayer = lgraphSqueeze.Layers(end);
newClassLayer = classificationLayer('Name','binary');
lgraphSqueeze = replaceLayer(lgraphSqueeze,classLayer.Name,newClassLayer);

```

Finally, set the options for re-training SqueezeNet. Set the initial learn rate to \(1 \mathrm{e}-4\), set the maximum number of epochs to 15 , and the minibatch size to 10 . Use stochastic gradient descent with momentum.
```

ilr = 1e-4;
mxEpochs = 15;
mbSize =10;
opts = trainingOptions('sgdm', 'InitialLearnRate', ilr, ...
'MaxEpochs',mxEpochs , 'MiniBatchSize',mbSize, ...
'Plots', 'training-progress','ExecutionEnvironment','cpu');

```

Train the network. If you have a compatible GPU, trainNetwork automatically utilizes the GPU and training should complete in less than one minute. If you do not have a compatible GPU, trainNetwork utilizes the CPU and training should take around five minutes. Training times do vary based on a number of factors. In this case, the training takes place on a cpu by setting the ExecutionEnvironment parameter to cpu.

CWTnet \(=\) trainNetwork(trainingData,lgraphSqueeze,opts);
Initializing input data normalization.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Epoch & Iteration & \begin{tabular}{l}
Time Elapsed \\
(hh:mm:ss)
\end{tabular} & Mini-batch Accuracy & \[
\begin{aligned}
& \text { Mini-batch } \\
& \text { Loss }
\end{aligned}
\] & Base Learning Rate \\
\hline 1 | & 1 & 00:00:01 & 60.00\% & 2.6639 & 1.0000e-04 \\
\hline 5 | & 50 & 00:00:42 & 100.00\% & 0.0001 & 1.0000e-04 \\
\hline 10 | & 100 & 00:01:20 & 100.00\% & 0.0002 & 1.0000e-04 \\
\hline 15 | & 150 & 00:01:58 & 100.00\% & 2.2276e-05 & 1.0000e-04 \\
\hline
\end{tabular}


Use the trained network to predict target returns in the held-out test set.
predictedLabels = classify(CWTnet,testData,'ExecutionEnvironment','cpu'); accuracy \(=\) sum(predictedLabels \(==\) testData.Labels)/50*100
accuracy \(=100\)
Plot the confusion chart along with the precision and recall. In this case, \(100 \%\) of the test samples are classified correctly.
```

figure('Units','normalized','Position',[0.2 0.2 0.5 0.5]);
ccDCNN = confusionchart(testData.Labels,predictedLabels);
ccDCNN.Title = 'Confusion Chart';
ccDCNN.ColumnSummary = 'column-normalized';
ccDCNN.RowSummary = 'row-normalized';

```


\section*{LSTM}

In the final section of this example, an LSTM workflow is described. First the LSTM layers are defined:
```

LSTMlayers = [...
sequenceInputLayer(1)
bilstmLayer(100,'OutputMode','last')
fullyConnectedLayer(2)
softmaxLayer
classificationLayer
];
options = trainingOptions('adam', ...
'MaxEpochs',30, ...
'MiniBatchSize', 150, ...
'InitialLearnRate', 0.01, ...
'GradientThreshold', 1, ...
'plots','training-progress', ...
'Verbose',false,'ExecutionEnvironment','cpu');
trainLabels = repelem(categorical({'cylinder','cone'}),[50 50]);
trainLabels = trainLabels(:);
trainData = num2cell(table2array(RCSReturns)',2);
testData = num2cell(table2array(RCSReturnsTest)',2);
testLabels = repelem(categorical({'cylinder','cone'}),[25 25]);
testLabels = testLabels(:);
RNNnet = trainNetwork(trainData,trainLabels,LSTMlayers,options);

```


The accuracy for this system is also plotted.
```

predictedLabels = classify(RNNnet,testData,'ExecutionEnvironment','cpu');
accuracy = sum(predictedLabels == testLabels)/50*100
accuracy = 100

```

\section*{Conclusion}

This example presents a workflow for performing radar target classification using machine and deep learning techniques. Although this example used synthesized data to do training and testing, it can be easily extended to accommodate real radar returns. Because of the signal characteristics, wavelet techniques were used for both the machine learning and CNN approaches.

With this dataset we were also obtained to achieve similar accuracy by just feeding the raw data into a LSTM. In more complicated datasets, the raw data may be too inherently variable for the model to learn robust features from the raw data and you may have to resort to feature extraction prior to using a LSTM.

\section*{Processing Radar Reflections Acquired with the Demorad Radar Sensor Platform}

\section*{Introduction}

This example demonstrates how to process and visualize FMCW echoes acquired via the Demorad Radar Sensor Platform with the Phased Array System Toolbox \({ }^{\mathrm{TM}}\). By default, I/Q samples and operating parameters are read from a binary file that is provided with this example. Optionally, the same procedure can be used to transmit, receive, and process FMCW reflections from live I/Q samples with your own Demorad by following the instructions later in the example. Acquiring and processing results in one environment decrease development time, and facilitates the rapid prototyping of radar signal processing systems.

\section*{Required Hardware and Software}

This example requires Phased Array System Toolbox \({ }^{\mathrm{TM}}\).
For live processing:
- Optionally, Analog Devices \({ }^{\circledR}\) Demorad Radar Sensor Platform (and drivers)
- Optionally, Phased Array System Toolbox \({ }^{\text {m }}\) Add-On for Demorad

The Analog Devices \({ }^{\circledR}\) Demorad Radar Sensor Platform has an operating frequency of 24 GHz , and a maximum bandwidth of 250 MHz . The array on the platform is comprised of 2 transmit elements, and 4 receive elements. The receive elements are spaced every half-wavelength of the operating frequency, arranged as a linear array. The transmit elements are also arranged as a linear array, and are spaced three half-wavelengths apart. The transmit and receive elements can be seen in the image below.


\footnotetext{
Installing the Drivers and Add-on
}

1 Download the Demorad drivers and MATLAB files from the USB-drive provided by Analog Devices \({ }^{\circledR}\) with the Demorad
2 Save these to a permanent location on your PC
3 Add the folder containing the MATLAB files to the MATLAB path permanently
4 Power up the Demorad and connect to the PC via the Mini-USB port
5 Navigate to the Device Manager and look for the "BF707 Bulk Device"
6 Right-click on "BF707 Bulk Device" and select "Update driver"
7 Select the option "Browse my computer for driver software"
8 Browse to, and select the "drivers" folder from the USB-drive
9 Install the Phased Array System Toolbox \({ }^{\text {TM }}\) Add-On for Demorad from the MATLAB Add-On Manager

\section*{Radar Setup and Connection}

In this section, we setup the source of the I/Q samples as the default option of the binary file reader. Also contained in this file are the parameters that define the transmitted FMCW chirp, which were written at the time the file was created. If you would like to run this example using live echoes from the Demorad, follow the steps in Installing the Drivers and Add-On and set the "usingHW" flag below to "true". The example will then communicate with the Demorad to transmit an FMCW waveform with the radar operating parameters defined below, and send the reflections to MATLAB. The "setup" method below is defined by the object representing the Demorad. "setup" serves both to power on, and send parameters to the Demorad.
```

usingHW = false; % Set to "true" to use Demorad Radar Sensor Platform
if ~usingHW
% Read I/Q samples from a recorded binary file
radarSource = RadarBasebandFileReader('./DemoradExampleIQData.bb',256);
else
% Instantiate the Demorad Platform interface
radarSource = DemoradBoard;
radarSource.SamplesPerFrame = 256; % Number of samples per frame
radarSource.AcquisitionTime = 30; % Length of time to acquire samples (s)
% Define operating parameters
radarSource.RampTime = 280e-6; %Pulse ramp time (s)
radarSource.PRI = 300e-6; %Pulse Repetition interval (s)
radarSource.StartFrequency = 24e9; % Pulse start frequency (Hz)
radarSource.StopFrequency = 24.25e9; % Pulse stop frequency (Hz)
radarSource.NumChirps = 1; % Number of pulses to process
% Establish the connection with the Demorad
setup(radarSource);
end

```

\section*{Radar Capabilities}

Based on the operating parameters defined above, the characteristics of the radar system can be defined for processing and visualizing the reflections. The equations used for calculating the capabilities of the radar system with these operating parameters can be seen below:

\section*{Range Resolution}

The range resolution (in meters) for a radar with a chirp waveform is defined by the equation
\[
\Delta R=\frac{c_{0}}{2 B}
\]
where \(B\) is the bandwidth of the transmitted pulse:
```

c0 = physconst('LightSpeed');
wfMetadata = radarSource.Metadata; % Struct of waveform metadata
bandwidth = wfMetadata.StopFrequency ...
- wfMetadata.StartFrequency; % Chirp bandwidth
rangeRes = c0/(2*bandwidth) % Range resolution (m)
rangeRes =
0.5996

```

\section*{Maximum Range}

The Demorad platform transmits an FMCW pulse as a chirp, or sawtooth waveform. As such, the theoretical maximum range of the radar (in meters) can be calculated using
\[
R_{\max }=\frac{F_{s} c_{0}}{2 k_{f}}
\]
where \(k_{f}\) is the chirp rate. The effective range in practice may vary due to environmental factors such as SNR, interference, or size of the testing facility.
```

kf = bandwidth/wfMetadata.RampTime; % Chirp rate
maxRange = radarSource.SampleRate*c0/(2*kf) % Maximum range (m)
maxRange =
158.2904

```

\section*{Beamwidth}

The effective beamwidth of the radar board can be approximated by the equation
\[
\Theta \approx \frac{\lambda}{N_{\text {elements }} \Delta x_{\text {elements }}}
\]
where \(\lambda\) is the wavelength of the pulse, and \(\delta x_{\text {elements }}\) is the element spacing.
```

lambda = c0/radarSource.CenterFrequency;
% Signal wavelength
rxElementSpacing = lambda/2;
beamwidth = rad2deg(lambda/ ...
(radarSource.NumChannels*rxElementSpacing)) % Effective beamwidth

```
beamwidth =

With a transmit bandwidth of 250 MHz , and a 4 -element receive array, the range and angular resolution are sufficient to resolve multiple closely spaced objects. The I/Q samples recorded in the binary file are returned from the Demorad platform without any additional digital processing. FMCW reflections received by the Demorad are down-converted to baseband in hardware, decimated, and transferred to MATLAB.

\section*{Signal Processing Components}

The algorithms used in the signal processing loop are initialized in this section. After receiving the I/Q samples, a 3-pulse canceller removes detections from stationary objects. The output of the 3-pulse canceller is then beamformed, and used to calculate the range response. A CFAR detector is used following the range response algorithm to detect any moving targets.

\section*{3-Pulse Canceller}

The 3-pulse canceller used following the acquisition of the I/Q samples removes any stationary clutter in the environment. The impulse response of a 3-pulse canceller is given as
\[
h(t)=-\delta(t)+2 \delta\left(t-T_{s}\right)-\delta\left(t-2 T_{s}\right)
\]

This equation is implemented in the pulse canceller algorithm defined below.
```

threePulseCanceller = PulseCanceller('NumPulses',3);

```

\section*{Range Response}

The algorithms for calculating the range response are initialized below. For beamforming, the sensor array is modeled using the number of antenna elements and the spacing of the receive elements. The sensor array model and the operating frequency of the Demorad are required for the beamforming algorithm. Because the Demorad transmits an FMCW waveform, the range response is calculated using an FFT.
```

antennaArray = phased.ULA('NumElements',radarSource.NumChannels, ...
'ElementSpacing',rxElementSpacing);
beamFormer = phased.PhaseShiftBeamformer('SensorArray',antennaArray, ...
'Direction',[0;0],'OperatingFrequency',radarSource.CenterFrequency);
% Setup the algorithm for processing
NFFT = 4096;
rangeResp = phased.RangeResponse(...
'DechirpInput', false, ...
'RangeMethod','FFT', ...
'ReferenceRangeCentered', false, ...
'PropagationSpeed',c0, ...
'SampleRate',radarSource.SampleRate, ...
'SweepSlope',kf*2, ...
'RangeFFTLengthSource','Property', ...
'RangeFFTLength',NFFT, ...
'RangeWindow', 'Hann');

```

\section*{CFAR Detector}

A constant false alarm rate (CFAR) detector is then used to detect any moving targets.
```

cfar = phased.CFARDetector('NumGuardCells',6,'NumTrainingCells',10);

```

\section*{Scopes}

Setup the scopes to view the processed FMCW reflections. We set the viewing window of the rangetime intensity scope to 15 seconds.
```

timespan = 15;
% The Demorad returns data every }128\mathrm{ pulse repetition intervals
rangeScope = phased.RTIScope(...
'RangeResolution',maxRange/NFFT, ...
'TimeResolution',wfMetadata.PRI*128, ...
'TimeSpan', timespan, ...
'IntensityUnits','power');

```

\section*{Simulation and Visualization}

Next, the samples are received from the binary file reader, processed, and shown in the scopes. This loop will continue until all samples are read from the binary file. If using the Demorad, the loop will continue for 30 seconds, defined by the "AcquisitionTime" property of the object that represents the board. Only ranges from 0 to 15 meters are shown since we have a priori knowledge the target recorded in the binary file is within this range.
```

while ~isDone(radarSource)
% Retrieve samples from the I/Q sample source
x = radarSource();
% Cancel out any pulses from non-moving objects and beamform
y = threePulseCanceller(x);
y = beamFormer(y);
% Calculate the range response and convert to power
resp = rangeResp(y);
rangepow = abs(resp).^2;
% Use the CFAR detector to detect any moving targets from 0 - 15 meters
maxViewRange = 15;
rng_grid = linspace(0,maxRange,NFFT).';
[~,maxViewIdx] = min(abs(rng_grid - maxViewRange));
detIdx = false(NFFT,1);
detIdx(1:maxViewIdx) = cfar(rangepow,1:maxViewIdx);
% Remove non-detections and set a noise floor at 1/10 of the peak value
rangepow = rangepow./max(rangepow(:)); % Normalize detections to 1 W
noiseFloor = 1e-1;
rangepow(~detIdx \& (rangepow < noiseFloor)) = noiseFloor;
% Display ranges from 0 - 15 meters in the range-time intensity scope
rangeScope(rangepow(1:maxViewIdx));
end

```



The scope shows a single target moving away from the Demorad Radar Sensor Platform until about \(\sim 10\) meters away, then changing direction again to move back towards the platform. The range-time intensity scope shows the detection ranges.

\section*{Summary}

This example demonstrates how to interface with the Analog Devices \({ }^{\circledR}\) Demorad Radar Sensor Platform to acquire, process, and visualize radar reflections from live data. This capability enables the rapid prototyping and testing of radar signal processing systems in a single environment, drastically decreasing development time.

\section*{Radar Waveform Classification Using Deep Learning}

This example shows how to classify radar waveform types of generated synthetic data using the Wigner-Ville distribution (WVD) and a deep convolutional neural network (CNN).

Modulation classification is an important function for an intelligent receiver. Modulation classification has numerous applications, such as cognitive radar and software-defined radio. Typically, to identify these waveforms and classify them by modulation type it is necessary to define meaningful features and input them into a classifier. While effective, this procedure can require extensive effort and domain knowledge to yield an accurate classification. This example explores a framework to automatically extract time-frequency features from signals and perform signal classification using a deep learning network.

The first part of this example simulates a radar classification system that synthesizes three pulsed radar waveforms and classifies them. The radar waveforms are:
- Rectangular
- Linear frequency modulation (LFM)
- Barker Code

A radar classification system does not exist in isolation. Rather, it resides in an increasingly occupied frequency spectrum, competing with other transmitted sources such as communications systems, radio, and navigation systems. The second part of this example extends the network to include additional communication modulation types. In addition to the first set of radar waveforms, the extended network synthesizes and identifies these communication waveforms:
- Gaussian frequency shift keying (GFSK)
- Continuous phase frequency shift keying (CPFSK)
- Broadcast frequency modulation (B-FM)
- Double sideband amplitude modulation (DSB-AM)
- Single sideband amplitude modulation (SSB-AM)

This example primarily focuses on radar waveforms, with the classification being extended to include a small set of amplitude and frequency modulation communications signals. See "Modulation Classification with Deep Learning" (Communications Toolbox) for a full workflow of modulation classification with a wide array of communication signals.

\section*{Generate Radar Waveforms}

Generate 3000 signals with a sample rate of 100 MHz for each modulation type. Use phased.RectangularWaveform for rectangular pulses, phased. LinearFMWaveform for LFM, and phased. PhaseCodedWaveform for phase coded pulses with Barker code.

Each signal has unique parameters and is augmented with various impairments to make it more realistic. For each waveform, the pulse width and repetition frequency will be randomly generated. For LFM waveforms, the sweep bandwidth and direction are randomly generated. For Barker waveforms, the chip width and number are generated randomly. All signals are impaired with white Gaussian noise using the awgn function with a random signal-to-noise ratio in the range of \([-6,30]\) dB . A frequency offset with a random carrier frequency in the range of [Fs/6, Fs/5] is applied to each signal using the comm. PhaseFrequency0ffset object. Lastly, each signal is passed through a multipath Rician fading channel, comm. RicianChannel.

The provided helper function helperGenerateRadarWaveforms creates and augments each modulation type.
```

rng default
[wav, modType] = helperGenerateRadarWaveforms();

```

Plot the Fourier transform for a few of the LFM waveforms to show the variances in the generated set.
```

idLFM = find(modType == "LFM",3);
nfft = 2^nextpow2(length(wav{1}));
f = (0:(nfft/2-1))/nfft*100e6;
figure
subplot(1,3,1)
Z = fft(wav{idLFM(1)},nfft);
plot(f/le6,abs(Z(1:nfft/2)))
xlabel('Frequency (MHz)');ylabel('Amplitude');axis square
subplot(1,3,2)
Z = fft(wav{idLFM(2)},nfft);
plot(f/1e6,abs(Z(1:nfft/2)))
xlabel('Frequency (MHz)');ylabel('Amplitude');axis square
subplot(1,3,3)
Z = fft(wav{idLFM(3)},nfft);
plot(f/1e6,abs(Z(1:nfft/2)))
xlabel('Frequency (MHz)');ylabel('Amplitude');axis square

```


\section*{Feature Extraction Using Wigner-Ville Distribution}

To improve the classification performance of machine learning algorithms, a common approach is to input extracted features in place of the original signal data. The features provide a representation of the input data that makes it easier for a classification algorithm to discriminate across the classes. The Wigner-Ville distribution represents a time-frequency view of the original data that is useful for time varying signals. The high resolution and locality in both time and frequency provide good features for the identification of similar modulation types. Use the wvd function to compute the smoothed pseudo WVD for each of the modulation types.
```

figure
subplot(1,3,1)
wvd(wav{find(modType == "Rect",1)},100e6,'smoothedPseudo')
axis square; colorbar off; title('Rect')
subplot(1,3,2)
wvd(wav{find(modType == "LFM",1)},100e6,'smoothedPseudo')
axis square; colorbar off; title('LFM')
subplot(1,3,3)
wvd(wav{find(modType == "Barker",1)},100e6,'smoothedPseudo')
axis square; colorbar off; title('Barker')

```


To store the smoothed-pseudo Wigner-Ville distribution of the signals, first create the directory TFDDatabase inside your temporary directory tempdir. Then create subdirectories in TFDDatabase for each modulation type. For each signal, compute the smoothed-pseudo Wigner-Ville distribution, and downsample the result to a 227-by-227 matrix. Save the matrix is a . png image file in the subdirectory corresponding to the modulation type of the signal. The helper function
helperGenerateTFDfiles performs all these steps. This process will take several minutes due to the large database size and the complexity of the wvd algorithm. You can replace tempdir with another directory where you have write permission.
```

parentDir = tempdir;
dataDir = 'TFDDatabase';
helperGenerateTFDfiles(parentDir,dataDir,wav,modType,100e6)

```

Create an image datastore object for the created folder to manage the image files used for training the deep learning network. This step avoids having to load all images into memory. Specify the label source to be folder names. This assigns each signal's modulation type according to the folder name.
```

folders = fullfile(parentDir,dataDir,{'Rect','LFM','Barker'});
imds = imageDatastore(folders,...
'FileExtensions','.png','LabelSource','foldernames','ReadFcn',@readTFDForSqueezeNet);

```

The network is trained with \(80 \%\) of the data and tested on with \(10 \%\). The remaining \(10 \%\) is used for validation. Use the splitEachLabel function to divide the imageDatastore into training, validation, and testing sets.
```

[imdsTrain,imdsTest,imdsValidation] = splitEachLabel(imds,0.8,0.1);

```

\section*{Set Up Deep Learning Network}

Before the deep learning network can be trained, define the network architecture. This example utilizes transfer learning SqueezeNet, a deep CNN created for image classification. Transfer learning is the process of retraining an existing neural network to classify new targets. This network accepts image input of size 227-by-227-by-3. Prior to input to the network, the custom read function readTFDForSqueezeNet will transform the two-dimensional time-frequency distribution to an RGB image of the correct size. SqueezeNet performs classification of 1000 categories in its default configuration.

Load SqueezeNet.
net \(=\) squeezenet;
Extract the layer graph from the network. Confirm that SqueezeNet is configured for images of size 227-by-227-by-3.
```

lgraphSqz = layerGraph(net);
lgraphSqz.Layers(1)
ans =
ImageInputLayer with properties:
Name: 'data'
InputSize: [227 227 3]
Hyperparameters
DataAugmentation: 'none'
Normalization: 'zerocenter'
NormalizationDimension: 'auto'
Mean: [1\times1\times3 single]

```

To tune SqueezeNet for our needs, three of the last six layers need to be modified to classify the three radar modulation types of interest. Inspect the last six network layers.
```

lgraphSqz.Layers(end-5:end)
ans =
6x1 Layer array with layers:
l 'drop9'

```

Replace the 'drop9' layer, the last dropout layer in the network, with a dropout layer of probability 0.6.
```

tmpLayer = lgraphSqz.Layers(end-5);

```
newDropoutLayer = dropoutLayer(0.6,'Name','new_dropout');
lgraphSqz = replaceLayer(lgraphSqz,tmpLayer.Name,newDropoutLayer);

The last learnable layer in SqueezeNet is a 1-by-1 convolutional layer, 'conv10'. Replace the layer with a new convolutional layer with the number of filters equal to the number of modulation types. Also increase the learning rate factors of the new layer.
```

numClasses = 3;
tmpLayer = lgraphSqz.Layers(end-4);
newLearnableLayer = convolution2dLayer(1,numClasses, ...
'Name','new_conv', ...
'WeightLearnRateFactor',20, ...
'BiasLearnRateFactor',20);
lgraphSqz = replaceLayer(lgraphSqz,tmpLayer.Name,newLearnableLayer);

```

Replace the classification layer with a new one without class labels.
```

tmpLayer = lgraphSqz.Layers(end);
newClassLayer = classificationLayer('Name','new_classoutput');
lgraphSqz = replaceLayer(lgraphSqz,tmpLayer.Name,newClassLayer);

```

Inspect the last six layers of the network. Confirm the dropout, convolutional, and output layers have been changed.
```

lgraphSqz.Layers(end-5:end)
ans =
6x1 Layer array with layers:

| 1 | 'new_dropout' | Dropout | 60% dropout |
| :--- | :--- | :--- | :--- |
| 2 | 'newconv' | Convolution | 31×1 convolutions with stride [1 |
| 3 | 'relucconv10' | ReLU | 1] and |
| 4 | 'pool10' | Global Average Pooling | Global average pooling |
| 5 | 'prob' | Softmax | |
| 6 | 'new_classoutput' | Classification Output | crossentropyex |

```

Choose options for the training process that ensures good network performance. Refer to the trainingOptions documentation for a description of each option.
```

options = trainingOptions('sgdm', ...
'MiniBatchSize',128, ...
'MaxEpochs',5, ...

```
```

'InitialLearnRate',1e-3, ...
'Shuffle','every-epoch', ...
'Verbose',false, ...
'Plots','training-progress',...
'ValidationData',imdsValidation);

```

\section*{Train the Network}

Use the trainNetwork command to train the created CNN. Because of the dataset's large size, the process may take several minutes. If your machine has a GPU and Parallel Computing Toolbox \({ }^{\mathrm{TM}}\), then MATLAB automatically uses the GPU for training. Otherwise, it uses the CPU. The training accuracy plots in the figure show the progress of the network's learning across all iterations. On the three radar modulation types, the network classifies almost \(100 \%\) of the training signals correctly.
trainedNet \(=\) trainNetwork(imdsTrain,lgraphSqz,options);


\section*{Evaluate Performance on Radar Waveforms}

Use the trained network to classify the testing data using the classify command. A confusion matrix is one method to visualize classification performance. Use the confusionchart command to calculate and visualize the classification accuracy. For the three modulation types input to the network, almost all of the phase coded, LFM, and rectangular waveforms are correctly identified by the network.
```

predicted = classify(trainedNet,imdsTest);
figure
confusionchart(predicted,imdsTest.Labels,'Normalization','column-normalized')

```


\section*{Generate Communications Waveforms and Extract Features}

The frequency spectrum of a radar classification system must compete with other transmitted sources. Let's see how the created network extends to incorporate other simulated modulation types. Another MathWorks example, "Modulation Classification with Deep Learning" (Communications Toolbox), performs modulation classification of several different modulation types using Communications Toolbox \({ }^{\mathrm{TM}}\). The helper function helperGenerateCommsWaveforms generates and augments a subset of the modulation types used in that example. Since the WVD loses phase information, a subset of only the amplitude and frequency modulation types are used.

See the example link for an in-depth description of the workflow necessary for digital and analog modulation classification and the techniques used to create these waveforms. For each modulation type, use wvd to extract time-frequency features and visualize.
```

[wav, modType] = helperGenerateCommsWaveforms();
figure
subplot(2,3,1)
wvd(wav{find(modType == "GFSK",1)},200e3,'smoothedPseudo')
axis square; colorbar off; title('GFSK')
subplot(2,3,2)
wvd(wav{find(modType == "CPFSK",1)},200e3,'smoothedPseudo')
axis square; colorbar off; title('CPFSK')
subplot(2,3,3)
wvd(wav{find(modType == "B-FM",1)},200e3,'smoothedPseudo')
axis square; colorbar off; title('B-FM')
subplot(2,3,4)

```
```

wvd(wav{find(modType == "SSB-AM",1)},200e3,'smoothedPseudo')
axis square; colorbar off; title('SSB-AM')
subplot(2,3,5)
wvd(wav{find(modType == "DSB-AM",1)},200e3,'smoothedPseudo')
axis square; colorbar off; title('DSB-AM')

```





Use the helper function helperGenerateTFDfiles again to compute the smoothed pseudo WVD for each input signal. Create an image datastore object to manage the image files of all modulation types.
```

helperGenerateTFDfiles(parentDir,dataDir,wav,modType,200e3)

```
folders = fullfile(parentDir,dataDir, \{'Rect','LFM','Barker','GFSK','CPFSK','B-FM','SSB-AM','DSB-I
imds \(=\) imageDatastore(folders,...
    'FileExtensions','.png','LabelSource','foldernames','ReadFcn',@readTFDForSqueezeNet);

Again, divide the data into a training set, a validation set, and a testing set using the splitEachLabel function.
rng default
[imdsTrain,imdsTest,imdsValidation] = splitEachLabel(imds,0.8,0.1);

\section*{Adjust Deep Learning Network Architecture}

Previously, the network architecture was set up to classify three modulation types. This must be updated to allow classification of all eight modulation types of both radar and communication signals. This is a similar process as before, with the exception that the fullyConnectedLayer now requires an output size of eight.
```

numClasses = 8;
net = squeezenet;
lgraphSqz = layerGraph(net);
tmpLayer = lgraphSqz.Layers(end-5);
newDropoutLayer = dropoutLayer(0.6,'Name','new dropout');
lgraphSqz = replaceLayer(lgraphSqz,tmpLayer.Name,newDropoutLayer);
tmpLayer = lgraphSqz.Layers(end-4);
newLearnableLayer = convolution2dLayer(1,numClasses, ...
'Name','new_conv', ...
'WeightLearnRateFactor',20, ...
'BiasLearnRateFactor',20);
lgraphSqz = replaceLayer(lgraphSqz,tmpLayer.Name,newLearnableLayer);
tmpLayer = lgraphSqz.Layers(end);
newClassLayer = classificationLayer('Name','new_classoutput');
lgraphSqz = replaceLayer(lgraphSqz,tmpLayer.Name,newClassLayer);
Create a new set of training options.

```
```

options = trainingOptions('sgdm', ...

```
options = trainingOptions('sgdm', ...
    'MiniBatchSize',150, ...
    'MiniBatchSize',150, ...
    'MaxEpochs',10, ...
    'MaxEpochs',10, ...
    'InitialLearnRate',1e-4, ...
    'InitialLearnRate',1e-4, ...
    'Shuffle','every-epoch', ...
    'Shuffle','every-epoch', ...
    'Verbose',false, ...
    'Verbose',false, ...
    'Plots','training-progress',...
    'Plots','training-progress',...
    'ValidationData',imdsValidation);
```

 'ValidationData',imdsValidation);
    ```

Use the trainNetwork command to train the created CNN. For all modulation types, the training converges with an accuracy of about \(95 \%\) correct classification.
```

trainedNet = trainNetwork(imdsTrain,lgraphSqz,options);

```


\section*{Evaluate Performance on All Signals}

Use the classify command to classify the signals held aside for testing. Again, visualize the performance using confusionchart.
predicted = classify(trainedNet,imdsTest);
figure;
confusionchart(predicted,imdsTest.Labels,'Normalization','column-normalized')


Predicted Class
For the eight modulation types input to the network, over 99\% of B-FM, CPFSK, GFSK, Barker, and LFM modulation types were correctly classified. On average, over \(85 \%\) of AM signals were correctly identified. From the confusion matrix, a high percentage of SSB-AM signals were misclassified as DSB-AM, and DSB-AM signals as SSB-AM.

Let us investigate a few of these misclassifications to gain insight into the network's learning process. Use the readimage function on the image datastore to extract from the test dataset a single image from each class. The displayed WVD visually looks very similar. Since DSB-AM and SSB-AM signals have a very similar signature, this explains in part the network's difficulty in correctly classifying these two types. Further signal processing could make the differences between these two modulation types clearer to the network and result in improved classification.
```

DSB_DSB = readimage(imdsTest,find((imdsTest.Labels == 'DSB-AM') \& (predicted == 'DSB-AM'),1));
DSB_SSB = readimage(imdsTest,find((imdsTest.Labels == 'DSB-AM') \& (predicted == 'SSB-AM'),1));
SSB_DSB = readimage(imdsTest,find((imdsTest.Labels == 'SSB-AM') \& (predicted == 'DSB-AM'),1));
SSB_SSB = readimage(imdsTest,find((imdsTest.Labels == 'SSB-AM') \& (predicted == 'SSB-AM'),1));
figure
subplot(2,2,1)
imagesc(DSB_DSB(:,:,1))
axis square; title({'Actual Class: DSB-AM','Predicted Class: DSB-AM'})
subplot(2,2,2)
imagesc(DSB_SSB(:,:,1))
axis square; title({'Actual Class: DSB-AM','Predicted Class: SSB-AM'})
subplot(2,2,3)
imagesc(SSB_DSB(:,:,1))
axis square; title({'Actual Class: SSB-AM','Predicted Class: DSB-AM'})

```
subplot \((2,2,4)\)
imagesc(SSB_SSB(:,:,1))
axis square; title(\{'Actual Class: SSB-AM','Predicted Class: SSB-AM'\})


Actual Class: SSB-AM Predicted Class: DSB-AM


Actual Class: DSB-AM Predicted Class: SSB-AM


Actual Class: SSB-AM Predicted Class: SSB-AM


\section*{Summary}

This example showed how radar and communications modulation types can be classified by using time-frequency techniques and a deep learning network. Further efforts for additional improvement could be investigated by utilizing time-frequency analysis available in Wavelet Toolbox \({ }^{\mathrm{TM}}\) and additional Fourier analysis available in Signal Processing Toolbox \({ }^{\mathrm{TM}}\).

\section*{References}
[1] Brynolfsson, Johan, and Maria Sandsten. "Classification of one-dimensional non-stationary signals using the Wigner-Ville distribution in convolutional neural networks." 25th European Signal Processing Conference (EUSIPCO). IEEE, 2017.
[2] Liu, Xiaoyu, Diyu Yang, and Aly El Gamal. "Deep neural network architectures for modulation classification." 51st Asilomar Conference on Signals, Systems and Computers. 2017.
[3] `Wang, Chao, Jian Wang, and Xudong Zhang. "Automatic radar waveform recognition based on time-frequency analysis and convolutional neural network." IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2017.

\section*{Hybrid MIMO Beamforming with QSHB and HBPS Algorithms}

This example presents a Simulink model of a multiple input multiple output (MIMO) wireless communication system. The wireless system uses hybrid beamforming technique to improve system throughput.

\section*{Introduction}

5G and other modern wireless communication systems extensively use MIMO beamforming technology for signal to noise ratio (SNR) enhancement and spatial multiplexing to improve the data throughput in scatterer rich environments. In a scatterer-rich environment, there may not exist line-of-sight (LOS) paths between the transmit and receive antennas. To gain the high throughput, MIMO beamforming implements precoding on the transmitter side and combining on the receiver side to increase SNR and separate spatial channels. A full digital beamforming structure requires each antenna to have a dedicated RF-to-baseband chain, which makes the overall hardware expensive and power consumption high. As a solution, hybrid MIMO beamforming is proposed [1], in which fewer RF-to-baseband chains are employed and partial of precoding and combining are implemented in the RF portion. With deliberate selection of the weights for precoding and combining, hybrid beamforming can achieve comparable performance as that of full beamforming.

In this example, we introduce a Simulink model with hybrid MIMO beamforming. This model shows two hybrid beamforming algorithms: Quantized Sparse Hybrid Beamforming (QSHB) [2] and Hybrid Beamforming with Peak Search (HBPS).

The following figure shows the structure of a hybrid beamforming system.


In the figure, \(N_{s}\) is the number of signal streams; \(N_{T}\) is the number of transmit antennas; \(N_{R F}^{T}\) is the number of transmit RF chains; \(N_{R}\) is the number of receive antennas; and \(N_{R F}^{R}\) is the number of receive RF chains. In this example, two signal streams, 64 transmit antennas, 4 transmit RF chains, 16 receive antennas, and 4 receive RF chains.

The scattering channel is denoted by \(H\). The hybrid beamforming weights are represented by the analog precoder \(F_{R F}\), digital precoder \(F_{B B}\), analog combiner \(W_{R F}\), and digital combiner \(W_{B B}\). For a more detailed introduction to hybrid beamforming, please refer to the MATLAB "Introduction to Hybrid Beamforming" on page 17-423 example.

\section*{Exploring the Model}

The Simulink model consists of four main components: MIMO Transmitter, MIMO Channel, MIMO Receiver, and Weights Calculation.


Copyright 2019 The MathWorks Inc.

The MIMO transmitter generates the signal stream and then applies the precoding. The modulated signal is propagated through a scattering channel defined in the MIMO channel and then decoded and demodulated at the receiver side.

\section*{MIMO Scattering Channel}

The MIMO scattering channel is represented by a channel matrix. In addition, this example uses an enabled subsystem to periodically change this matrix to simulate the fact that a MIMO channel may vary over time.


\section*{Hybrid Beamforming Weights Computation}

In a hybrid beamforming system, both the precoding and the corresponding combining process are done partly at baseband and partly in the RF band. In general, the beamforming achieved in the RF band only involves phase shifts. Therefore, a critical part in such a system is to determine how to distribute the weights between the baseband and the RF band based on the channel. This is done in the Weight Calculation block where the precoding weights, Fbb and FrfAng, and combining weights,

Wbb and WrfAng, are computed based on the channel matrix, H . In this example, we assume the channel matrix is known and provide both QSHB and HBPS algorithms.


\section*{Quantized Sparse Hybrid Beamforming (QSHB)}

Literature [2, 3] shows that given the channel matrix, H, of a MIMO scattering channel, the hybrid beamforming weights can be computed via an iterative algorithms [2]. Using an orthogonal matching pursuit algorithm, the resulting analog precoding/combining weights are just steering vectors corresponding to the dominant modes of the channel matrix. For the detailed description of the algorithm, please refer to the "Introduction to Hybrid Beamforming" on page 17-423 example.

\section*{Quantized Sparse Hybrid Beamforming with Peak Search (HBPS)}

HBPS is a simplified version of QSHB. Instead of searching for the dominant mode of channel matrix iteratively, HBPS projects all the digital weights into a grid of directions and identifies the \(N_{R F}^{T}\) and \(N_{R F}^{R}\) peaks to form the corresponding analog beamforming weights. This works well especially for large arrays, like arrays used in massive MIMO systems, since for large arrays, the directions are more likely to be orthogonal.

Because the channel matrix can change over time, the weights computation also needs to be performed periodically to accommodate the channel variation.

\section*{Results and Displays}

\section*{QSHB}

Following figures shows the recovered 16 QAM symbol streams at the receiver using QSHB algorithms. The resulting constellation shows that compared to the source constellation, the recovered symbols properly located in both streams. This means that using the hybrid beamforming technique, we can improve the system capacity by sending the two streams simultaneously. In addition, the constellation diagram shows that the variance of the first recovered stream is better than the second recovered stream as the points are less dispersed in the constellation of the first stream. This is because the first stream uses the most dominant mode of the MIMO channel so it has the best SNR.



\section*{HBPS}

The result of HBPS is shown in the following figures. The constellation diagram shows that it achieves similar performance compared to QSHB. This means that the HBPS is a good choice for the simulated \(64 \times 16\) MIMO system.



This example provides the Simulink model of two hybrid beamforming methods, QSHB and HBPS. The MIMO scattering channel is used to provide a realistic channel model for massive MIMO systems. The Simulink model is partitioned according to the functions in the signal flow, which gives guidance for hardware implementation. For a given \(H\), the number of symbols can vary to simulate the variable coherent channel length. With this Simulink model, various system parameters and new hybrid beamforming algorithms can be studied. The system structure facilitates the hardware implementation.

\section*{Reference}
[1] Andreas F. Molisch, et al. "Hybrid Beamforming for Massive MIMO: A Survey", IEEE Communications Magazine, Vol. 55, No. 9, September 2017, pp. 134-141
[2] Oma El Ayach, et al. "Spatially Sparse Precoding in Millimeter wave MIMO Systems, IEEE Transactions on Wireless Communications", Vol. 13, No. 3, March 2014
[3]. Emil Bjornson, Jakob Hoydis, Luca Sanguinetti, "Massive MIMO Networks: Spectral, Energy, and Hardware Efficiency", Foundations and Trends in Signal Processing: Vol. 11, No. 3-4, 2017

\section*{Display Micro-Doppler Shift of Moving Bicyclist}
sim('BicyclistMicrospectrumExample'); open_system('BicyclistMicrospectrumExample');



Display the microDoppler spectrum.
close_system('BicyclistMicrospectrumExample');

\section*{Array Synthesis for Lidar Systems}

This example shows how to design and optimize a phased array for lidar applications. The example describes the following workflow:

1 Import an antenna element pattern generated with Lumerical tools into MATLAB
2 Design a linear phased array using the Lumerical antenna pattern for each element in the array
3 Determine the array element spacing and weighting for the array such that the azimuth pattern and elevation pattern (generated from the Lumerical tools) are closely matched between a desired steering range

A related example can be found on Lumerical's website at Lumerical Lidar Antenna Example. The Lumerical's example provides more details on how the antenna element is designed with the FDE solver; how the antenna element design is verified and extracted with 3D FDTD technique; and how the array designed using Phased Array System Toolbox is integrated in Lumerical's INTERCONNECT software.

This example requires Optimization Toolbox.

\section*{Introduction}

Lidar is used as a perception sensor in autonomous systems. Lidar sensors are capable of ranging millions of points per second due to high angular resolutions and fast steering speeds. Beam steering in Lidar architectures can be accomplished with optical phased arrays. This example shows how to design the integrated optical phased array antenna which can be used for both transmitting and receiving functions.

\section*{Modeling the Phased Array}

First, import the antenna pattern generated using Lumerical tools.
load('Lumerical_antenna_data.mat'); \% Load Lumerical antenna pattern
The antenna occupies a large bandwidth. The data set generated with Lumerical tools contains antenna responses for 50 frequencies.
```

nfreq = numel(freqVector); % 50 frequency vectors
ant = phased.CustomAntennaElement('FrequencyVector',freqVector,...
'FrequencyResponse',zeros(1,nfreq),...
'AzimuthAngles',az,'ElevationAngles',el,...
'MagnitudePattern',pat_azel,'PhasePattern',zeros(size(pat_azel)));

```

The array to be designed is a 48 -element linear array along azimuth direction. The goal is to
The array to be designed is a 48 -element linear array with a hamming taper. The number of elements was chosen in this example to provide a narrow beam. The element spacing is set at 1.2 wavelength corresponding to the center frequency due to physical constrains in building Lidar arrays. Since the spacing is larger than half wavelength, grating lobe may occur. However, in this application, the array only scans a limited range around the boresight. Therefore, grating lobes are not a concern.
```

c = 3e8;
lambda = c/freqVector(25);
N = 48;
antarray = phased.ULA(N,1.2*lambda,'Element',ant,'Taper',hamming(N));
stv = phased.SteeringVector('SensorArray',antarray,'PropagationSpeed',c);

```

Following figures show the resulting array patterns at boresight for 3 frequency values (frequency bands 1,25 , and 50 ) to see the resulting 3D beam pattern across the full range. Note how the main beam changes with frequency. In the plots below, the beams are steered at 0 degrees azimuth.
```

svang = [0;0]; % Steer at 0 degrees in azimuth
n = 1;
fc = freqVector(n);
pattern(antarray,fc,'Type','powerdb','Weights',stv(fc,svang));
title(sprintf('Array Pattern for Frequency Band %d',n));
snapnow;
n = 25;
fc = freqVector(n);
pattern(antarray,fc,'Type','powerdb','Weights',stv(fc,svang));
title(sprintf('Array Pattern for Frequency Band %d',n));
snapnow;
n = 50;
fc = freqVector(n);
pattern(antarray,fc,'Type','powerdb','Weights',stv(fc,svang));
title(sprintf('Array Pattern for Frequency Band %d',n));
snapnow;

```

Array Pattern for Frequency Band 1


\section*{Array Pattern for Frequency Band 25}


\title{
Array Pattern for Frequency Band 50
}


\section*{Synthesizing Array Pattern}

In this example, the array steering in elevation is done using different carrier frequencies. However, the array steering in azimuth is done by weighting the elements in the linear array. Therefore, our goal, through optimization, is to find weights and element spacing such that the shape of the beam in the azimuth cut matches the shape in the elevation cut.

To get the best match across the frequency range, we start with the elevation cut of the middle frequency value (band 25) as the desired shape. Because the application only requires the scanning between \(\pm 20\) degrees in azimuth, We will focus the pattern within the \(\pm 40\) degrees region to ensure there is no grating lobes come into \(\pm 20\) degrees region during scanning. Note that reflectors will be used on the physical array to ensure other transmissions are not sent out at angles outside \(\pm 20\) degrees.
```

azimuth = -40:40;
n = 25; % Use center frequency as the basis for optimization
fc = freqVector(n);
Beam_d = pattern(antarray,fc,azimuth,0,'Type','efield','Weights',stv(fc,svang),'Normalize',false
antpāt = pattern(ant,fc,azimuth,0,'Type','efield','Normalize',false).';

```

The objective function is set to minimize the distance between the desired pattern and the one that is generated as a result of synthesis. For this optimization, we want to generate a common spacing value between elements and unique real weights for each element to facilitate the implementation phase in the Lumerical Interconnect tool. In addition, to ensure the lidar array can be realized, a starting point of 1.1 wavelength is set.
```

w_i_re = ones(N,1)./2; % initial real values
w_i_im = zeros(N,1); % initial imaginary values
lām\overline{bda_i = 1.1; % initial wavelength}
objfun = @(x)norm(abs((x(1:N))'*...
steervec((-(N-1)/2:(N-1)/2)*x(end),azimuth).*antpat)-Beam_d);
x_ini = [w_i_re;lambda_i];
[x_o, fval, ef, output] = ...
fmincon(objfun,x_ini,[],[],[],[],[(zeros(N,1));1],[ones(N,1);1.2],[],...
optimoptions(@fmincon,'Display','final-detailed','MaxFunctionEvaluations',1e4));
Optimization completed: The relative first-order optimality measure, 4.059461e-07,
is less than options.OptimalityTolerance = 1.000000e-06, and the relative maximum constraint
violation, 0.000000e+00, is less than options.ConstraintTolerance = 1.000000e-06.

```

Next plot shows the comparison between the desired pattern and the synthesized pattern.
```

azplot = -40:40;

```
Beam_d_plot = pattern(antarray,fc,azplot,0,'Type','efield','Weights', stv(fc,svang), 'Normalize', fa
antpat_plot \(=\) pattern(ant,fc,azplot,0,'Type','efield','Normalize',false).';
Beam_syn_plot \(=\operatorname{abs}\left(\left(x \_o(1: N)\right){ }^{\prime} * \operatorname{steervec}\left((-(N-1) / 2:(N-1) / 2) * x \_o(e n d), a z p l o t\right) . * a n t p a t \_p l o t\right) ;\)
plot(azplot,mag2db(Beam_d_plot),' - ', azplot, mag2db(Beam_syn_plot), '--');
legend('Desired', 'Synthēsized')
title(sprintf('Frequency band \%d with spacing of \%5.2f wavelength',n,x_o(end)));
xlabel('Angle (deg)')
ylabel('Array Pattern')


The figures shows a strong match between the desired pattern and the synthesized pattern between \(\pm 20\) degrees. Again, anything outside this angle range will be blocked by a reflector in the actual system.

\section*{Verifying Scanning Behavior}

To verify the resulting weights and element spacing, we steer the array to 20 degrees azimuth at both frequency bands \#1 and \#50 and examine if the array performance satisfies the application needs.
```

n = 50;
fc = freqVector(n);
wmag = x_o(1:N);
svang = [20;0];
azplot = -40:40;
Beam_d_plot = pattern(antarray,fc,azplot,0,'Type','efield','Weights',stv(fc,svang),'Normalize',fi
antpat_plot = pattern(ant,fc,azplot,0,'Type','efield','Normalize',false).';
weights_o = wmag.*steervec((-(N-1)/2:(N-1)/2)*x_o(end),svang);
Beam_syn_plot = abs(weights_o'*steervec((-(N-1)/2:(N-1)/2)*x_o(end),azplot).*antpat_plot);
plot(azplot,mag2db(Beam_d_plot),' - ',azplot,mag2db(Beam_syn_plot),' - -');
legend('Desired','Synthesized')
title(sprintf('Frequency band %d with spacing of %5.2f wavelength',n,x_o(end)));
xlabel('Angle (deg)')
ylabel('Array Pattern')

```
snapnow;
\(\mathrm{n}=1\);
fc = freqVector(n);
Beam_d_plot = pattern(antarray,fc,azplot,0,'Type','efield','Weights',stv(fc,svang),'Normalize',f
antpat_plot = pattern(ant,fc,azplot,0,'Type','efield','Normalize',false).';
weights_o = wmag.*steervec((-(N-1)/2:(N-1)/2)*x_o(end), svang);
Beam_syn_plot \(=\) abs(weights_o'*steervec ( \(\left.\left.(-(N-1) / 2:(N-1) / 2) * x \_o(e n d), a z p l o t\right) . * a n t p a t \_p l o t\right) ;\)
plot(azplot,mag2db(Beam_d_plot),'-',azplot,mag2db(Beam_syn_plot), '--');
legend('Desired','Synthesized')
title(sprintf('Frequency band \%d with spacing of \%5.2f wavelength', \(\mathrm{n}, \mathrm{x}\) _o(end)));
xlabel('Angle (deg)')
ylabel('Array Pattern')
snapnow;

Frequency band 50 with spacing of 1.08 wavelength



Finally, the following figure shows the resulting weights from the optimization.
```

% plot the results
plot(1:N,wmag);
xlabel('Antenna element number');
ylabel('Normalized weight');
title('Final antenna weights after optimization');

```


\section*{Summary}

This example shows how array synthesis techniques can be applied to help design a phased array lidar to achieve a desired beam pattern.

\section*{Pedestrian and Bicyclist Classification Using Deep Learning}

This example shows how to classify pedestrians and bicyclists based on their micro-Doppler characteristics using a deep learning network and time-frequency analysis.

The movements of different parts of an object placed in front of a radar produce micro-Doppler signatures that can be used to identify the object. This example uses a convolutional neural network (CNN) to identify pedestrians and bicyclists based on their signatures.

This example trains the deep learning network using simulated data and then examines how the network performs at classifying two cases of overlapping signatures.

\section*{Synthetic Data Generation by Simulation}

The data used to train the network is generated using backscatterPedestrian and backscatterBicyclist from Phased Array System Toolbox \({ }^{\mathrm{TM}}\). These functions simulate the radar backscattering of signals reflected from pedestrians and bicyclists, respectively.

The helper function helperBackScatterSignals generates a specified number of pedestrian, bicyclist, and car radar returns. Because the purpose of the example is to classify pedestrians and bicyclists, this example considers car signatures as noise sources only. To get an idea of the classification problem to solve, examine one realization of a micro-Doppler signature from a pedestrian, a bicyclist, and a car. (For each realization, the return signals have dimensions \(N_{\text {fast }}\)-by\(N_{\text {slow }}\), where \(N_{\text {fast }}\) is the number of fast-time samples and \(N_{\text {slow }}\) is the number of slow-time samples. See "Radar Data Cube" for more information.)
```

numPed = 1; % Number of pedestrian realizations
numBic = 1; % Number of bicyclist realizations
numCar = 1; % Number of car realizations
[xPedRec,xBicRec,xCarRec,Tsamp] = helperBackScatterSignals(numPed,numBic,numCar);

```

The helper function helperDopplerSignatures computes the short-time Fourier transform (STFT) of a radar return to generate the micro-Doppler signature. To obtain the micro-Doppler signatures, use the helper functions to apply the STFT and a preprocessing method to each signal.
```

[SPed,T,F] = helperDopplerSignatures(xPedRec,Tsamp);
[SBic,~,~] = helperDopplerSignatures(xBicRec,Tsamp);
[SCar,~,~] = helperDopplerSignatures(xCarRec,Tsamp);

```

Plot the time-frequency maps for the pedestrian, bicyclist, and car realizations.
```

% Plot the first realization of objects
figure
subplot(1,3,1)
imagesc(T,F,SPed(:, :,1))
ylabel('Frequency (Hz)')
title('Pedestrian')
axis square xy
subplot(1,3,2)
imagesc(T,F,SBic(:,:,1))
xlabel('Time (s)')
title('Bicyclist')
axis square xy
subplot(1,3,3)

```
```

imagesc(T,F,SCar(:,:,1))
title('Car')
axis square xy

```


The normalized spectrograms (STFT absolute values) show that the three objects have quite distinct signatures. Specifically, the spectrograms of the pedestrian and the bicyclist have rich micro-Doppler signatures caused by the swing of arms and legs and the rotation of wheels, respectively. By contrast, in this example, the car is modeled as a point target with rigid body, so the spectrogram of the car shows that the short-term Doppler frequency shift varies little, indicating little micro-Doppler effect.

\section*{Combining Objects}

Classifying a single realization as a pedestrian or bicyclist is relatively simple because the pedestrian and bicyclist micro-Doppler signatures are dissimilar. However, classifying multiple overlapping pedestrians or bicyclists, with the addition of Gaussian noise or car noise, is much more difficult.

If multiple objects exist in the detection region of the radar at the same time, the received radar signal is a summation of the detection signals from all the objects. As an example, generate the received radar signal for a pedestrian and bicyclist with Gaussian background noise.
```

% Configure Gaussian noise level at the receiver
rx = phased.ReceiverPreamp('Gain',25,'NoiseFigure',10);
xRadarRec = complex(zeros(size(xPedRec)));
for ii = 1:size(xPedRec,3)
xRadarRec(:,:,ii) = rx(xPedRec(:,:,ii) + xBicRec(:,:,ii));
end

```

Then obtain micro-Doppler signatures of the received signal by using the STFT.
```

[S,~,~] = helperDopplerSignatures(xRadarRec,Tsamp);
figure
imagesc(T,F,S(:,:,1)) % Plot the first realization
axis xy
xlabel('Time (s)')
ylabel('Frequency (Hz)')
title('Spectrogram of a Pedestrian and a Bicyclist')

```


Because the pedestrian and bicyclist signatures overlap in time and frequency, differentiating between the two objects is difficult.

\section*{Generate Training Data}

In this example, you train a CNN by using data consisting of simulated realizations of objects with varying properties-for example, bicyclists pedaling at different speeds and pedestrians with different heights walking at different speeds. Assuming the radar is fixed at the origin, in one realization, one object or multiple objects are uniformly distributed in a rectangular area of [5, 45] and [-10, 10] meters along the X and Y axes, respectively.


The other properties of the three objects that are randomly tuned are as follows:
1) Pedestrians
- Height - Uniformly distributed in the interval of [1.5, 2] meters
- Heading - Uniformly distributed in the interval of [-180, 180] degrees
- Speed - Uniformly distributed in the interval of [0,1.4h] meters/second, where \(h\) is the height value
2) Bicyclists
- Heading - Uniformly distributed in the interval of [-180, 180] degrees
- Speed - Uniformly distributed in the interval of [1,10] meters/second
- Gear transmission ratio - Uniformly distributed in the interval of [0.5, 6]
- Pedaling or coasting \(-50 \%\) probability of pedaling (coasting means that the cyclist is moving without pedaling)
3) Cars
- Velocity - Uniformly distributed in the interval of \([0,10]\) meters/second along the X and Y directions

The input to the convolutional network is micro-Doppler signatures consisting of spectrograms expressed in decibels and normalized to [0, 1], as shown in this figure:


Radar returns originate from different objects and different parts of objects. Depending on the configuration, some returns are much stronger than others. Stronger returns tend to obscure weaker ones. Logarithmic scaling augments the features by making return strengths comparable. Amplitude normalization helps the CNN converge faster.

The data set contains realizations of the following scenes:
- One pedestrian present in the scene
- One bicyclist present in the scene
- One pedestrian and one bicyclist present in the scene
- Two pedestrians present in the scene
- Two bicyclists present in the scene

\section*{Download Data}

The data for this example consists of 20,000 pedestrian, 20,000 bicyclist, and 12,500 car signals generated by using the helper functions helperBackScatterSignals and helperDopplerSignatures. The signals are divided into two data sets: one without car noise samples and one with car noise samples.

For the first data set (without car noise), the pedestrian and bicyclist signals were combined, Gaussian noise was added, and micro-Doppler signatures were computed to generate 5000 signatures for each of the five scenes to be classified.

In each category, \(80 \%\) of the signatures (that is, 4000 signatures) are reserved for the training data set while \(20 \%\) of the signatures (that is, 1000 signatures) are reserved for the test data set.

To generate the second data set (with car noise), the procedure for the first data set was followed, except that car noise was added to \(50 \%\) of the signatures. The proportion of signatures with and without car noise is the same in the training and test data sets.

Download and unzip the data in your temporary directory, whose location is specified by MATLAB®'s tempdir command. Due to the large size of the dataset, this process may take several minutes. If you have the data in a folder different from tempdir, change the directory name in the subsequent instructions.
```

% Download the data
dataURL = 'https://www.mathworks.com/supportfiles/SPT/data/PedBicCarData.zip';
saveFolder = fullfile(tempdir,'PedBicCarData');
zipFile = fullfile(tempdir,'PedBicCarData.zip');
if ~exist(saveFolder,'dir')
websave(zipFile,dataURL);
end
% Unzip the data
unzip(zipFile,tempdir)

```

The data files are as follows:
- trainDataNoCar.mat contains the training data set trainDataNoCar and its label set trainLabelNoCar.
- testDataNoCar.mat contains the test data set testDataNoCar and its label set testLabelNoCar.
- trainDataCarNoise.mat contains the training data set trainDataCarNoise and its label set trainLabelCarNoise.
- testDataCarNoise.mat contains the test data set testDataCarNoise and its label set testLabelCarNoise.
- TF.mat contains the time and frequency information for the micro-Doppler signatures.

\section*{Network Architecture}

Create a CNN with five convolution layers and one fully connected layer. The first four convolution layers are followed by a batch normalization layer, a rectified linear unit (ReLU) activation layer, and a max pooling layer. In the last convolution layer, the max pooling layer is replaced by an average pooling layer. The output layer is a classification layer after softmax activation. For network design guidance, see "Deep Learning Tips and Tricks" (Deep Learning Toolbox).
```

layers = [
imageInputLayer([size(S,1),size(S,2),1],'Normalization','none')
convolution2dLayer(10,16,'Padding','same')
batchNormalizationLayer
reluLayer
maxPooling2dLayer(10,'Stride',2)
convolution2dLayer(5,32,'Padding','same')
batchNormalizationLayer
reluLayer
maxPooling2dLayer(10,'Stride',2)
convolution2dLayer(5,32,'Padding','same')
batchNormalizationLayer
reluLayer
maxPooling2dLayer(10,'Stride',2)
convolution2dLayer(5,32,'Padding','same')

```
```

 batchNormalizationLayer
 reluLayer
 maxPooling2dLayer(5,'Stride',2)
 convolution2dLayer(5,32,'Padding','same')
 batchNormalizationLayer
 reluLayer
 averagePooling2dLayer(2,'Stride',2)
 fullyConnectedLayer(5)
 softmaxLayer
 classificationLayer]
 layers =
24x1 Layer array with layers:

```
\begin{tabular}{|c|c|c|c|}
\hline 1 & '' & Image Input & \(400 \times 144 \times 1\) images \\
\hline 2 & & Convolution & \(1610 \times 10\) convolutions with stride [1 1] and padding 'same \\
\hline 3 & \(1 '\) & Batch Normalization & Batch normalization \\
\hline 4 & '' & ReLU & ReLU \\
\hline 5 & & Max Pooling & 10x10 max pooling with stride [2 2] and padding [0 0 0 \\
\hline 6 & '' & Convolution & \(325 \times 5\) convolutions with stride [1 1] and padding 'same' \\
\hline 7 & '' & Batch Normalization & Batch normalization \\
\hline 8 & '' & ReLU & ReLU \\
\hline 9 & & Max Pooling & 10x10 max pooling with stride [2 2] and padding [0 0 0 \\
\hline 10 & '' & Convolution & \(325 \times 5\) convolutions with stride [1 1] and padding 'same' \\
\hline 11 & '' & Batch Normalization & Batch normalization \\
\hline 12 & ' & ReLU & ReLU \\
\hline 13 & 1 & Max Pooling & 10x10 max pooling with stride [2 2] and padding [0 0 0 \\
\hline 14 & 1 & Convolution & \(325 \times 5\) convolutions with stride [1 1] and padding 'same' \\
\hline 15 & '' & Batch Normalization & Batch normalization \\
\hline 16 & \(\cdots\) & ReLU & ReLU \\
\hline 17 & & Max Pooling & \(5 \times 5\) max pooling with stride [2 2] and padding [0 0 0 0 \\
\hline 18 & '' & Convolution & \(325 \times 5\) convolutions with stride [1 1] and padding 'same' \\
\hline 19 & \({ }^{\prime}\) & Batch Normalization & Batch normalization \\
\hline 20 & '' & ReLU & ReLU \\
\hline 21 & , & Average Pooling & \(2 \times 2\) average pooling with stride [2 2] and padding [0 0 \\
\hline 22 & & Fully Connected & 5 fully connected layer \\
\hline 23 & '' & Softmax & softmax \\
\hline 24 & ' & Classification Output & crossentropyex \\
\hline
\end{tabular}

Specify the optimization solver and the hyperparameters to train the CNN using training0ptions. This example uses the ADAM optimizer and a mini-batch size of 128 . Train the network using either a CPU or GPU. Using a GPU requires Parallel Computing Toolbox \({ }^{\mathrm{TM}}\) and a CUDA® enabled NVIDIA® GPU with compute capability 3.0 or higher. For information on other parameters, see trainingOptions (Deep Learning Toolbox). This example uses a GPU for training.
```

options = trainingOptions('adam', ...
'ExecutionEnvironment','gpu',...
'MiniBatchSize',128, ...
'MaxEpochs',30, ...
'InitialLearnRate',1e-2, ...
'LearnRateSchedule','piecewise', ...
'LearnRateDropFactor',0.1, ...
'LearnRateDropPeriod',10, ...
'Shuffle','every-epoch', ...

```
```

'Verbose',false, ...
'Plots','training-progress');

```

\section*{Classify Signatures Without Car Noise}

Load the data set without car noise and use the helper function helperPlotTrainData to plot one example of each of the five categories in the training data set,
load(fullfile(tempdir,'PedBicCarData','trainDataNoCar.mat')) \% load training data set load(fullfile(tempdir,'PedBicCarData','testDataNoCar.mat')) \% load test data set load(fullfile(tempdir,'PedBicCarData','TF.mat')) \% load time and frequency information
helperPlotTrainData(trainDataNoCar,trainLabelNoCar,T,F)



Train the CNN that you created. You can view the accuracy and loss during the training process. In 30 epochs, the training process achieves almost \(95 \%\) accuracy.
trainedNetNoCar = trainNetwork(trainDataNoCar,trainLabelNoCar,layers,options);


Use the trained network and the classify function to obtain the predicted labels for the test data set testDataNoCar. The variable predTestLabel contains the network predictions. The network achieves about \(95 \%\) accuracy for the test data set without the car noise.
```

predTestLabel = classify(trainedNetNoCar,testDataNoCar);
testAccuracy = mean(predTestLabel == testLabelNoCar)
testAccuracy = 0.9530

```

Use a confusion matrix to view detailed information about prediction performance for each category. The confusion matrix for the trained network shows that, in each category, the network predicts the labels of the signals in the test data set with a high degree of accuracy.
```

figure
confusionchart(testLabelNoCar,predTestLabel);

```


\section*{Classify Signatures with Car Noise}

To analyze the effects of car noise, classify data containing car noise with the trainedNetNoCar network, which was trained without car noise.

Load the car-noise-corrupted test data set testDataCarNoise.mat.
load(fullfile(tempdir,'PedBicCarData','testDataCarNoise.mat'))
Input the car-noise-corrupted test data set to the network. The prediction accuracy for the test data set with the car noise drops significantly, to around \(70 \%\), because the network never saw training samples containing car noise.
predTestLabel = classify(trainedNetNoCar,testDataCarNoise);
testAccuracy \(=\) mean(predTestLabel \(==\) testLabelCarNoise)
testAccuracy \(=0.7176\)
The confusion matrix shows that most prediction errors occur when the network takes in scenes from the "pedestrian," "pedestrian+pedestrian," or "pedestrian+bicyclist" classes and classifies them as "bicyclist."
confusionchart(testLabelCarNoise,predTestLabel);


Car noise significantly impedes the performance of the classifier. To solve this problem, train the CNN using data that contains car noise.

\section*{Retrain CNN by Adding Car Noise to Training Data Set}

Load the car-noise-corrupted training data set trainDataCarNoise.mat.
load(fullfile(tempdir,'PedBicCarData','trainDataCarNoise.mat'))
Retrain the network by using the car-noise-corrupted training data set. In 30 epochs, the training process achieves almost \(90 \%\) accuracy.
trainedNetCarNoise = trainNetwork(trainDataCarNoise,trainLabelCarNoise,layers,options);


Input the car-noise-corrupted test data set to the network trainedNetCarNoise. The prediction accuracy is about \(87 \%\), which is approximately \(15 \%\) higher than the performance of the network trained without car noise samples.
```

predTestLabel = classify(trainedNetCarNoise,testDataCarNoise);
testAccuracy = mean(predTestLabel == testLabelCarNoise)
testAccuracy = 0.8728

```

The confusion matrix shows that the network trainedNetCarNoise performs much better at predicting scenes with one pedestrian and scenes with two pedestrians.
```

confusionchart(testLabelCarNoise,predTestLabel);

```


\section*{Case Study}

To better understand the performance of the network, examine its performance in classifying overlapping signatures. This section is just for illustration. Due to the non-deterministic behavior of GPU training, you may not get the same classification results in this section when you rerun this example.

For example, signature \#4 of the car-noise-corrupted test data, which does not have car noise, has two bicyclists with overlapping micro-Doppler signatures. The network correctly predicts that the scene has two bicyclists.
```

k = 4;
imagesc(T,F,testDataCarNoise(:,:,:,k))
axis xy
xlabel('Time (s)')
ylabel('Frequency (Hz)')
title('Ground Truth: '+string(testLabelCarNoise(k))+', Prediction: '+string(predTestLabel(k)))

```


From the plot, the signature appears to be from only one bicyclist. Load the data
CaseStudyData.mat of the two objects in the scene. The data contains return signals summed along the fast time. Apply the STFT to each signal.
```

load CaseStudyData.mat
M = 200; % FFT window length
beta = 6; % window parameter
w = kaiser(M,beta); % kaiser window
R = floor(1.7*(M-1)/(beta+1)); % ROUGH estimate
noverlap = M-R; % overlap length
[Sc,F,T] = stft(x,1/Tsamp,'Window',w,'FFTLength',M*2,'OverlapLength',noverlap);
for ii = 1:2
subplot(1,2,ii)
imagesc(T,F,10*log10(abs(Sc(:,:,ii))))
xlabel('Time (s)')
ylabel('Frequency (Hz)')
title('Bicyclist')
axis square xy
title(['Bicyclist ' num2str(ii)])
c = colorbar;
c.Label.String = 'dB';
end

```


The amplitudes of the Bicyclist 2 signature are much weaker than those of Bicyclist 1, and the signatures of the two bicyclists overlap. When they overlap, the two signatures cannot be visually distinguished. However, the neural network classifies the scene correctly.

Another case of interest is when the network confuses car noise with a bicyclist, as in signature \#267 of the car-noise-corrupted test data:
figure
k = 267;
imagesc(T,F,testDataCarNoise(:, :, :, k) )
axis xy
xlabel('Time (s)')
ylabel('Frequency (Hz)')
title('Ground Truth: '+string(testLabelCarNoise(k))+', Prediction: '+string(predTestLabel(k)))


The signature of the bicyclist is weak compared to that of the car, and the signature has spikes from the car noise. Because the signature of the car closely resembles that of a bicyclist pedaling or a pedestrian walking at a low speed, and has little micro-Doppler effect, there is a high possibility that the network will classify the scene incorrectly.

\section*{References}
[1] Chen, V. C. The Micro-Doppler Effect in Radar. London: Artech House, 2011.
[2] Gurbuz, S. Z., and Amin, M. G. "Radar-Based Human-Motion Recognition with Deep Learning: Promising Applications for Indoor Monitoring." IEEE Signal Processing Magazine. Vol. 36, Issue 4, 2019, pp. 16-28.
[3] Belgiovane, D., and C. C. Chen. "Micro-Doppler Characteristics of Pedestrians and Bicycles for Automotive Radar Sensors at 77 GHz." In 11th European Conference on Antennas and Propagation (EuCAP), 2912-2916. Paris: European Association on Antennas and Propagation, 2017.
[4] Angelov, A., A. Robertson, R. Murray-Smith, and F. Fioranelli. "Practical Classification of Different Moving Targets Using Automotive Radar and Deep Neural Networks." IET Radar, Sonar \& Navigation. Vol. 12, Number 10, 2017, pp. 1082-1089.
[5] Parashar, K. N., M. C. Oveneke, M. Rykunov, H. Sahli, and A. Bourdoux. "Micro-Doppler Feature Extraction Using Convolutional Auto-Encoders for Low Latency Target Classification." In 2017 IEEE Radar Conference (RadarConf), 1739-1744. Seattle: IEEE, 2017.

\section*{FPGA Based Beamforming in Simulink: Part 2 - Code Generation}

This tutorial is the second of a two-part series that will guide you through the steps to generate HDL code for a beamforming algorithm and verify that the generated code is functionally correct. The first part of the tutorial "FPGA Based Beamforming in Simulink: Part 1 - Algorithm Design" on page 17747 shows how to develop an algorithm in Simulink suitable for implementation on hardware, such as a Field Programmable Gate Array (FPGA), and how to compare the output of the fixed-point, implementation model to that of the corresponding floating-point, behavioral model.

This tutorial uses HDL Coder \({ }^{\text {TM }}\) to generate HDL code from the Simulink \({ }^{\circledR}\) model developed in part one and verifies the HDL code using the HDL Verifier \({ }^{\text {TM }}\). We use the HDL Verifier \({ }^{T \mathrm{TM}}\) to generate a cosimulation test bench model to verify the behavior of the automatically generated HDL code. The test bench uses ModelSim® for cosimulation to verify the automatically generated HDL code.

The Phased Array System Toolbox \({ }^{\mathrm{TM}}\) Simulink blocks model operations on framed, floating-point data and provides the behavioral reference model. We use this behavioral model to verify the results of the implementation model and ultimately the automatically generated HDL code.

HDL Coder \({ }^{\text {TM }}\) generates portable, synthesizable Verilog \({ }^{\circledR}\) and VHDL \({ }^{\circledR}\) code for over 300 Simulink blocks that support HDL code generation. Those Simulink blocks operate on serial data using fixedpoint arithmetic with proper delays to enable pipelining by the synthesis tool.

HDL Verifier \({ }^{\mathrm{TM}}\) lets you test and verify Verilog \({ }^{\circledR}\) and VHDL® designs for FPGAs, ASICs, and SoCs. We'll verify RTL generated from our Simulink model against a test bench running in Simulink \({ }^{\circledR}\) using cosimulation with an HDL simulator.

\section*{Implementation Model}

This tutorial assumes that you have a properly setup Simulink model that contains a subsystem with a beamforming algorithm designed using Simulink blocks that use fixed-point arithmetic and support HDL code generation. "FPGA Based Beamforming in Simulink: Part 1 - Algorithm Design" on page 17747 shows how to create such a model.

Alternatively, if you start with a new model, you can run hdl setup (HDL Coder) to configure the Simulink model for HDL code generation. And, to configure the Simulink model for test bench creation needed for verification, you must open Simulink's Model Settings, select Test Bench under HDL Code Generation in the left panel, and check HDL test bench and Cosimulation model in the Test Bench Generation Output properties group.

\section*{Comparing Results of Implementation Model to Behavioral Model}

Run the model created in the "FPGA Based Beamforming in Simulink: Part 1 - Algorithm Design" on page 17-747 to display the results. You can run the Simulink model by clicking the Play button or calling the sim command on the MATLAB command line as shown below. Use the Time Scope blocks to compare the output frames visually.
```

modelname = 'SimulinkBeamformingHDLWorkflowExample';
open_system(modelname);
% Ensure model is visible and not obstructed by scopes.
open_system(modelname);
set(allchild(0),'Visible','off');

```
```

sim(modelname);

```

\section*{Conventional Beamforming with Noise}

Assumptions
-Antenna is a 10 element ULA with half wavelength spacing between elements
-The thermal noise at each antenna has a power of -3 dBW ( 0.5 Watts)
operating frequency of the system is 100 MHz


4



\section*{Model Settings}

Once you verify that your fixed-point, implementation model produces the same results as your floating-point, behavioral model, you can generate HDL code and test bench. To do that, you must first set the appropriate HDL Code Generation parameters in Simulink via the Configuration Parameters dialog. For this example, we set the following parameters in Model Settings under HDL Code Generation:
- Target: Xilinx Vivado synthesis tool; Virtex7 family; Device xc7vx485t; package ffg1761, speed -1; and target frequency of 300 MHz .
- Optimization: Uncheck all optimizations except Balance delays
- Global Settings: Set the Reset type to Asynchronous
- Test Bench: Select HDL test bench and Cosimulation model

The reason we turn off optimizations is because some blocks used in our implementation are already HDL-optimized blocks, which could conflict.

\section*{HDL Code Generation and Test Bench Creation}

Once you've set Simulink's Model Settings, you can use HDL Coder \({ }^{\text {TM }}\) to generate HDL code for the HDL Algorithm subsystem. (For an example, see "Generate HDL Code from Simulink Model" (HDL Coder).) Use HDL Verifier \({ }^{\text {TM }}\) to generate a "SystemVerilog DPI Test Bench" (HDL Coder) test bench model.
```

% Uncomment these two lines to generate HDL code and test bench.
% makehdl([modelname '/HDL Algorithm']); % Generate HDL code
% makehdltb([modelname '/HDL Algorithm']); % Generate Cosimulation test bench

```

Notice that when you execute the makehdl command, information is displayed in the MATLAB command window. In that information is the amount of delay added during the automatic code generation process. In this case 24 delays are added which results in an extra delay of \(24^{*} 1 \mathrm{~ms}=\) 24 ms . This delay will be noticed when looking at our final results which have a total delay of 79 ms .

Also, because of this extra delay added during automatic code generation the output of our floatingpoint, behavioral model needs to be delay balanced by adding 24 delays to the original 55 . This will align the output of the behavioral model with the implementation model as well as the cosimulation output.

After generating the HDL code and test bench a new Simulink model named gm_<modelname>_mq containing a ModelSim \({ }^{\circledR}\) block is created in your working directory, which looks like this:


At this point, you might want to change the delay setting in HDL Latency block to 79 to account for the 24 delays added by the code generation process. Using a delay of 79 will ensure that the behavioral model output is time-aligned with the output of the implementation and cosimulation output.

\section*{HDL Code Verification via Cosimulation}

The following steps will launch ModelSim; therefore, make sure that the command to start ModelSim, vsim, is on the path of the machine you're on.

To run the cosimulation model, first double-click the blue rectangular box in the upper-left corner of the Simulink test model to launch ModelSim.


Run the Simulink test bench model to display the simulation results. You can run the Simulink model by clicking the Play button or calling the sim command on the MATLAB command line as shown below. The test bench model includes Time Scope blocks to compare the output of the cosimulation performed with ModelSim with the output of the HDL subsystem in Simulink.
\% Uncomment the following line, if ModelSim is installed, to run the test bench.
\% sim(modelname);
After starting ModelSim, running the Simulink test bench model will populate the Questa Sim with the HDL model's waveforms and Time Scopes in Simulink. Below are examples of the results in Questa Sim and Simulink scopes.

NOTE: You must restart Questa Sim each time you want to run the Simulink simulation. You can do that by executing "restart" at the Questa Sim command line. Alternatively, you can quit Questa Sim and re-launch it by double-clicking the blue box in the upper-left corner of the Simulink test bench model.


The Simulink scope below shows both the cosimulation and HDL model (DUT) producing a 79 ms delayed version of the original signal produced by the behavioral model, as expected, with no difference between the two waveforms. The 79 ms delay is due to the original 55 ms delay added in the HDL Algorithm subsystem to enable pipelining by the synthesis tool and an additional 24 ms delay due to the delay balancing that's done during the automatic HDL code generation. The additional 24 delays added is reported during the code generation step above.


The Simulink scopes comparing the results of the cosimulation can be found in test bench model inside the Compare subsystem, which is at the output of the HDL Algorithm_mq subsystem.
\% Uncomment the following line to open the subsystem with the scopes.
\% open_system([modelname,'/Compare/Assert_beamforming0utHDL'])

\section*{Summary}

This example is the second of a two-part tutorial series on how to automatically generate HDL code for a fixed-point, sample-based beamforming algorithm and verify the generated code in Simulink. The first part of the tutorial "FPGA Based Beamforming in Simulink: Part 1 - Algorithm Design" on page 17-747 shows how to develop an algorithm in Simulink suitable for implementation on an FPGA. This example showed how to setup a model to generate the HDL code and a cosimulation test bench for a Simulink subsystem created with blocks that support HDL code generation. It showed how to setup and launch ModelSim to cosimulate the HDL code and compare its output to the output generated by the HDL implementation model.

\section*{FPGA Based Beamforming in Simulink: Part 1 - Algorithm Design}

This tutorial is the first of a two-part series that will guide you through how to develop a beamformer in Simulink suitable for implementation on hardware, such as a Field Programmable Gate Array (FPGA). It will also show how to compare the results of the implementation model with those of a behavioral model. The second part of the tutorial "FPGA Based Beamforming in Simulink: Part 2 Code Generation" on page 17-740 shows how to generate HDL code from the implementation model and verify that the generated HDL code produces the correct results compared to the behavioral model.

The tutorial shows how to design an FPGA implementation-ready beamformer to match a corresponding behavioral model in Simulink \({ }^{\circledR}\) using the Phased Array System Toolbox \({ }^{\mathrm{TM}}\), DSP System Toolbox \({ }^{\mathrm{TM}}\), and Fixed-Point Designer \({ }^{\mathrm{TM}}\). To verify the implementation model, it compares the simulation output of the implementation model with the output of the behavioral model.

The Phased Array System Toolbox \({ }^{\mathrm{TM}}\) is used to design and verify the floating-point functional algorithm, which provides the behavioral reference model. The behavioral model is then used to verify the results of the fixed-point, implementation model used to generate HDL code.

Fixed-Point Designer \({ }^{\mathrm{TM}}\) provides data types and tools for developing fixed-point and single-precision algorithms to optimize performance on embedded hardware. You can perform bit-true simulations to observe the impact of limited range and precision without implementing the design on hardware.

\section*{Partitioning Model for FPGA}

There are three key modeling concepts to keep in mind when preparing a Simulink \({ }^{\circledR}\) model to target FPGAs:
- Sample-based processing: Also commonly referred to as serial processing, is an efficient data processing technique in hardware designs that enables you to tradeoff between resources and throughput.
- Subsystem targeted for HDL code generation: In order to generate HDL code from a model, the implementation algorithm must be inside a Simulink subsystem.
- Time-aligned outputs of behavioral and implementation models: For comparing the outputs of the behavioral and FPGA implementation models, you must time align their outputs by adding latency to the behavioral model.

\section*{Beamforming Algorithm}

In this example we use a Phase-Shift Beamformer as the behavioral algorithm, which is reimplemented in the HDL Algorithm subsystem using Simulink blocks that support HDL code generation. The beamformer's job is to calculate the phase required between each of the ten channels to maximize the received signal power in the direction of the incident angle. Below is the Simulink model with the behavioral algorithm and its corresponding implementation algorithm for an FPGA.
```

modelname = 'SimulinkBeamformingHDLWorkflowExample';
open_system(modelname);
% Ensure model is visible and not obstructed by scopes.
open_system(modelname);
set(\overline{allchild(0),'Visible','off');}

```

\section*{Conventional Beamforming with Noise}


The Simulink model has two branches. The top branch is the behavioral, floating-point model of our algorithm and the bottom branch is the functionally equivalent fixed-point version using blocks that support HDL code generation. Besides plotting the output of both branches to compare the two, we also calculate and plot the difference, or error, between both outputs.

Notice that there's a delay \(\left(Z^{-55}\right)\) at the output of the behavioral model. This is necessary because the implementation algorithm uses 55 delays to enable pipelining which creates latency that needs to be accounted for. Accounting for this latency is called delay balancing and is necessary to time-align the output between the behavioral model and the implementation model to make it easier to compare the results.

\section*{Multi-channel Receive Signal}

To synthesize a received signal at the phased array antenna, the model includes a subsystem that generates a multi-channel signal. The Baseband Multi-channel Signal subsystem models a transmitted waveform and the received target echo at the incident angle captured via a 10-element antenna array. The subsystem also includes a receiver pre-amp model to account for receiver noise. This subsystem generates the input stimulus for our behavioral and implementation models.
```

% Open subsystem that generates the received multi-channel signal.
open_system([modelname '/Baseband Multi-channel Signal']);

```


\section*{Serialization and Quantization}

The model includes a Serialization \& Quantization subsystem which converts floating-point, framebased signals to fixed-point, sample-based signals necessary for modeling streaming data in
hardware. Sample-based processing was chosen because our system will run slower than 400 MHz ; therefore, we're optimizing for resources instead of throughput.
```

% Open subsystem that serializes and quantizes the received signal.
open_system([modelname '/Serialization \& Quantization']);
set_param(modelname,'SimulationCommand','update')

```


The input signal to the serialization subsystem has 10 channels with 300 samples per channel or a 300x10 size signal. The subsystem serializes, or unbuffers, the signal producing a sample-based signal that's \(1 \times 10\), i.e., one sample per channel, which is then quantized to meet the requirements of our system.

The Quantize Signal block's output data type is set to:
- Output data type \(=\) fixdt \((1,12,19)\)
which is a signed, 12 -bit word length, and 19-bit fraction length precision. This precision was chosen because we're targeting a Xilinx ® Virtex®-7 FPGA which is connected to a 12 -bit ADC. The fraction length was chosen to accommodate for the maximum range of the input signal.

\section*{Designing the Implementation Subsystem}

The HDL Algorithm subsystem, which is targeted for HDL code generation, implements the beamformer, which was designed using Simulink blocks that support HDL code generation.

The Angle2SteeringVec subsystem calculates the signal delay at each antenna element of a Uniform Linear Array (ULA). The delay is then fed to a multiply and accumulate (MAC) subsystem to perform beamforming.
```

% Open subsystem with HDL algorithm.
open_system([modelname '/HDL Algorithm']);

```


The algorithm in the HDL Algorithm subsystem is functionally equivalent to the phase-shift beamforming behavioral algorithm but can generate HDL code. There are three main differences that enables this subsystem to generate efficient HDL code:

1 processing is performed serially, i.e., sample-based processing is used
2 arithmetic is performed with fixed-point data types

3 delays were added to enable pipelining by HDL synthesis tool
To ensure proper clock timing, any delay added to one branch of the implementation model must be matched to all other parallel branches as seen above. The Angle2SteeringVec subsystem, for example, added 36 delays; therefore, the top branch of the HDL Algorithm subsystem includes a delay of 36 samples right before the MAC subsystem. Likewise, the MAC subsystem used 19 delays, which must be balanced by adding 19 delays to the output of the Angle2SteeringVec subsystem. Let's look inside the MAC subsystem to account for the 19 delays.
```

% Open the MAC subsystem.
open_system([modelname '/HDL Algorithm/MAC']);
set_param(modelname,'SimulationCommand','update')

```


Looking at the very bottom branch of the MAC subsystem, we see a \(Z^{-2}\), followed by the complex multiply block which contains a \(Z^{-1}\), then there's a \(Z^{-4}\), followed by 4 delay blocks of \(Z^{-3}\) for a total of 19 delays. The delay values are defined in the PreLoadFcn callback in Model Properties.

\section*{Calculating the Steering Vector}

The Angle2SteeringVec subsystem breaks the task into a few steps to calculate the steering vector from the signal's angle of arrival. It first calculates the signal's arrival delay at each sensor by matrix multiplying the antenna element position in the array by the signal's incident direction. The delays are then fed to the SinCos subsystem which calculates the trigonometric functions sine and cosine using the simple and efficient CORDIC algorithm.
\% Open the Angle2SteeringVec subsystem. open_system([modelname '/HDL Algorithm/Angle2SteeringVec']);


Because our design consists of a 10 element ULA spaced at half-wavelength, the antenna element position is based on the spacing between each antenna element measured outwardly from the center
of the antenna array. We can define the spacing between elements as a vector of 10 numbers ranging from -6.7453 to 6.7453 , i.e., with a spacing of \(1 / 2\) wavelength, which is \(2.99 / 2\). Given that we're using fixed-point arithmetic, the data type used for the element spacing vector is fixdt(1,8,4), i.e., a signed 8 -bit word length and 4 -bit fraction length numeric data type.

\section*{Deserialization}

To compare your sample-based, fixed-point, implementation design with the floating-point, framebased, behavioral design you need to deserialize the output of the implementation subsystem and convert it to a floating-point data type. Alternatively, you can compare the results directly with sample-based signals but then you must unbuffer the output of the behavioral model as shown:

to match the sample-based signal output from the implementation algorithm. In this case, you only need to convert the output of the HDL Algorithm subsystem to floating-point by setting the Data Type Conversion block's output data type to double.

\section*{Comparing Output of HDL Model to Behavioral Model}

Run the model to display the results. You can run the Simulink model by clicking the Play button or calling the sim command in the MATLAB command line. Use the scopes to compare the outputs visually.
```

sim(modelname);

```



As seen in the Time Scope showing the Beamformed Signal and Beamformed Signal (HDL), the two signals are nearly identical. We can see the error on the order of \(10^{\wedge}-3\) in the Error scope. This shows that the HDL Algorithm subsystem is producing the same results as the behavioral model within quantization error. This is an important first step before generating HDL code.

Because the HDL model used 55 delays, the scope titled HDL Beamformed Signal is delayed by 55 ms when compared to the original transmitted or beamformed signal shown on the Behavioral Beamformed Signal scope.

\section*{Summary}

This example is the first of a two-part tutorial series on how to design an FPGA implementation-ready algorithm, automatically generate HDL code, and verify the HDL code in Simulink. This example showed how to use blocks from the Phased Array System Toolbox to create a behavioral model, to serve as a golden reference, and how to create a subsystem for implementation using Simulink blocks that support HDL code generation. It also compared the output of the implementation model to the output of the corresponding behavioral model to verify that the two algorithms are functionally equivalent.

Once you verify that your implementation algorithm is functionally equivalent to your golden reference, you can use HDL Coder \({ }^{\mathrm{TM}}\) for "HDL Code Generation from Simulink" (HDL Coder) and HDL Verifier \({ }^{\text {TM }}\) to "Generate a Cosimulation Model" (HDL Coder) test bench.

The second part of this two-part tutorial series "FPGA Based Beamforming in Simulink: Part 2 - Code Generation" on page 17-740 shows how to generate HDL code from the implementation model and
verify that the generated HDL code produces the same results as the floating-point behavioral model as well as the fixed-point implementation model.

\section*{Squinted Spotlight Synthetic Aperture Radar (SAR) Image Formation}

This example shows how to model a spotlight-based Synthetic Aperture Radar (SAR) system using a Linear FM (LFM) Waveform. In case of squint mode, the SAR platform is squinted either to look forward or backward by certain angle from broadside depending upon the need. The squint mode helps in imaging regions lying ahead of the current radar platform location or to image locations lying behind the platform location for interferometric applications. The challenge in squint mode is higher due to the range azimuth coupling. Because the resolution of SAR depends upon the signal and antenna configuration, resolution can be much higher than for vision-based imaging systems. Using spotlight mode, this example performs range migration algorithm [1,3] to image stationary targets lying ahead of the SAR platform location. A Linear FM waveform offers the advantage of large time-bandwidth product at a considerably lower transmit power making it suitable for use in airborne systems. For more details on the terminology used in this example see the details here (<docid:phased_ug\#example_ex39468543>)


\section*{Radar Configuration}

Consider an airborne SAR operating in C-band with a 4 GHz carrier frequency and a signal bandwidth of 50 MHz . This bandwidth yields a range resolution of 3 meters. The radar system collects data at a squint angle of 33 degrees from the broadside as shown in the figure above. The delay corresponds in general to the slant range between the target and the platform. For a SAR system, the slant range will vary over time as the platform traverses a path orthogonal to the direction of antenna beam. This section below focuses on defining the parameters for the transmission waveform. The LFM sweep bandwidth can be decided based on the desired range resolution.
```

c = physconst('LightSpeed');

```

Set the SAR center frequency.
```

fc = 4e9;% Hz

```

Set the desired range and cross-range resolution to 3 meters.
```

rangeResolution = 3;% meters
crossRangeResolution = 3;% meters

```

The signal bandwidth is a parameter derived from the desired range resolution.
```

bw = c/(2*rangeResolution);
prf = 1000;% Hz
aperture = 4;% sq. meters
tpd = 3*10^-6; % sec
fs = 120*10^6; % Hz

```

Configure the LFM signal of the radar.
```

waveform = phased.LinearFMWaveform('SampleRate',fs, 'PulseWidth', tpd, 'PRF', prf,..

```
    'SweepBandwidth', bw);

Assume the speed of aircraft is \(100 \mathrm{~m} / \mathrm{s}\) with a flight duration of 4 seconds.
```

speed = 100;% m/s
flightDuration = 4;% sec
radarPlatform = phased.Platform('InitialPosition', [0;-600;500], 'Velocity', [0; speed; 0]);
slowTime = 1/prf;
numpulses = flightDuration/slowTime +1;
etal = linspace(0,flightDuration ,numpulses)';
maxRange = 2500;
truncrangesamples = ceil((2*maxRange/c)*fs);
fastTime = (0:1/fs:(truncrangesamples-1)/fs);
% Set the reference range for the cross-range processing.
Rc = 1e3;% meters

```

Configure the SAR transmitter and receiver. The antenna looks in the broadside direction orthogonal to the flight direction.
```

antenna = phased.CosineAntennaElement('FrequencyRange', [1e9 6e9]);
antennaGain = aperture2gain(aperture,c/fc);
transmitter = phased.Transmitter('PeakPower', 1e3, 'Gain', antennaGain);
radiator = phased.Radiator('Sensor', antenna,'OperatingFrequency', fc, 'PropagationSpeed', c);
collector = phased.Collector('Sensor', antenna, 'PropagationSpeed', c,'OperatingFrequency', fc);
receiver = phased.ReceiverPreamp('SampleRate', fs, 'NoiseFigure', 30);
Configure the propagation channel.

```
```

channel = phased.FreeSpace('PropagationSpeed', c, 'OperatingFrequency', fc,'SampleRate', fs,...

```
channel = phased.FreeSpace('PropagationSpeed', c, 'OperatingFrequency', fc,'SampleRate', fs,...
    'TwoWayPropagation', true);
```


Scene Configuration

In this example, two static point targets are configured at locations specified below. The entire scene as shown further in the simulation lies ahead of the platform. The data collection ends before the airborne platform is abreast of the target location. All targets have a mean RCS value of 1 metersquared.

```
targetpos= [900,0,0;1000,-30,0]';
targetvel = [0,0,0;0,0,0]';
```

The squint angle calculation depends on the flight path and center of the target scene which is located at nearly 950 meters in this case.

```
squintangle = atand(600/950);
target = phased.RadarTarget('OperatingFrequency', fc, 'MeanRCS', [1,1]);
pointTargets = phased.Platform('InitialPosition', targetpos,'Velocity',targetvel);
% The figure below describes the ground truth based on the target
% locations.
figure(1);
h = axes;plot(targetpos(2,1),targetpos(1,1),'*b');hold all;plot(targetpos(2,2),targetpos(1,2),'*
set(h,'Ydir','reverse');xlim([-50 10]);ylim([800 1200]);
title('Ground Truth');ylabel('Range');xlabel('Cross-Range');
```

Ground Truth

SAR Signal Simulation

The following section describes how the system operates based on the above configuration. Specifically, the section below shows how the data collection is performed for a SAR platform. As the platform moves in the cross-range direction, pulses are transmitted and received in directions defined by the squint angle with respect to the flight path. A collection of pulses gives the phase history of the targets lying in the illumination region as the platform moves. The longer the target lies in the illumination region, the better the cross-range resolution for the entire image because the process of range and cross-range focusing is generalized for the entire scene.

```
rxsig = zeros(truncrangesamples,numpulses);
for ii = 1:numpulses
    % Update radar platform and target position
    [radarpos, radarvel] = radarPlatform(slowTime);
    [targetpos,targetvel] = pointTargets(slowTime);
    % Get the range and angle to the point targets
    [targetRange, targetAngle] = rangeangle(targetpos, radarpos);
    % Generate the LFM pulse
    sig = waveform();
    % Use only the pulse length that will cover the targets.
    sig = sig(1:truncrangesamples);
    % Transmit the pulse
    sig = transmitter(sig);
    % Radiate the pulse towards the targets
    sig = radiator(sig, targetAngle);
    % Propagate the pulse to the point targets in free space
    sig = channel(sig, radarpos, targetpos, radarvel, targetvel);
    % Reflect the pulse off the targets
    sig = target(sig);
    % Collect the reflected pulses at the antenna
    sig = collector(sig, targetAngle);
    % Receive the signal
    rxsig(:,ii) = receiver(sig);
end
kc = (2*pi*fc)/c;
% Compensate for the doppler due to the squint angle
rxsig=rxsig.*exp(-1i.*2*(kc)*sin(deg2rad(squintangle))*repmat(speed*eta1,1,truncrangesamples)).
```

Visualize the received signal.
The received signal can now be visualized as a collection of multiple pulses transmitted in the crossrange direction. The plots show the real part of the signal for the two targets. The chirps appear tilted due to the squint angle of the antenna.

```
imagesc(real(rxsig));title('SAR Raw Data')
xlabel('Cross-Range Samples')
ylabel('Range Samples')
```


Perform range compression.

The range compression will help achieve the desired range resolution for a bandwidth of 50 MHz .

```
pulseCompression = phased.RangeResponse('RangeMethod', 'Matched filter', 'PropagationSpeed', c,
matchingCoeff = getMatchedFilter(waveform);
[cdata, rnggrid] = pulseCompression(rxsig, matchingCoeff);
```

The figure below shows the response after range compression has been achieved on the received signal. The phase histories of the two targets are clearly visible along the cross-range direction and range focusing has been achieved.

```
imagesc(real(cdata(800:1100,:)));title('SAR Range Compressed Data')
xlabel('Cross-Range Samples')
ylabel('Range Samples')
```


Azimuth Compression

There are multiple techniques to process the cross-range data and get the final image from the SAR raw data once range compression has been achieved. In essence, the range compression helps achieve resolution in the fast-time or range direction and the resolution in the cross-range direction is achieved by azimuth or cross-range compression. Range Migration algorithm for squint case has been demonstrated in this example. The azimuth focusing needs to account for the squint induced due to antenna tilt.

```
rma_processed = helperSquintRangeMigration(cdata,fastTime,fc,fs,prf,speed,numpulses,c,Rc,squinta
```

Visualize the final SAR image.
Plot the focused SAR image using the range migration algorithm. Only a section of the image formed via the range migration algorithm is shown to accurately point the location of the targets. The range migration as shown by [1], [2] and [3] provides theoretical resolution in the cross-track as well as along-track direction.

```
figure(2);
imagesc(abs(rma_processed(2300:3600,1100:1400).'));
title('SAR Data focused using Range Migration algorithm ')
xlabel('Cross-Range Samples')
ylabel('Range Samples')
```


Summary

This example shows how to simulate and develop Squint mode Spotlight SAR processing leveraging a LFM signal in an airborne data collection scenario. The example also demonstrates image generation from the received signal via modified range migration algorithm to handle the effect due to squint.

References

1 Cafforio, C., Prati, C. and Rocca, F., 1991. SAR data focusing using seismic migration techniques. IEEE transactions on aerospace and electronic systems, 27(2), pp.194-207.
2 Soumekh, M., 1999. Synthetic Aperture Radar Signal Processing with MATLAB algorithms. John Wiley \& Sons, Inc.
3 Stolt, R.H., Migration by Fourier transform techniques, Geophysics, 1978, 43, pp. 23-48

Appendix

Range Migration Algorithm

```
function azcompresseddata = helperSquintRangeMigration(sigData,fastTime,fc,fs,prf,speed,numPulse
```

This function demonstrates the range migration algorithm for imaging the side looking synthetic aperture radar.The pulsed compressed synthetic aperture data is considered in this algorithm.

Set the range frequency span.

```
frequencyRange = linspace(fc-fs/2,fc+fs/2,length(fastTime));
krange = 2*(2*pi*frequencyRange)/c;
```

Set the cross-range wavenumber.

```
kaz = 2*pi*linspace(-prf/2,prf/2,numPulses)./speed;
```

Generate a matrix of the cross-range wavenumbers to match the size of the received two-dimensional SAR signal

```
kc = 2*pi*fc/3e8;
kazimuth = kaz.';
kus=2*(kc)*sin(deg2rad(squintangle));
kx = krange.^2-(kazimuth+kus).^2;
```

The wavenumber has been modified to accommodate shift due to squint and achieve azimuth focusing.

```
thetaRc = deg2rad(squintangle);
kx = sqrt(kx.*(kx > 0));
kFinal = exp(li*(kx.*cos(thetaRc)+(kazimuth).*sin(thetaRc)).*Rc);
kfin = kx.*cos(thetaRc)+(kazimuth+kus).*sin(thetaRc);
```

Perform a two-dimensional FFT on the range compressed signal.

```
sdata =fftshift(fft(fftshift(fft(sigData,[],1),1),[],2),2);
```

Perform bulk compression to get the azimuth compression at the reference range. Perform filtering of the 2-D FFT signal with the new cross-range wavenumber to achieve complete focusing at the reference range and as a by-product, partial focusing of targets not lying at the reference range.

```
fsmPol = (sdata.').*kFinal;
```

Perform Stolt Interpolation to achieve focusing for targets that are not lying at the reference range

```
stoltPol = fsmPol;
for i = 1:size((fsmPol),1)
    stoltPol(i,:) = interp1(kfin(i,:),fsmPol(i,:),krange(1,:));
end
stoltPol(isnan(stoltPol)) = 1e-30;
azcompresseddata = ifftshift(ifft2(stoltPol),2);
end
```


FPGA Based Monopulse Technique Workflow: Design and Code Generation

This example shows how to design an FPGA implementation-ready Monopulse Technique to match a corresponding behavioral model in Simulink® using the Phased Array System Toolbox ${ }^{\mathrm{TM}}$, DSP System Toolbox ${ }^{\mathrm{TM}}$, and Fixed-Point Designer ${ }^{\mathrm{TM}}$. To verify the implementation model is functionally correct, it compares the simulation output of the implementation model with the output of the behavioral model.The term deployment here implies designing a model that is suitable for implementation on FPGA. The model is implementation ready and this will be verified in the example. The entire workflow is designed in fixed-point.

The Phased Array System Toolbox ${ }^{\text {TM }}$ provides the floating-point behavioral model for the monopulse technique via a phased.MonopulseFeed System object. This behavioral model is used to verify the results of the implementation model and the automatically generated HDL code as well. DSP System Toolbox ${ }^{\mathrm{TM}}$ provides the FIR filter essential for the down-conversion filtering.

Fixed-Point Designer ${ }^{\mathrm{TM}}$ provides data types and tools for developing fixed-point and single-precision algorithms to optimize performance on embedded hardware. Bit-true simulations can be performed to observe the impact of limited range and precision without implementing the design on hardware.

This example uses HDL Coder ${ }^{T M}$ to generate HDL code from the Simulink ${ }^{\circledR}$ ® model developed and verifies the HDL code using the HDL Verifier ${ }^{\mathrm{TM}}$. HDL Verifier ${ }^{\mathrm{TM}}$ is used to generate a cosimulation test bench model to verify the behavior of the automatically generated HDL code. The test bench uses ModelSim® for cosimulation to verify the automatically generated HDL code.

Monopulse is a technique where the received echoes from different elements of an antenna are used to estimate the direction of arrival (DOA) of a signal. This in turn helps estimate the location of an object. The example uses DSP System Toolbox and Fixed-Point Designer to design the module. This technique utilizes four beams which help measure the angular position of the target. All the four beams are generated simultaneously and the difference of azimuth and elevation is achieved in a single pulse, hence, the name monopulse.

Designing the Subsystem

The algorithm is implemented by utilizing Simulink ${ }^{8}$ blocks that are HDL compatible. The model shown below assumes that the signal is received from the 4 -element uniform rectangular array (URA). Hence the starting point for the model shows 4 sinusoids as inputs. Assuming a 4 -element URA, the model is comprised of 4 receive channels from each of the elements of the URA. Once the signals are converted to the digital domain, DDC blocks will ensure that the frequency of the received signal is lowered therefore reducing the sample rate for processing. The block diagram below shows the subsystem which consists of the following modules.

1 Multi-Channel Input Signal

2 Digital Down-Conversion
3 Monopulse Sum and Difference Channels
Below is the command to open the Simulink model

```
modelname = 'SimulinkDDCMonopulseHDLWorkflowExample';
open_system(modelname);
% Ensure model is visible and not obstructed by scopes.
```

open_system(modelname);
set(allchild(0), 'Visible','off');

The Simulink model has two branches. The top branch is the behavioral, floating-point model of the monopulse technique and digital down conversion chain algorithm and the bottom branch is the functionally equivalent fixed-point version using blocks that support HDL code generation. Apart from plotting the output of both branches to compare the two, the difference, or error, between sum channel of both the outputs have also been calculated and plotted.

Notice that there's a delay $\left(Z^{-220}\right)$ at the output of the behavioral model. This is necessary because the implementation algorithm uses 220 delays to enable pipelining which creates latency that needs to be accounted for. This latency is necessary to time-align the output between the behavioral model and the implementation model.

Digital Down-Conversion (DDC)

The subsystem below shows how the received signal at sampled at 80 MHz and nearly 15 MHz carrier frequency is down converted to baseband via the DDC and then passed on to the monopulse sum and difference subsystem. A DDC module is a combination of a numerically controlled oscillator (NCO) and a set of low-pass filters. NCO provides the signal to mix and demodulate the incoming signal. Open the subsystem that performs the down-conversion

```
open_system([modelname '/DDC and Monopulse HDL']);
```


Notice that a delay of 215 ms has been added to the output of digital comparator in the implementation subsystem to compensate for the delay that arises out of the down conversion chain.

A DDC also contains a set of low-pass filters as shown in the figure. Once mixed, the low-pass filtering of the mixed signal is required to eliminate the high frequency components. In this example, we use a cascaded filter chain to achieve the low-pass filtering. The NCO is used to generate the high accuracy sinusoid for the mixer. A latency of 6 is provided to the HDL-optimized NCO block. This signal is mixed with the incoming signal and is converted from a higher frequency to a relatively lower frequency as it progresses through the various stages.
open_system([modelname '/DDC and Monopulse HDL/HDL_DDC']);

In this example, the incoming signal has a carrier frequency of 15 MHz and is sampled at 80 MHz . The down-conversion process brings the sampled signal down to a few kHz . The coefficients for relevant low-pass FIR filters are designed using filterBuilder, one of which is as described below. The values must be chosen to satisfy the required pass-band criteria.

Once generated, the coefficients can be exported to the HDL optimized FIR Filter block.

Monopulse Sum and Difference Channels

Apart from generating down-converted signal, another aspect for consideration for monopulse is the steering vector for different elements. The steering vectors have been generated for an incident angle of azimuth 30 degrees and elevation 20 degrees. The steering vectors are passed on to the digital comparator to provide the desired sum and difference channel outputs. The down-converted signal is then multiplied by the conjugate of these vectors as shown in the figure below. By processing the sum and difference channels, the DOA of the received signal can be found. The digital comparator that compares the steering vectors for the different elements of the antenna array can be seen by:
open_system([modelname '/DDC and Monopulse HDL/DIGITAL COMPARATOR']);

In the figure above, the digital comparator takes the steering vectors and computes the sum and difference of the different steering vectors sVA, sVB, sVC and sVD respectively. You can also calculate the steering vectors by using the phased.SteeringVector System object or you can generate them using method similar to the one shown in the "FPGA Based Beamforming in Simulink: Part 1 Algorithm Design" on page 17-747. Once the sum and difference of various steering vectors corresponding to each element of the array has been done, the calculation of sum and difference channels for corresponding azimuth and elevation angles are performed. From the Sum and Difference Monopulse subsystem, 3 signals are obtained, namely the sum, the azimuth difference, and the elevation difference. The entire arithmetic is performed in fixed point. The monopulse sum and difference channel subsystem can be opened by using the command below
open_system([modelname '/DDC and Monopulse HDL/Monopulse Sum and Difference Channel']);

Comparing Results of Implementation Model to Behavioral Model

To compare results of the implementation model to the behavioral model, run the model created to display the results. You can run the Simulink model by clicking the Play button or calling the sim command on the MATLAB command line as shown below. Use Scope blocks to compare the output frames.

```
sim(modelname);
```


The plots show the output from sum and difference channels. These channels can be fed to an estimator to indicate the angle/direction of the object.

Code Generation and Verification

This section covers the procedure to generate HDL code for a DDC and monopulse technique and verify that the generated code is functionally correct. The behavioral model provides the reference values to ensure that the output from HDL is within tolerance limits. Based on the Simulink model setup as described above, the monopulse technique designed using fixed-point arithmetic and supports HDL code generation. Alternatively, if you start with a new model, you can run hdl setup (HDL Coder) to configure the Simulink model for HDL code generation. To configure the Simulink model for test bench creation, open Simulink's Model Settings, select Test Bench under HDL Code Generation in the left panel, and check HDL test bench and Cosimulation model in the Test Bench Generation Output properties group.

Model Settings

After the fixed-point implementation is verified and the implementation model produces the same results as your floating-point, behavioral model, you can generate HDL code and test bench. For code
generation and test bench, set the HDL Code Generation parameters in the Configuration Parameters dialog. The following parameters in Model Settings are set under HDL Code Generation:

- Target: Xilinx Vivado synthesis tool; Virtex7 family; Device xc7vx485t; package ffg1761, speed -1; and target frequency of 300 MHz .
- Optimization: Uncheck all optimizations
- Global Settings: Set the Reset type to Asynchronous
- Test Bench: Select HDL test bench, Cosimulation model and SystemVerilog DPI test bench

HDL Code Verification via Cosimulation

After Simulink Model Settings have been updated, you can use HDL Coder Generate HDL Code from Simulink ${ }_{\circledR}$ to generate HDL code for the HDL Algorithm subsystem. Use HDL Verifier to generate test bench model.
\% Uncomment the following two lines to generate HDL code and test bench.
\% makehdl([modelname '/DDC and Monopulse HDL']); \% Generate HDL code
\% makehdltb([modelname '/DDC and Monopulse HDL ']); \% Generate Cosimulation test bench
Since the model has accounted for pipelining in the multiplications, and we have unchecked all optimizations, there are no extra delays added to the model. We need to compensate these delays for the floating-point, behavioral model output. This will align the output of the behavioral model with the implementation model as well as the cosimulation. Out of the 220 units delay, 215 unit delays compensates for the latency in the DDC chain and 5 units in the monopulse sum and difference subsystem.

After generating HDL code and test bench a new Simulink model named gm_<modelname>_mq containing a ModelSim Simulator block is created in your working directory, which looks like this:

\% To open the test bench model, uncomment the following lines of code \% modelname = ['gm_',modelname, ' mq'];
\% open_system(model̄name);
Launch ModelSim and run the cosimulation model to display the simulation results. You can click on the Play button on the top of Simulink canvas to run the test bench or you can do it via command window from the code below
\% Uncomment the following line, to run the test bench.
\% sim(modelname);
The Simulink® test bench model will populate the Questa Sim with the HDL model's signal and Time Scopes in Simulink. Below are examples of the results in Questa Sim and Simulink scopes.

The Simulink scope below shows real and imaginary parts for both the cosimulation and Design Under Test(DUT) as well as the error between them. The scopes comparing the results of the cosimulation can be found in test bench model inside the Compare subsystem, which is at the output of the DDC and Monopulse HDL_mq subsystem.

```
% Uncomment the following line to open the subsystem with the scopes.
% open_system([modelname,'/Compare/Assert_Sum Channel HDL'])
```


Summary

This example demonstrated how to design a Simulink model for a DDC and monopulse feed system, verify the resutls with an equivalent behavioral setup from the Phased Array System Toolbox. This example demonstrated how to automatically generate HDL code for a fixed-point, monopulse technique with the down conversion chain and verify the generated code in Simulink ${ }^{\circledR}$. The generated HDL code as well as a cosimulation test bench for the Simulink subsystem was created with blocks that support HDL code generation. It showed how to setup and launch ModelSim to cosimulate the HDL code and compare its output to the output generated by the HDL implementation model. The cosimulation is performed via ModelSim for the HDL code and compare results to the output generated by the HDL model.

